"Superficial" Problem Set

Problem 1

Let $\Sigma=\left\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=1\right\}$ be the unit sphere. Consider the surface patch

$$\sigma(u,\theta) = \begin{pmatrix} \frac{\cos\theta}{\cosh u} \\ \frac{\sin\theta}{\cosh u} \\ \tanh u \end{pmatrix}, \qquad (u,\theta) \in S = \left\{ (u,\theta) \in \mathbb{R}^2 \mid u \in \mathbb{R}, |\theta| < \pi \right\}$$

for the unit sphere.

- (1) Compute the metric $(ds)^2 = E(u,\theta)(du)^2 + 2F(u,\theta)dud\theta + G(u,\theta)(d\theta)^2$.
- (2) Show that the mapping from the strip S to the unit sphere Σ given by σ is conformal.
- (3) Find a curve $\gamma : (0, \infty) \to \Sigma$ which starts at $A = \sigma(0, 0)$, and makes a 45° degree angle with every meridian it meets. [*Hint:* represent γ in the surface patch σ by setting $\gamma(t) = \sigma(t, \Theta(t))$.]

Problem 2

Consider a saddle surface S with surface patch $\sigma : \mathbb{R} \to \mathbb{R}^3$ given by

$$\sigma(u,v) = \left(\begin{array}{c} u\\ v\\ uv \end{array}\right).$$

- (1) Compute the first fundamental form of σ .
- (2) Find the area of the portion $\mathcal{R} = \{\sigma(u, v) \mid 0 \le u \le 1, 0 \le v \le 1\}$ of the surface parametrized by σ . (You may leave a double integral in the answer.)
- (3) Compute the normal curvature κ_n and geodesic curvature κ_g of the curve γ on S given by $\gamma(t) = \sigma(t, at)$ where $a \in \mathbb{R}$ is a constant.
- (4) Compute second fundamental form, the principal curvatures, and principal curvature directions of S at the point (1, 1, 1).