Inviscid Burger's equation

A nonlinear equation

Consider the so-called *inviscid Burger's equation*

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0.$$

If u(x,t) is a C^1 solution then any level set of u on which $u_x \neq 0$ is a straight line.

Suppose a level set is a graph x = f(t), i.e. suppose that for some function x = f(t) one has u(f(t), t) = c for all t. Then

suppose x=x(t) is a level set of the solution u(x,t), is. $u(x(t),t)=u(x(0),0)=C=U_{0}$ for all tER

 $\frac{d}{dt}(u(x(t),t)) = 0$ becomes u(x(t),t)=c for all t

Chain Rule:

Rule:

$$u_{x}(x(t),t) \cdot x'(t) + u_{t}(x(t),t) \cdot dt = 0$$

 $u_{x}(x(t),t) \cdot x'(t) + u_{t}(x(t),t) \cdot dt = 0$

The PDE for u implies $u_t = -uux$, so $u_x \cdot x'(t) - u \cdot u_x = 0$

Assume ux \$0 " Then divide by ux (x(t),t): $\chi'(t) - u(\chi(t),t) = 0$

$$\Rightarrow$$
 $x'(t) = c$

Conclusion: the level set n(x,t) = c is

a straight line x(t) = x(0) + ct u(x,t) = 0 v(x,t) = 0

