Definition. The
largest row sum of a
matrix
$\displaystyle
A =
\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
\vdots& &\ddots& \\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{pmatrix}
$
is
$\displaystyle
\|A\| = \max_{1\le i\le n} \sum_{i=1}^n |a_{ij}|
$
The maximal row sum of a matrix is compatible with the max norm of vectors, in
the sense that the following holds