
Math 320, “spring” 2011
– before the first midterm –

Typical Exam Problems

1. Consider the linear system of equations

2x1 + 3x2 − 2x3 + x4 = y1

x1 + 3x2 − 2x3 + 2x4 = y2

x1 + 2x3 − x4 = y3

where x1, · · · , x4 are the unknowns, and y1, y2, y3 are given constants.
(i) If you want to find the general solution to this system by row reduction, then
which matrix do you have to row-reduce?
(ii) Compute the Reduced Row Echelon Form of the matrix you found in (i).
(iii) What is the general solution to the system of equations?
(iv) Answer the same questions for the system

2x1 + 3x2 − 2x3 + x4 = y1

x1 + 3x2 − 2x3 + 2x4 = y2

2x1 + 2x3 − x4 = y3

2. A system of two equations with four unknowns has been row-reduced to the
matrix [

1 0 0 1 4
0 1 2 3 1

]
.

Find the general solution to this system of equations.

3. Consider the matrix  1 0 3 4
0 1 0 0
0 0 0 1


(i) Which system of equations does this matrix stand for?
(ii) Find the general solution of that system of equations.

4. Consider the matrix

A =

 1 2 1
2 4 k
0 1 3


in which k is a constant.
(i) For which values of the constant k does the matrix have an inverse?
(ii) Show how you use row reduction to find the inverse of A if k = 0.

5. Let

A =

[
1 3
0 2

]
and B =

[
2 4
1 0

]
.

(i) Compute the determinants of these matrices.
(ii) Compute detA25.
(iii) Compute det(A + B).
(iv) Compute det(A2BAB2).
(v) If C is a 2× 2 matrix with detC = +2, compute det(−C) and det(C−1).
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Inverses and determinants of square matrices

Here is a brief summary of some of the concepts that are introduced in the book.
IT IS ASSUMED THAT YOU HAVE READ THE BOOK. After the summary
there are also solutions to some of the “conceptual problems” in the homework.
Answers to the other homework problems can be found in the book.

Matrix Operations (§3.4)

You can add and multiply matrices, and just as with ordinary numbers matrix
addition & multiplication is associative:

(A + B) + C = A + (B + C), A(BC) = (AB)C,

and distributive:

A(B + C) = AB + AC, (A + B)C = AC + BC

but it is normally not commutative, i.e. for most matrices A and B

AB 6= BA.

In those special cases where AB = BA, the matrices A and B are said to commute:
“A and B commute.”

Inverses (§3.5)

Three equivalent definitions of A−1 for a square matrix A

Suppose we are given two n× n matrices

A =

a11 · · · a1n
...

...
an1 · · · ann

 B =

b11 · · · b1n
...

...
bn1 · · · bnn

 .

First description of A−1

We say B = A−1 if the solution of the system of equations

a11x1 + · · ·+ a1nxn = y1

... =
...

an1x1 + · · ·+ annxn = yn

is given by

x1 = b11y1 + · · ·+ b1nyn

... =
...

xn = bn1y1 + · · ·+ bnnyn

Second description of A−1

We say B = A−1 if

the solution of the system of equations Ax = y is always given by x = By

where

x =

x1

...
xn

 and y =

y1...
yn


are column vectors.

Note that this second description is just the same as the first, but written in
matrix form, using matrix multiplication to interpret Ax and By.
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Third description of A−1

We say B = A−1 if

AB = BA = I.

The inverse of a product

If A and B are invertible, then so is AB and one has

(AB)−1 = B−1A−1.

Note the reversal of order. This is important since with matrices AB usually is not
equal to BA.

Determinants (§3.6)

Basic properties that help in computing determinants

• You can factor out a constant from any row or column in a determinant,
e.g. ∣∣∣∣∣∣∣∣∣

a11 · · · a1n
ca21 · · · ca2n

...
...

an1 · · · ann

∣∣∣∣∣∣∣∣∣ = c

∣∣∣∣∣∣∣∣∣
a11 · · · a1n
a21 · · · a2n
...

