
HIGHER ORDER DIFFERENTIAL EQUATIONS

1. Higher Order Equations

Consider the differential equation

(1) y(n)(x) = f(x, y(x), y′(x), . . . , y(n−1)(x)).

1.1. The Existence and Uniqueness Theorem

Suppose x0 is a given “initial point” x = x0, and suppose a0, a1, . . . , an−1 are
given constants. Then there is exactly one solution to the differential equation (1)
which satisfies the initial conditions

(2) y(x0) = a0, y′(x0) = a1, y′′(x0) = a2, . . . , y(n−1)(x0) = an−1.

Note that for an nth order equation we can prescribe exactly n initial values. The
proof of this theorem is difficult, and not part of math 320.

1.2. The general solution

If you try to solve the differential equation (1), and if everything goes well, then
you will end up with a formula for the solution

y = y(x, c1, c2, . . . , cn)

which contains a number of constants. Often the way you got the solution leaves
you with the possibility that there might be even more solutions than the ones you
found. If you can show that there actually aren’t any other solutions (i.e. your
formula captures all solutions to the diffeq), then your solution is the general
solution.

One way to test if your solution is the general solution is to see if you can choose
your constants c1, . . . , cn so that your solution satisfies the initial conditions (2).
This means that you have to compute the derivatives y, y′, y′′, . . . , y(n−1) of your
solution, and then check if you can solve the equations

y(x0, c1, c2, . . . , cn) = a0

y′(x0, c1, c2, . . . , cn) = a1

y′′(x0, c1, c2, . . . , cn) = a2

...

y(n−1)(x0, c1, c2, . . . , cn) = an−1

for c1, . . . , cn. Note that you have n equations with n unknowns here. We’ll do this
for linear equations below.
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2. Linear Equations

A differential equation of the form

(3) y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn−1(x)y′(x) + pn(x)y(x) = f(x)

is called linear. If the right hand side vanishes, i.e. if f(x) = 0, then the equation
is called homogeneous.

2.1. The superposition principle

Consider a linear homogeneous equation

(4) y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn−1(x)y′(x) + pn(x)y(x) = 0.

The most important fact about linear homogeneous equations is the superposition
principle, which says:

• if y1(x) and y2(x) are solutions of (4), then so is y1 + y2.
• if y1(x) is a solution to (4), and if c is any constant, then cy1(x) is also a

solution of (4).

Note the similarity with the definition of a linear subspace of Rn!
The principle implies that if you have n solutions

y1(x), y2(x), . . . , yn(x)

then any linear combination

(5) yc(x) = c1y1(x) + · · ·+ cnyn(x)

is also a solution, as long as the c1, . . . , cn are constants.

2.2. The general solution and the Wronskian

Once you have found n solutions y1, . . . , yn to the homogeneous equation (4),
equation (5) gives you a formula for solutions to the differential equation which
contains a number of constants. Could this be the general solution? To see if it is
we check if we can use our formula to find the solution which satisfies the initial
conditions (2). Compute the derivatives of our solution:

yc(x) = c1y1(x) + · · ·+ cnyn(x)

y′c(x) = c1y
′
1(x) + · · ·+ cny

′
n(x)

...

y(n−1)c (x) = c1y
(n−1)
1 (x) + · · ·+ cny

(n−1)
n (x)

Thus to find a solution which satisfies the initial conditions

y(x0) = a0, y′(x0) = a1, y′′(x0) = a2, . . . , y(n−1)(x0) = an−1

we have to solve

c1y1(x0) + · · ·+ cnyn(x0) = a0

c1y
′
1(x0) + · · ·+ cny

′
n(x0) = a1

...

c1y
(n−1)
1 (x0) + · · ·+ cny

(n−1)
n (x0) = an−1
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These are n linear equations for the n unknowns c1, . . . , cn. In matrix form we can
write the equations as

y1(x0) y2(x0) · · · yn(x0)
y′1(x0) y′2(x0) · · · y′n(x0)

...

y
(n−1)
1 (x0) y

(n−1)
2 (x0) · · · y

(n−1)
n (x0)

 ·

c1
c2
...
cn

 =


a0
a1
...

an−1

 .

