Transport equations: Using calculus $C \in \mathbb{R}$ (a "constant") $\frac{\partial u}{\partial u} + c \frac{\partial u}{\partial u} = 0$ u(x, t) = f(x - ct) where f(x) = u(x, o)Solution : solution at different values of t f(x) $u_{t} + \frac{1}{4}u_{x} = 0$ $u_{t} + \frac{1}{4}u_{x} = 0$ $u_{t} + (-2)u_{x} = 0$ $u_{t} + (-2)u_{x} = 0$ $u_{t} + \frac{1}{4}u_{x} = 0$ Transport with variable speed If *u* is a solution of $u_t + x(1-x)u_x = 0$ then can we find a function x = x(t) such that $\frac{d}{dt}u(x(t), t) = 0$? $\frac{d}{dt}u(x(t), t) = \frac{d}{dt}u(x(t), t) + \frac{d}{dt}u(x(t), t) = \frac{d}{dt}u(x(t),$ $\frac{\partial u}{\partial t} + \alpha(x) \frac{\partial u}{\partial x} = 0$ = $u_{x} \cdot x'(t) + u_{t}$ use $u_{t} + x(1-x)u_{x} = 0$ $\alpha(x) = x(1-x)$ $= u_{x} \cdot x^{i}(t) - x(i-x)u_{x} \quad \text{ardinary diffeq.}$ $= u_{x} \cdot (x^{i}(t) - x(i-x)) \quad \text{oDE for } x(t)$ $= u_{x} \cdot (x^{i}(t) - x(i-x)) \quad \text{if}$ $\text{If we require } \quad \frac{dx}{dt} - x(i-x) = 0 \quad \text{then } d \cdot u(x(t), t) = 0$ $\text{te.} \quad h(x(t), t) = u(x(0), 0) \quad \text{does not depend on } t.$ Solving the ODE $\frac{dx}{dt} = x(1-x)$ "separable" $\frac{x}{1-x} = e^{t} e^{t}$ $\int \frac{dx}{x(1-x)} = \int dt = t + C$ $\frac{1}{x(1-x)} = \frac{1}{x} + \frac{1}{1-x} = \int \frac{dx}{x(1-x)} = \ln x - \ln (1-x)$ $X_{n} = X(6)$ $\frac{dx}{dt} = x(1-x) \rightarrow t + C = \int \frac{dx}{x(1-x)} = \ln \frac{x}{1-x} \Rightarrow \frac{x}{1-x} = e^{t+C} \Rightarrow x(t) = \frac{e^{t+C}}{e^{t+C}+1}$ Conclusion: if $u(x_1+t)$ satisfies $u_{t+x}(x_1-x)u_{x}=0$ then $u\left(\frac{e^{t}}{-t+c}, t\right) = u\left(\frac{e^{t}}{e^{t}+1}, 0\right)$ does not depend on t. $\times_{0} = \times (6)$ $(t) = u\left(\frac{e}{eC_{+1}}, 0\right)$ $(x, t) = u\left(\frac{e}{eC_{+1}}, 0\right)$ (x, t) = x(t) with C $A_{-}(x, t) = chosen so the graph contains the point A$ (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A (x, t) = chosen so the graph contains the point A $e^{C} = \frac{xe^{-t}}{1-x} \Rightarrow x_{0} = \frac{e^{C}}{e^{C}+1} = \frac{xe^{-t}}{xe^{-t}+1-x}$ $u(x,t) = u(x_0,0) = f\left(\frac{xe^{-t}}{xe^{-t} + 1 - x}\right)$ $\frac{xe}{1-x(e^{-t}-1)}$ $\frac{xe}{1-x(1-e^{-t})} < 0 \quad \text{if } x \to \infty$ Characteristics of up+ x(1-x)ux=0 $\frac{\lambda(1-x)}{2} = -\chi_{5} + \chi \qquad \frac{\eta}{2} + \chi(1-x) \frac{1}{2} = 0$

Equations for the derivatives of a solution

If *u* is a solution of

 $u_t + \sin(x) \, u_x = u^2$

then the derivative $v = u_x$ also satisfies a partial differential equation.

We get this equation by differentiating the equation for *u* with respect to *x* on both sides:

.,

We get this equation by differentiating the equation for u with respect to x on both sides:

$$u_{t} + \sin(x) = u^{2}$$

"Differentiate wrth x on both sides:"

$$\frac{\partial (u_{t} + \sin(x) u_{x})}{\partial x} = \frac{\partial u^{2}}{\partial x}$$

$$\frac{\partial u_{t}}{\partial x} + \cos(x) u_{x} + \sin(x) \frac{\partial u_{x}}{\partial x} = 2u \cdot \frac{\partial u}{\partial x}$$

$$= v_{t} = v = \frac{\partial^{2} u}{\partial x} = \frac{\partial^{2} u}{\partial t \partial x} = \frac{\partial}{\partial t} (\frac{\partial u}{\partial x}) = \frac{\partial v}{\partial t} = v_{t}$$

$$\frac{\partial u_{t}}{\partial x} = \frac{\partial^{2} u}{\partial x \partial t} = \frac{\partial^{2} u}{\partial t \partial x} = \frac{\partial}{\partial t} (\frac{\partial u}{\partial x}) = \frac{\partial v}{\partial t} = v_{t}$$

"inived partials are equal"
(if they exist and are catinname)
If $u_{t} + \sin(x)u_{x} = u^{2}$ and if $v = \frac{\partial u}{\partial x}$ then
 $v_{t} + \cos(x)v_{t} + \sin(x)v_{x} = 2u \cdot v$
 $v_{t} + \sin(x)v_{x} = 2u \cdot v - \cos(x)v = (2u - \cos x)v$ (\$\$)
Next: $p = \frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial v}{\partial x}$. Equation for p
follows by differentiating (\$\$) w.r.t. x