...
an1 · · · ann

∣∣∣∣∣∣∣∣∣
• Adding a multiple of any row to another row in a determinant does not

change its value. The same applies to columns. Example:∣∣∣∣∣∣∣∣∣
a11 · · · a1n
a21 · · · a2n
...

...
an1 · · · ann

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
a11 · · · a1n

a21 + ka11 · · · a2n + ka1n
...

...
an1 · · · ann

∣∣∣∣∣∣∣∣∣
• Swapping two rows changes the sign of a determinant.

Important properties of determinants

det(AT ) = detA

det(AB) = det(A) det(B)

det(A−1) =
1

detA
(provided detA 6= 0)

Solutions to some problems

§3.4 – Problem 31

You are asked to show that (A + B)(A − B) 6= A2 − B2, for the two matrices
A and B from example 5. You could look up what A and B are and compute
both (A + B)(A−B) and A2 −B2 (the answers are in the back of the book), but
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this misses the point somewhat. Instead, you learn more by doing the following
calculation:

(A−B)(A + B) = A(A + B)−B(A + B)

= AA + AB −BA−BB

= A2 −B2 + AB −BA.

So if AB = BA then (A−B)(A + B) = A2 −B2 is true, but if AB 6= BA, then it
is not true.

For A and B as in example 5, one has AB 6= BA and therefore (A+B)(A−B) 6=
A2 −B2.

§3.4 – Problem 32

The same comments as for the previous problem apply to this problem. The
most instructive solution is as follows:

(A + B)2 = (A + B)(A + B)

= A(A + B) + B(A + B)

= AA + AB + BA + BB

= A2 + AB + BA + B2.

So if AB = BA then (A + B)2 = A2 + 2AB + B2 is true (because AB + BA =
AB + AB = 2AB), but if AB 6= BA, then it is not true.

§3.5 – Problem 32

If A is invertible, and if AB = AC, then multiply both sides of the equation
from the left with A−1, and you find

AB = AC =⇒ A−1AB = A−1AC =⇒ IB = IC =⇒ B = C.

§3.5 – Problem 34

A diagonal matrix is a matrix of the form

D =


d1 0 0 · · · 0
0 d2 0 · · · 0
... · · ·
0 0 0 · · · dn


Since none of the diagonal entries d1, d2, · · · , dn are zero (that is the assumption in
the problem), you can define

E =


1/d1 0 0 · · · 0

0 1/d2 0 · · · 0
... · · ·
0 0 0 · · · 1/dn

 .

By computing the following matrix products you find

ED = I, and also DE = I.

Therefore D is invertible and its inverse is given by E.
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§3.6 – Problem 50

If a matrix A satisfies A2 = A, then

det(A2) = det(A)

=⇒ det(A ·A) = det(A)

=⇒ det(A) · det(A) = det(A)

=⇒ det(A)2 = det(A).

Therefore det(A) is a number which satisfies (detA)2 = detA. This implies detA =
0 or detA = 1.

(More detail: if x = detA, then we have shown x2 = x. This is an equation for
x. Either x = 0, or else you can divide both sides by x, in which case you find
x = 1.)

§3.6 – Problem 51

If a matrix A satisfies An = 0 forsome integer n, then show that detA = 0.
Solution. Using the basic property det(AB) = det(A) det(B) we find

det(An) = det(A ·A · · ·A) = det(A) · det(A) · · · det(A) =
(
det(A)

)n
.

Therefore, if det(An) = 0, then (detA)n = 0. Since detA is a number (detA)n

implies detA = 0.

§3.6 – Problem 52

The problem tells you that certain matrices are called “orthogonal.” Ignoring
the terminology, the problem asks this: if a matrix A satisfies AT = A−1, then
show that its determinant is either +1 or −1.

Solution. Since detAT = detA, and since detA−1 = 1/ detA, we find that if
AT = A−1, then the determinant of A must satisfy

detA =
1

detA
,

Multiply both sides with detA and you find that (detA)2 = 1. Therefore detA =
±1.

