Suppose the $3\times3$ matrix $A$ has eigenvectors
$u_1=\begin{pmatrix} 1\\0\\0 \end{pmatrix}$,
$u_2=\begin{pmatrix} 1\\1\\0 \end{pmatrix}$,
$u_3=\begin{pmatrix} 1\\0\\1 \end{pmatrix}$
with corresponding eigenvalues $\lambda_1=2$, $\lambda_2=\frac12$, and $\lambda_3=-\frac12$.
-
Compute the determinant and trace of $A$. Explain your answers.
-
Is $A$ invertible? Explain.
-
If $y=\begin{pmatrix}4\\1\\2\end{pmatrix}$, then solve $Ax=y$.
-
Find $A^{2017} z$ where $z=\begin{pmatrix}0\\0\\1\end{pmatrix}$.