
Solutions to the first midterm were done in lecture following the
midterm, except problem 2 which is solved here.
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The binormal follows from
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.
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The unit normal follows from
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2(b) The Curvature is given by

κ =
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For the torsion one uses γ′′′ =

 sin t
− cos t
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 combined with the formula

τ =
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=

sin t(cos t + t sin t)− cos t(sin t− t cos t)
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2(c). The tangent plane to the curve is the plane throughγ(0) parallel to T and

N, so it is perpendicular to B. At t = 0 we therefore find that B = 1√
2
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0
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 is

a normal to the tangent plane. Since γ(0) = (1, 0, 0) must lie on this plane it has
equation x− z = 1.
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