Our solution yc(x) = c1y1(x) + · · ·+ cnyn(x) is the general solution if we can solve
this system of equations for c1, . . . , cn, no matter what initial data a0, . . . , an−1 we
are given. We know that this happens exactly when the determinant of the matrix
of coefficients is not zero. The conclusion is therefore:

If y1, . . . , yn are solutions to the homogeneous equation (4), then

yc(x) = c1y1(x) + · · ·+ cnyn(x)

is the general solution of that equation if and only if

W (x0) =

∣∣∣∣∣∣∣∣∣
y1(x0) y2(x0) · · · yn(x0)
y′1(x0) y′2(x0) · · · y′n(x0)

...

y
(n−1)
1 (x0) y

(n−1)
2 (x0) · · · y

(n−1)
n (x0)

∣∣∣∣∣∣∣∣∣ 6= 0

The determinant W (x0) is called the Wronskian of the solutions y1, . . . , yn.

2.3. Which x0 should you use?

In the above theorem it doesn’t matter which x0 you choose. If W (x0) 6= 0 for
one choice of initial point x0 then your solution yc(x) is the general solution, and
W (x1) 6= 0 for any other choice x1. The Norwegian mathematician Nils Henrik Abel
discovered a nice formula which relates the Wronskian W (x) for different values of
x. Abel’s formula says

W (x1) = W (x0)e
−

∫ x1
x0

p1(x)dx,

and he found this by first showing that the Wronskian satisfies a first order differ-
ential equation

dW (x)

dx
= −p1(x)W (x),

known as Abel’s differential equation.

3. Two examples

3.1. Example

For the fourth order differential equation

y(4) − y = 0

a friend hands us four solutions, namely,

y1(x) = ex, y2(x) = e−x, y3(x) = sinhx, y4(x) = coshx.

We can check that they are solutions by substituting them in the diffeq. The
superposition principle tells us that

y(x) = c1e
x + c2e

−x + c3 sinhx + c4 coshx



4 HIGHER ORDER DIFFERENTIAL EQUATIONS

is a solution for any choice of the constants c1, . . . , c4. Is this the general solution?
To answer this question we compute the Wronskian

W (x) =

∣∣∣∣∣∣∣∣
ex e−x sinhx coshx

(ex)′ (e−x)′ sinh′ x cosh′ x
(ex)′′ (e−x)′′ sinh′′ x cosh′′ x
(ex)′′′ (e−x)′′′ sinh′′′ x cosh′′′ x

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
ex e−x sinhx coshx
ex −e−x coshx sinhx
ex e−x sinhx coshx
ex −e−x coshx sinhx

∣∣∣∣∣∣∣∣ (remember: sinh′ = cosh, cosh′ = sinh)

The first and third rows in this determinant are equal, so the conclusion is

W (x) = 0.

Our solution is not the general solution!!

3.2. Example, continued

Another friend gave us two more solutions to

y(4)(x)− y(x) = 0,

namely, y5(x) = sinx and y6(x) = cosx. Therefore we now know that

y(x) = c1e
x + c2e

−x + c3 sinx + c4 cosx

is a solution. Could this be the general solution? Once again, we compute the
Wronskian:

W (x) =

∣∣∣∣∣∣∣∣
ex e−x sinx cosx

(ex)′ (e−x)′ sin′ x cos′ x
(ex)′′ (e−x)′′ sin′′ x cos′′ x
(ex)′′′ (e−x)′′′ sin′′′ x cos′′′ x

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
ex e−x sinx cosx
ex −e−x cosx − sinx
ex e−x − sinx − cosx
ex −e−x − cosx sinx

∣∣∣∣∣∣∣∣ (remember: sin′ = cos, cos′ = − sin)
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Factor out the ex and e−x from this determinant:

W (x) = ex · e−x ·

∣∣∣∣∣∣∣∣
1 1 sinx cosx
1 −1 cosx − sinx
1 1 − sinx − cosx
1 −1 − cosx sinx

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 1 sinx cosx
1 −1 cosx − sinx
2 2 0 0
2 −2 0 0

∣∣∣∣∣∣∣∣
[
add Row 1 to Row 3
and Row 2 to Row 4

]

=

∣∣∣∣∣∣∣∣
1 1 sinx cosx
1 −1 cosx − sinx
2 2 0 0
4 0 0 0

∣∣∣∣∣∣∣∣ [add Row 3 to Row 4]

= (−4)(+2)

∣∣∣∣sinx cosx
cosx − sinx

∣∣∣∣
= 8.

