GEODESIC CURVATURE PROBLEMS

The following problems require you to review the definition of geodesic curvature of a curve γ on a surface. The most straightforward formula for κ_g in this context is

$$\kappa_g = \vec{\kappa} \cdot (\vec{n} \times \vec{T}) = \frac{\gamma''(t) \cdot (\vec{n} \times \gamma'(t))}{\|\gamma'(t)\|^3}$$

 \vec{n} being the surface normal.

(1) Let γ be the "small circle" on the unit sphere

$$S = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$$

obtained by intersecting S with the plane $\{z = a\}$, where $a \in (-1, 1)$ is a constant.

- (a) Find a surface patch σ for S, and in this surface patch find a parametrization for γ (suggestion: spherical coordinates, i.e. lattitude & longitude probably work best.)
- (b) Compute the geodesic curvature κ_g at any point of the curve γ .
- (c) For which values of a does the curve γ have zero geodesic curvature?
- (2) Let \mathfrak{C} be the cylinder

$$\mathfrak{C} = \{ (x, y, z) \mid x^2 + y^2 = 1 \}$$

and let

$$\gamma(t) = \left(\begin{array}{c} \cos t\\ \sin t\\ at \end{array}\right)$$

be a helix on \mathfrak{C} (a > 0 is some constant.)

Compute the geodesic curvature of γ .

(3) On the same cylinder \mathfrak{C} as in the previous problem we consider the curve

$$\gamma(t) = \left(\begin{array}{c} \cos t\\ \sin t\\ h(t) \end{array}\right),$$

where $h : \mathbb{R} \to \mathbb{R}$ is some smooth function.

- (a) Find the geodesic curvature of γ .
- (b) Show that the geodesic curvature of γ vanishes if and only if h(t) = at + b for certain constants a and b.
- (4) Suppose a curve γ on a surface $S \subset \mathbb{R}^3$ has zero geodesic curvature, i.e. $\kappa_g = 0$. Must γ be a straight line?
- (5) Suppose a curve γ on a surface $S \subset \mathbb{R}^3$ has zero geodesic curvature, and zero normal curvature, (so $\kappa_g = \kappa_n = 0$ on the curve). Must γ be a straight line?
- (6) Suppose a surface $S \subset \mathbb{R}^3$ contains a straight line $\gamma \subset S$. Show that γ is a geodesic (i.e. a curve whose geodesic curvature vanishes.)