SOLUTIONS TO THE FIRST MIDTERM WERE DONE IN LECTURE FOLLOWING THE
MIDTERM, EXCEPT PROBLEM 2 WHICH IS SOLVED HERE.
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2(b) The Curvature is given by
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For the torsion one uses v/ = | —cost | combined with the formula
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2(c). The tangent plane to the curve is the plane throughv(0) parallel to T and
1
N, so it is perpendicular to B. At t = 0 we therefore find that B = % 0 is
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a normal to the tangent plane. Since v(0) = (1,0,0) must lie on this plane it has
equation r — z = 1.