§3.6 – Problem 53

Again some terminology is introduced which, for the purposes of solving the
problem, you can ignore.

The problem asks you to show that if three square matrices A,B, P are related
by A = P−1BP , then A and B have the same determinant.

Solution. Use the properties of the determinant:

det(A) = det(P−1BP ) = (detP−1)(detB)(detP ) =
1

detP
(detB)(detP ) = detB.

That’s all. Note that in the last step you can cancel the two detP ’s, because they
are numbers. When you look at the expression P−1BP you might think that you
can cancel P and P−1 because P−1P = I. But you can’t because in the product
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P−1BP there’s a B between the P−1 and P . If it were true that BP = PB, then
you could say

P−1BP = P−1PB because BP = PB

= IB because P−1P = I

= B,

but if BP 6= PB then this doesn’t work.

§3.6 – Problem 54

You are asked to prove:

AB is invertible ⇐⇒ both A and B are invertible.

Solution. This is the section about determinants, and one of the main uses of
determinants is that they tell you when a matrix is invertible:

A is invertible ⇐⇒ detA 6= 0.

Apply this to the product AB:

AB is invertible ⇐⇒ detAB 6= 0.

Since detAB = (detA)(detB), we get

AB is invertible ⇐⇒ (detA)(detB) 6= 0.

The product of two numbers (such as detA and detB) is nonzero if and only if
both numbers are nonzero, so we find

AB is invertible ⇐⇒ detA 6= 0 and detB 6= 0.

Finally, detA 6= 0 is equivalent to “A is invertible,” and the same for B. Therefore

AB is invertible ⇐⇒ A is invertible and B is invertible

§3.6 – Problem 56

If all entries of a matrix A are integers, then its determinant also is an integer
because you find it by adding and multiplying entries of A (you never have to
divide.)

If B = A−1 then the ij entry of B is given by Cramer’s formula

bij =
Aji

detA
.

Here Aji is the ji cofactor of the matrix A. It is an (n− 1)× (n− 1) determinant
whose entries are integers because they come from A. Therefore Aji is an integer.
If we are given that detA = 1, then our formula for bij shows us that

bij =
Aji

detA
= Aji,

In particular, bij is an integer.
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Answers and Hints

(1i) There are two options. Either you keep the constants y1, y2, y3, in which case
you get

2 3 −2 1 y1
1 3 −2 2 y2
1 0 2 −1 y3

or you don’t write the constants y1, y2, y3 but you keep track of their coefficients
instead. Then you get the bigger matrix

2 3 −2 1 1 0 0
1 3 −2 2 0 1 0
1 0 2 −1 0 0 1

(1ii) I don’t write the coefficients of y1, y2, y3 and work with the bigger matrix which
only contains coefficients instead. This leads me to the RREF:

· · · (−R2)+R1−→

 1 0 0 −1 1 −1 0
1 3 −2 2 0 1 0
1 0 2 −1 0 0 1


(−R1)+R2
(−R1)+R3−→

 1 0 0 −1 1 −1 0
0 3 −2 3 −1 2 0
0 0 2 0 −1 1 1


(R3)+R2−→

 1 0 0 −1 1 −1 0
0 3 0 3 −2 3 1
0 0 2 0 −1 1 1


R2/3,R3/2−→

 1 0 0 −1 1 −1 0
0 1 0 1 −2/3 1 1/3
0 0 1 0 −1/2 1/2 1/2

 .

If you had carried the y1, y2, y3 along in your computation, you would have ended
up with  1 0 0 −1 y1 − y2

0 1 0 1 − 2
3y1 + y2 + 1

3y3
0 0 1 0 − 1

2y1 + 1
2y2 + 1

2y3

 .

