Trace and Determinant

Trace

By definition the trace of square matrix \[ A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & \ddots & \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \end{pmatrix} \] is the sum of its diagonal elements, i.e. \[ \Tr(A) = a_{11}+\cdots+a_{nn} = \sum_{i=1}^n a_{ii} \]

Fact. $\Tr (AB) = \Tr(BA)$.

Fact. $\Tr\bigl(T^{-1}AT\bigr) = \Tr A$

Fact. $\Tr A = \lambda_1 + \cdots + \lambda_n$, i.e. the trace of a matrix is the sum of its eigenvalues.

In the special case where $A$ is a $3\times3$ matrix with one real eigenvalue $\lambda$, and two complex eigenvalues $\mu\pm i\omega$, we find that \[ \Tr A = \lambda + ( \mu + i\omega ) +( \mu -i\omega ) = \lambda+2\mu. \] Thus if we know the real eigenvalue and the trace of $A$ then we can also find the real part of the complex eigenvalue.

Expanding determinants

Recall that determinants are additive in the sense that \[ \left| \begin{array}{cccc} b_1+c_1 & b_2+c_2 & \cdots & b_n+c_n \\ a_{21}& a_{22}& & a_{2n} \\ & & \ddots &\\ a_{n1}& a_{n2}& & a_{nn} \\ \end{array} \right | = \left| \begin{array}{cccc} b_1 & b_2 & \cdots & b_n \\ a_{21}& a_{22}& & a_{2n} \\ & & \ddots &\\ a_{n1}& a_{n2}& & a_{nn} \\ \end{array} \right | + \left| \begin{array}{cccc} c_1 & c_2 & \cdots & c_n \\ a_{21}& a_{22}& & a_{2n} \\ & & \ddots &\\ a_{n1}& a_{n2}& & a_{nn} \\ \end{array} \right | \] always holds.
The determinant
\[ D(x) = \left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} +x \\ a_{21}& a_{22}& & a_{2n} \\ & & \ddots &\\ a_{n1}& a_{n2}& & a_{nn} \\ \end{array} \right | \] defines a function of $x$. Even though $D(x)$ is defined in terms of a large determinant, its dependence on $x$ is not very complicated, namely, \begin{align*} D(x)&= \left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} +x \\ a_{21}& a_{22}& & a_{2n} \\ & & \ddots &\\ a_{n1}& a_{n2}& & a_{nn} \\ \end{array} \right | \\ &= \left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21}& a_{22}& & a_{2n} \\ & & \ddots &\\ a_{n1}& a_{n2}& & a_{nn} \\ \end{array} \right | + \left| \begin{array}{cccc} 0& 0 & & x\\ a_{21}& a_{22} & & a_{2n} \\ & & \ddots &\\ a_{n1}& a_{n2} && a_{nn} \\ \end{array} \right | \\[1ex] &= \left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21}& a_{22}& & a_{2n} \\ & & \ddots &\\ a_{n1}& a_{n2}& & a_{nn} \\ \end{array} \right | +(-1)^{n}x\; \left| \begin{array}{cccc} a_{21}& & a_{2,n-1} \\ & \ddots &\\ a_{n1}& & a_{n,n-1} \\ \end{array} \right | \end{align*} So $D(x)$ is just a linear function of $x$: \[ D(x) = px+q, \] where \[ p=\left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21}& a_{22}& & a_{2n} \\ & & \ddots &\\ a_{n1}& a_{n2}& & a_{nn} \\ \end{array} \right |,\qquad q=(-1)^n \left| \begin{array}{cccc} a_{21}& & a_{2,n-1} \\ & \ddots &\\ a_{n1}& & a_{n,n-1} \\ \end{array} \right |. \]