Let $x_{n}=\cos(\theta +n\frac{\pi }{3})$ where $\theta \in (0,\frac{\pi }{3})$ is some constant. For this sequence, compute:
There are only six different values in this sequence, and the sequence
repeats : $x_{n+6} = x_n$ for all $n$. You can read off the values by
drawing a unit circle.
a. $\sup_{n\in\mathbb{N}}x_{n}$
Since the sequence repeats, the supremum is the largest of the six cosines that appear in this sequence. If you work that out in more detail, then you find that $\cos \theta = \cos(\theta+2\pi)$ is the largest when $0\lt \theta\le \pi/6$, while $\cos(\theta+5\pi/3)$ is the largest if $\pi/6\le \theta\lt \pi/3$.
\[
\sup_{n\in\N}x_{n}=\left\{\begin{matrix}
\cos(\theta+\frac{5\pi}{3}),\frac{\pi}{3} \gt \theta \gt \frac{\pi}{6}\\
\cos(\theta+2\pi),0 \lt \theta\leq \frac{\pi}{6}
\end{matrix}\right.
\]
b. all possible limits of subsequences of $x_{n}$ are
\[
\cos(\theta+\frac{\pi}{3}),\quad \cos(\theta+\frac{2\pi}{3}),\quad
\cos(\theta+{\pi}),\quad \cos(\theta+\frac{4\pi}{3}),\quad
\cos(\theta+\frac{5\pi}{3}), \cos(\theta+2\pi).
\]
c. $\limsup_{n\to\infty }(x_{n})$
\[
\limsup_{n\to\infty }(x_{n})=\lim_{n\to\infty}\left \{ \sup_{k\geq n}(x_{k}) \right \}
\]
For any $n$ the least upper bound of $\{x_n, x_{n+1}, x_{n+2}, \dots\}$, i.e. $\sup_{k\ge n} x_k$, is again the largest of the six cosines you listed. So the answer is the same as in 1a:
\[
\limsup_{n\to\infty}x_{n}=\left\{\begin{matrix}
\cos(\theta+\frac{5\pi}{3}),\frac{\pi}{3}> \theta>\frac{\pi}{6}\\
\cos(\theta+2\pi),0<\theta\leq \frac{\pi}{6}
\end{matrix}\right.
\]
Let $(X,d)$ be a metric space, and let $x_n$ be a convergent sequence in
$X$. Show that $x_n$ also is a Cauchy sequence.
Assume $x_n\to p$. Let $\varepsilon\gt0$ be given.
Then there is an $N_\varepsilon\in\N$ such that for all $n\ge N_\varepsilon$
one has $d(x_n, p)\lt \varepsilon$. If $n, m\ge N_\varepsilon$, then
\[
d(x_n, x_m) \le d(x_n, p)+d(p, x_m) \le \frac \varepsilon2 +
\frac\varepsilon2 =\varepsilon.
\]
Thus $\{x_n\}$ is a Cauchy sequence.
Give an example of a metric space $(X,d)$ with a Cauchy sequence that
does not converge.
There are many examples. Perhaps the simplest example is to
take any metric space $(X,d)$ and a convergent sequence $x_n\in X$,
$p=\lim_{n\to\infty}x_n$, and then consider the space $(Y, d)$ where
$Y=X\setminus \{p\}$, and $d$ is the same metric as on $X$. For instance,
let $Y=\R\setminus\{0\}$, with distance $d(x, y) = |x-y|$; then the sequence
$x_n = \frac1n$ is a Cauchy sequence, but it does not converge in $Y$.
Give an example of a complete metric space that is not compact. Provide
a brief explanation for your answer.
The real line. Compact metric spaces are bounded, and
while $\R$ is complete, it is not bounded.
Let $x_n$ and $y_n$ be two bounded sequences of real numbers. Show that
\[
\limsup_{n\to\infty} (x_n+y_n) \le
\limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n.
\]
By definition
\[
\limsup_{n\to\infty}(x_n+y_n)
= \lim_{n\to\infty} \Bigl(\sup\{x_k+y_k : k\ge n\}\Bigr).
\]
For every $k\ge m$ we have
\[
x_k \le \sup\{x_l : l\ge m\}, \qquad
y_k \le \sup\{y_l : l\ge m\}.
\]
Hence, for all $k\ge m$,
\[
x_k+y_k \le \sup\{x_l : l\ge m\} + \sup\{y_l : l\ge m\}.
\]
The quantity on the right does not depend on $k$ and thus it is an upper
bound for $\{x_k+y_k : k\ge m\}$. It is therefore not smaller than the
least upper bound:
\[
\sup\{x_k+y_k : k\ge m\} \le \sup\{x_l : l\ge m\} + \sup\{y_l : l\ge m\}.
\]
If we now take the limit for $m\to\infty $ on both sides we get
\[
\limsup_{k\to\infty} x_k+y_k \le \limsup_{k\to\infty} x_k +
\limsup_{k\to\infty} y_k.
\]
Find two sequences $x_n$, $y_n$, of real numbers for which
\[
\limsup_{n\to\infty} (x_n+y_n) \lt
\limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n.
\]
There are many possibilities. Here is one:
\begin{align*}
\{x_n\} &= \{+1, 0, +1, 0, +1, 0, +1, 0, \dots \}\\
\{y_n\} &= \{-1, 0, -1, 0, -1, 0, -1, 0, \dots \}
\end{align*}
For these sequences $x_n+y_n = 0$ for all $n$, so
$\limsup_{n\to\infty}x_n+y_n =0$. But
\[
\limsup x_n = 1, \qquad \limsup y_n =0,
\]
so $\limsup(x_n+y_n) \lt \limsup x_n+ \limsup y_n$.
If $x_n$ and $y_n$ are bounded sequences of real numbers for which
$x_n$ converges, then show that
\[
\limsup_{n\to\infty} (x_n+y_n) =
\lim_{n\to\infty} x_n + \limsup_{n\to\infty} y_n.
\]
Abbreviate
\[
\lim_{n\to\infty} x_n = X, \qquad
\limsup_{n\to\infty}y_n = Y.
\]
By definition
\[
\limsup_{n\to\infty} \bigl(x_n +y_n\bigr)
= \lim_{n\to\infty} \Bigl\{\sup_{k\ge n} \bigl(x_n+y_n\bigr) \Bigr\}.
\]
Let $\varepsilon\gt 0$ be given. Then there is an $N_\varepsilon$ such that
for all $n\ge N_\varepsilon$ we have
\[
X-\varepsilon \lt x_n \lt X+\varepsilon,
\]
and
\[
Y - \varepsilon \lt \sup_{k\ge n} y_k \lt Y + \varepsilon.
\]
For any $k\ge N_\varepsilon$ we then have
\[
X-\varepsilon + y_k \lt x_k + y_k \lt X+\varepsilon +y_k,
\]
and thus for any $n\ge N_\varepsilon$,
\[
X-\varepsilon + \sup_{k\ge n}y_k
\lt \sup_{k\ge n} \bigl(x_k + y_k\bigr)
\lt X+\varepsilon +\sup_{k\ge n}y_k,
\]
and therefore, for all $n\ge N_\varepsilon$,
\[
X+ Y - 2\varepsilon \lt \sup_{k\ge n} \bigl(x_k + y_k\bigr) \lt X + Y + 2\varepsilon.
\]
This implies, by definition of “$\lim_{n\to \infty} (\dots)$”
that
\[
\lim_{n\to\infty} \Bigl\{\sup_{k\ge n} \bigl(x_k + y_k\bigr) \Bigr\}
= X+Y.
\]