(1iii) The solution has one parameter in it, since the RREF does not tell you what
x4 is. If we call the parameter t then we get the following solution

x1 = y1 − y2 + t;

x2 = − 2
3y1 + y2 + 1

3y3 − t

x3 = − 1
2y1 + 1

2y2 + 1
2y3

x4 = t.
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(1iv) 2 3 −2 1 1 0 0
1 3 −2 2 0 1 0
2 0 2 −1 0 0 1

 (−R2)+R1−→

 1 0 0 −1 1 −1 0
1 3 −2 2 0 1 0
2 0 2 −1 0 0 1


(−R1)+R2
(−2R1)+R3−→

 1 0 0 −1 1 −1 0
0 3 −2 3 −1 2 0
0 0 2 +1 −2 2 1


(−R3)+R2−→

 1 0 0 −1 1 −1 0
0 3 0 4 −3 4 1
0 0 2 +1 −2 2 1


R2/3,R3/2−→

 1 0 0 −1 1 −1 0
0 1 0 4/3 −1 4/3 1/3
0 0 1 1/2 −1 1 1/2

 .

The general solution is

x1 = y1 − y2 + t

x2 = −y1 − 4
3y2 + 1

3y3 −
4
3 t

x3 = −y1 + y2 + 1
2y3 + 1

2 t

x4 = t

(2) The matrix is already in reduced row echelon form. You can solve for x1 and
x2, but x3 and x4 are undetermined, so we make them parameters, s and t. The
general solution is then

x1 = 4− t

x2 = 1− 2s− 3t

x3 = s

x4 = t

(3i)

x1 +3x3 = 4
x2 = 0

0 = 1

(3ii) The last equation 0 = 1 is not satisfied for any choice of x− 1, x2, x3, so there
is no solution.

(4i) Compute the determinant of the matrix to see if it has an inverse.∣∣∣∣∣∣
1 2 1
2 4 k
0 1 3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 2 1
0 0 k − 2
0 1 3

∣∣∣∣∣∣ = −(k − 2)

∣∣∣∣1 2
0 1

∣∣∣∣ = −k + 2.
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(in the first step we subtract the first row twice from the second row.) So if k 6= 2
the matrix has an inverse because its determinant is nonzero.

(4ii) Here is how you get the inverse for any k except k = 2. The question asked
you to do this with k = 0.

Form the matrix [A|I] which you get from A by appending the identity matrix.
Then row reduce until you get [I|B]. The matrix B is the inverse. Here is one way
to get there:

1 2 1 1 0 0
2 4 k 0 1 0
0 1 3 0 0 1

−→
1 2 1 1 0 0
0 0 k − 2 −2 1 0
0 1 3 0 0 1

−→
1 2 1 1 0 0
0 1 3 0 0 1
0 0 k − 2 −2 1 0

−→
1 0 −5 1 0 −2
0 1 3 0 0 1
0 0 k − 2 −2 1 0

−→
1 0 −5 1 0 −2
0 1 3 0 0 1
0 0 1 −2/(k − 2) 1/(k − 2) 0

−→
1 0 0 1− 10/(k − 2) 5/(k − 2) −2
0 1 0 6/(k − 2) −3/(k − 2) 1
0 0 1 −2/(k − 2) 1/(k − 2) 0

Therefore the inverse matrix is

A−1 =

1− 10/(k − 2) 5/(k − 2) −2
6/(k − 2) −3/(k − 2) 1
−2/(k − 2) 1/(k − 2) 0


(5i) detA = 2, detB = −4.

(5ii) det(A25) = det(A ·A · · · ·A) = (detA)(detA) . . . (detA) = (detA)25 = 225.

(5iii) There’s no simple rule for det(A + B) so we first compute A + B:

det(A + B) =

∣∣∣∣1 + 2 3 + 4
0 + 1 2 + 0

∣∣∣∣ =

∣∣∣∣3 7
1 2

∣∣∣∣ = −1.

(5iv) det(A2BAB2) = (detA)2(detB)(detA)(detB2) = 22 × 4× 2× 42 = . . . .

(5v) det(−C) = (−1)2 detC = detC = 2, and det(C−1) = 1/ detC = 1/2.


