Convergence of sequences of functions

The norm of a function
$$f: X \rightarrow \mathbb{R}$$
 $\|f\|_{\mathcal{A}}$
Distance d. between functions $f, g: X \longrightarrow \mathbb{R}$

$$d(f_{i}g) = \|f-g\|$$

$$\|f\|_{\infty} = \sup_{x \in X} |f(x)|$$

$$root mean square norm$$

$$\|f\|_{\infty} = \sup_{x \in X} |f(x)|^{p} dx \Big)^{\frac{1}{p}} \qquad p=2 \qquad \||f\|_{2} = \left(\int_{X} |f(x)|^{2} dx\right)^{\frac{1}{2}}$$

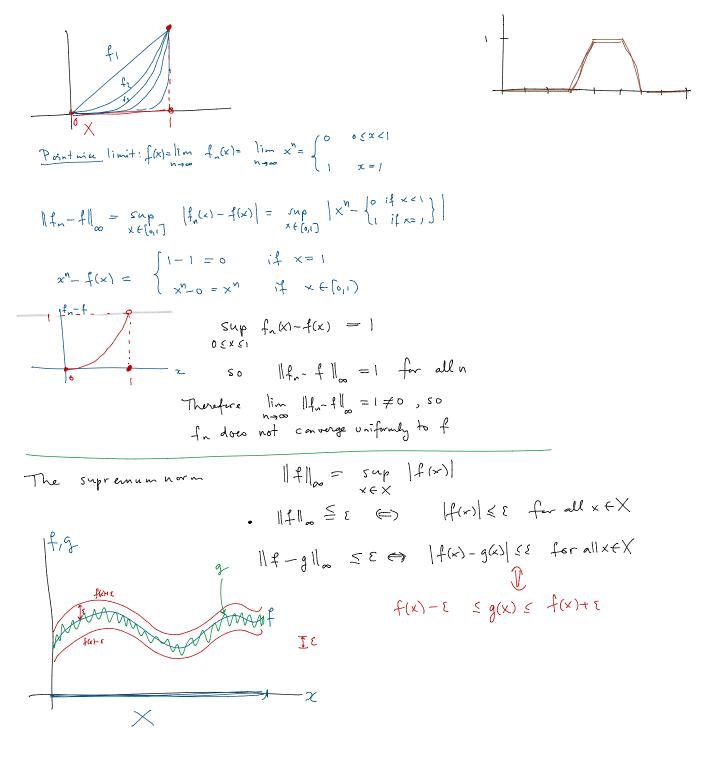
$$\|f\|_{p} = \left(\int_{X} |f(x)|^{p} dx\right)^{\frac{1}{p}} \qquad p=1 \qquad \|f\|_{1} = \int_{X} |f(x)| dx$$

Uniform convergence A sequence
$$f_n: X \to \mathbb{R}$$
 converges uniformly to $f: X \to \mathbb{R}$
if (1) $\lim_{n \to \infty} \|f_n - f\|_{\infty} = 0$
(2) there exist $\delta_n > 0$ with $\lim_{n \to \infty} \delta_n = 0$
and $|f_n(x) - f(x)| \le \delta_n$ for all $x \in X$, $n \in \mathbb{N}$
(3) For every too there is an $N_x \in \mathbb{N}$ such that
for all $n \ge N_x$ and $x \in X$: $|f_n(x) - f(x)| \le \varepsilon$

Theorem If
$$f_n: X \to iR$$
 are continuous and if $f_n \to f$ uniformly
then f is continuous.

 $\underbrace{\text{Examples}}_{\text{O}} \quad X = [0,1] \quad f_n(x) = x^n$

$$(2) \quad X = (o_1)$$



Therefore for does not converge to o

Theorem If
$$f_n: [a,b] \rightarrow \mathbb{R}$$
 is c1 and if:
 $\bigcirc f_n \rightarrow f$ uniformly on $[a,b]$
 $\bigcirc f_n' \rightarrow g$ uniformly on $[a,b]$
 $\stackrel{\text{Then}}{\longrightarrow} f$ is c' and $g(x) = f'(x)$ for all $x \in [a,b]$.
 $\stackrel{\text{Te.}}{\longrightarrow} if f_n \rightarrow f$ uniformly and if $f_n' \rightarrow g$ uniformly
then
 $\lim_{n \rightarrow \infty} f_n'(e) = f'(x)$

$$\lim_{n \to \infty} \frac{df_n}{dx} = \frac{d}{dx} \lim_{n \to \infty} \frac{f_n(x)}{dx}$$

A similar thearan holds for partial derivatives of fn: R > R

$$\frac{\partial^{2} u_{n}}{\partial t^{2}} = \frac{\partial^{2} u_{n}}{\partial t^{2}}$$
is the limit $u(x,t) = \lim_{n \to \infty} u_{n}(x,t)$ dis a solution?
What kind if limit?
Ancound 1. Yes, if $u_{n}, \frac{\partial u_{n}}{\partial t^{2}} + \frac{\partial^{2} u_{n}}{$

(1) un continuous
$$\} \Rightarrow u = \lim un is also continuous.
 $u_n \rightarrow u$ unif. $\} \Rightarrow u = \lim u_n is also continuous.$
(2) If $u_n \rightarrow u$ uniformly then $\lim_{n \rightarrow \infty} u_n(x,t) = u(x,t)$ for all x, t .
Therefore
 $u(x+h,t) + u(x-h,t) = \lim_{n \rightarrow \infty} u_n(x+h,t) + u_n(x-h,t)$
 $= \lim_{u \rightarrow \infty} u_n(x,t+h) + u_n(x,t-h)$ (un satisfies x)
 $= u(x,t+h) + u(x,t-h)$.
I.e. u satisfies (x)$$