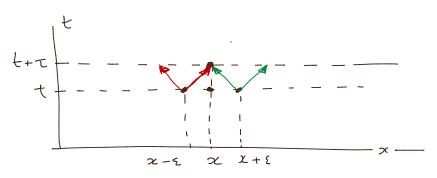
The heat equation

Randon walk on the line at regular time intervals (length 7) take a random step of size & to the left or to the right ult, 2) = fraction of all random walkers at location x at time t.



$$u(t+\tau,x) = \frac{1}{2}u(t,x-\epsilon) + \frac{1}{2}u(t,x+\epsilon)$$

$$\frac{u(t+\tau,x) - u(t,x)}{t} = \frac{\tau}{\epsilon^2} = \frac{1}{2}\frac{u(t,x-\epsilon) - 2u(t,x) + u(t,x+\epsilon)}{\epsilon^2}$$

Let $\xi, \tau \to 0$ with $\xi^2 = 2D\tau$

$$\begin{array}{ll} \lim_{\varepsilon \to 0} & \frac{u(t,x-\varepsilon) - 2u(t,x) + u(t,x+\varepsilon)}{\varepsilon^{\pm}} = \lim_{\varepsilon \to 0} & \frac{1}{-u_{x}(t,x-\varepsilon) + u_{x}(t,x+\varepsilon)} \\ & = \lim_{\varepsilon \to 0} & \frac{u_{xx}(t,x-\varepsilon) + u_{xx}(t,x+\varepsilon)}{\varepsilon} = u_{xx}(t,x) \end{array}$$

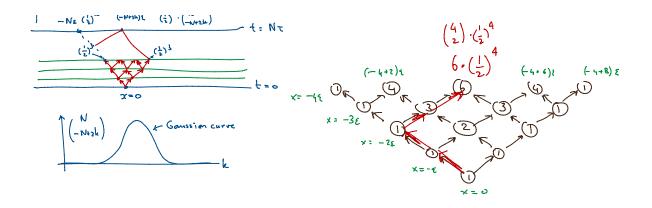
$$\frac{3\pi}{9\pi} \cdot \frac{3D}{7} = \frac{5}{12} \frac{3\pi}{3^2 \pi}$$

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$
 The heat equation

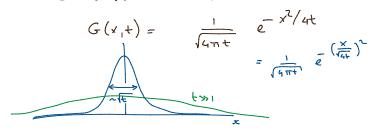
Possible derivations of 6:

- ① Use Fourier transform ① Assume $G(t,x) = \frac{1}{1+} F(\frac{x}{1+})$ find & solve diffeq for F
- 3 Binomial coefficients & Stirling's formula

$$\frac{1}{\left(\frac{1}{2}\right)^{N}} \frac{\left(-\text{Merk}\right)_{\xi}}{\left(-\frac{1}{2}\right)^{N}} \left(\frac{N}{-\text{Merk}}\right) + \infty + N\tau$$



The Fundamental solution



Satisfies
$$\frac{\partial G}{\partial t} = \frac{\partial^2 G}{\partial x^2} \qquad (1)$$

$$\int_{-\infty}^{\infty} G(x,t) dx = 1$$
 (1)

Proof (1) Use $G(x_1t) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}$ to compute G_{ξ} and G_{ex} and note that $G_{\xi} = G_{xx}$.

(2) We compute
$$\int_{-\infty}^{\infty} G(t,x) dx = \int_{-\infty}^{\infty} \frac{1}{4\pi t} e^{-\frac{x^2}{4t}} dx \quad \text{substitute } x = y\sqrt{t}t$$

$$= \int_{-\infty}^{\infty} \frac{1}{4\pi t} e^{-\frac{x^2}{4t}} dx$$

$$= \frac{1}{1\pi} \int_{-\infty}^{\infty} e^{-y^2} dy$$

$$= \frac{1}{1\pi} \cdot (\pi = 1)$$

Theorem 1 If $f: \mathbb{R} \to \mathbb{R}$ is bounded and Riemann integrable area every interval $-L \in X \in L$,

Hen

(A)
$$u(t,x) = \int_{-\infty}^{\infty} G(t,x-y) f(y) dy$$

is a solution to

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \qquad x \in \mathbb{R}, t > 0$$

lim $u(t,x) = f(x)$ at every $x \in \mathbb{R}$ s.t.

 f is continuous at x

Proof:

(D) $\frac{\partial u}{\partial t} = \frac{\partial}{\partial t} \int_{0}^{\infty} G(t,x-y) f(y) dy$

$$= \int_{-\infty}^{\infty} \frac{\partial}{\partial t} (t,x-y) f(y) dy$$

$$= \int_{-\infty}^{\infty} \frac{\partial}{\partial x} (t,x-y) f(y) dy$$

equal because

$$= \int_{-\infty}^{\infty} \frac{\partial^2 G}{\partial x} (t,x-y) f(y) dy$$

(D) $\lim_{t \to \infty} u(t,x) = f(x)$

We use:

$$\int_{-\infty}^{\infty} G(t,x) dx = 1 \text{ and } \lim_{t \to \infty} \int_{0}^{\infty} G(t,x) dx = 0$$

then

$$\int_{-\infty}^{\infty} G(t,x) dx = 1 \text{ and } \lim_{t \to \infty} \int_{0}^{\infty} G(t,x) dx = 0$$

We use:
$$\int_{-\infty}^{\infty} G(t,x) dx = 1$$

$$\lim_{t \to 0} \int_{a}^{a} G(t,x) dx = 1 \quad \text{and} \quad \lim_{t \to 0} \int_{a}^{\infty} G(t,x) dx = 0$$

$$\text{and} \quad G(t,x) \ge 0 \quad \text{for all } t > 0, x \in \mathbb{R}$$

$$u(t,x) - f(x) = \int_{-\infty}^{\infty} G(t,x-y) f(y) dy - f(x) \int_{-\infty}^{\infty} G(t,x-y) dy$$

$$= \int_{-\infty}^{\infty} G(t,x-y) \left(f(y) - f(x)\right) dy.$$

Theorem 2 The function u(t, x) given by (*) is the only solution of $u_t = u_{XX}$, u(o, x) = f(x) for which u_t , u_t , u_{XX} are bounded continuous functions.