This time the Wronskian is not zero, so

y(x) = c1e
x + c2e

−x + c3 sinx + c4 cosx

is the general solution.

4. Answers to some problems in the book

§5.2 – Problem 13

We write · · · for entries in the determinant we don’t need to know.

W =

∣∣∣∣∣∣
ex e−x e−2x

ex −e−x −2e−2x

ex e−x 4e−2x

∣∣∣∣∣∣ = ex−x−2x

∣∣∣∣∣∣
1 1 1
1 −1 −2
1 1 4

∣∣∣∣∣∣ = e−2x

∣∣∣∣∣∣
1 · · · · · ·
0 −2 · · ·
0 0 3

∣∣∣∣∣∣ = −6e−2x

§5.2 – Problem 15

W =

∣∣∣∣∣∣
ex xex x2ex

ex (x + 1)ex (x2 + 2x)ex

ex (x + 2)ex (x2 + 4x + 2)ex

∣∣∣∣∣∣ = e3x

∣∣∣∣∣∣
1 x x2

1 x + 1 x2 + 2x
1 x + 2 x2 + 4x + 2

∣∣∣∣∣∣ =

= e3x

∣∣∣∣∣∣
1 · · · · · ·
0 1 2x
0 2 4x + 2

∣∣∣∣∣∣ = e3x

∣∣∣∣∣∣
1 · · · · · ·
0 1 · · ·
0 0 2

∣∣∣∣∣∣
= 2e3x.
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§5.2 – Problem 19

W =

∣∣∣∣∣∣
x x2 x3

1 2x 3x2

0 2 6x

∣∣∣∣∣∣ (factor out an x from first row and last column)

= x · x

∣∣∣∣∣∣
1 x x
1 2x 3x
0 2 6

∣∣∣∣∣∣ = x2

∣∣∣∣∣∣
1 · · · · · ·
0 x 2x
0 2 6

∣∣∣∣∣∣ = x2

∣∣∣∣x 2x
2 6

∣∣∣∣ = x2(6x− 4x) = 2x3.

§5.2 – Problem 25

Given: y1 satisfies Ly1 = f(x) and y2 satisfies Ly2 = g(x), where Ly = y′′ +
py′ + qy, by definition.

To be shown: L(y1 + y2) = f(x) + g(x).
Proof: By definition we have

L(y1 + y2) = (y1 + y2)′′ + p(y1 + y2)′ + q(y1 + y2).

Since (y1 + y2)′ = y′1 + y′2, and (y1 + y2)′′ = y′′1 + y′′2 we get

L(y1 + y2) = y′′1 + y′′2 + py′1 + py′2 + qy1 + qy2.

Rearrange the terms and we get

L(y1 + y2) = y′′1 + py′1 + qy1 + y′′2 + py′2 + qy2 = Ly1 + Ly2.

This is what we had to show.

§5.2 – Problem 31(a)

If y is a solution of y′′ + py + qy = 0, and if you are given the values of y and y′

at x = a, then the differential equation tells you that

y′′(a) = −py′(a)− qy(a).

If p and q are not constant (the book is vague about this), then one should write

y′′(a) = −p(a)y′(a)− q(a)y(a).

§5.2 – Problem 31(b)

The problem: Prove the equation y′′ − 2y′ − 5y = 0 has a solution satisfying the
conditions y(0) = 1, y′(0) = 0, y′′(0) = C if and only if C = 5.

The “if and only if” means that you have to do two things:

(1) assuming there is a solution show that C = 5,
(2) assuming C = 5, show there is a solution.

The first part (1) here is a special case of problem (31a). If there is a solution,
then the differential equation implies that at x = 0 one has

y′′(0) = 2y′(0) + 5y(0) =⇒ C = 2× 0 + 5× 1 = 5.

For the second part (2) you have two options.
First approach: you could calculate the solution to

(†) y′′ − 2y′ − 5y = 0, y(0) = 1, y′(0) = 0.

That shows that a solutions exists (you’ve found it). The solution you have must
then satisfy y′′(0) = 5 = C.
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The other approach is to apply the existence theorem: Theorem 2, page 302 says
that (†) has a solution. The differential equation then implies that this solution
must satisfy y′′(0) = C, because C = 5. In this approach you don’t have to calculate
the solution.
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