Euler's method for solving a differential equation (approximately)

Math 320

Department of Mathematics, UW - Madison

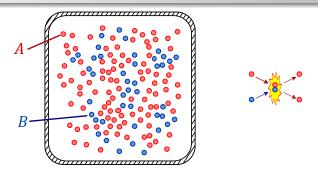
February 28, 2011

Math 320 diffeqs and Euler's method

(日本) (日本) (日本)

э

A chemical reaction

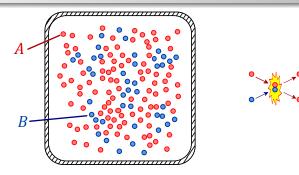


A chemical reactor contains two kinds of molecules, A and B.

・ロト ・日子・ ・ヨト

- ∢ ⊒ ⊳

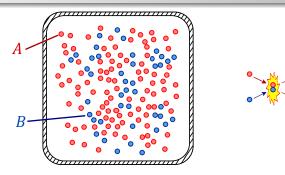
A chemical reaction



A chemical reactor contains two kinds of molecules, A and B. Whenever an A and B molecule bump into each other the B turns into an A:

$$A + B \longrightarrow 2A$$

A chemical reaction



A chemical reactor contains two kinds of molecules, A and B. Whenever an A and B molecule bump into each other the B turns into an A:

$$A + B \longrightarrow 2A$$

As the reaction proceeds, all B gets converted to A. How long does this take?

Let's call x(t) the fraction of all molecules that at time t are of type A:

 $x(t) = \frac{\text{amount of A}}{\text{amount of A} + \text{amount of B}}$

(ロ) (同) (目) (日) (日) (の)

Let's call x(t) the fraction of all molecules that at time t are of type A:

$$x(t) = rac{amount of A}{amount of A + amount of B}$$

Then $0 \le x(t) \le 1$, and the fraction of all molecules in the reactor which (at time t) are of type B is 1 - x(t).

(ロ) (同) (E) (E) (E)

Let's call x(t) the fraction of all molecules that at time t are of type A:

$$x(t) = rac{amount of A}{amount of A + amount of B}$$

Then $0 \le x(t) \le 1$, and the fraction of all molecules in the reactor which (at time t) are of type B is 1 - x(t).

Every time a reaction takes place, the ratio x(t) increases, so

$$\frac{dx}{dt}$$
 is proportional to the reaction rate

(ロ) (同) (E) (E) (E)

"Chemistry" tells us that

$$\frac{dx}{dt} = K \cdot \text{amount of } A \cdot \text{amount of } B$$
$$= Kx(1-x).$$

"Chemistry" tells us that

$$\frac{dx}{dt} = K \cdot \text{amount of } A \cdot \text{amount of } B$$
$$= Kx(1-x).$$

K is a proportionality constant, which depends on the particular kind of molecules A and B in this reaction. You would have to measure it to find its value.

(ロ) (同) (E) (E) (E)

"Chemistry" tells us that

$$\frac{dx}{dt} = K \cdot \text{amount of } A \cdot \text{amount of } B$$
$$= Kx(1-x).$$

K is a proportionality constant, which depends on the particular kind of molecules A and B in this reaction. You would have to measure it to find its value. This is a calculus class, so let's assume K = 1.

(ロ) (同) (E) (E) (E)

Solving $\frac{dx}{dt} = x(1-x)$

$$\frac{dx}{dt} = x(1-x).$$

The solution will have an arbitrary constant ("C"). If we know what x(0) is then we can compute C.

・ロト ・回ト ・ヨト ・ヨト

Solving $\frac{dx}{dt} = x(1-x)$

$$\frac{dx}{dt} = x(1-x).$$

The solution will have an arbitrary constant ("C"). If we know what x(0) is then we can compute C.

So (as an example) let's try to solve the following problem:

・ロト ・回ト ・ヨト ・ ヨト

Solving $\frac{dx}{dt} = x(1-x)$

$$\frac{dx}{dt} = x(1-x).$$

The solution will have an arbitrary constant ("C"). If we know what x(0) is then we can compute C.

So (as an example) let's try to solve the following problem:

Suppose the tank initially holds 2% A and 98% B,

소리가 소문가 소문가 소문가

Solving $\frac{dx}{dt} = x(1-x)$

$$\frac{dx}{dt} = x(1-x).$$

The solution will have an arbitrary constant ("C"). If we know what x(0) is then we can compute C.

So (as an example) let's try to solve the following problem:

Suppose the tank initially holds 2% A and 98% B, x(0) = 0.02

Solving $\frac{dx}{dt} = x(1-x)$

$$\frac{dx}{dt} = x(1-x).$$

The solution will have an arbitrary constant ("C"). If we know what x(0) is then we can compute C.

So (as an example) let's try to solve the following problem:

Suppose the tank initially holds 2% A and 98% B, x(0) = 0.02Then what is the fraction of A molecules at time t?

Solving $\frac{dx}{dt} = x(1-x)$

$$\frac{dx}{dt} = x(1-x).$$

The solution will have an arbitrary constant ("C"). If we know what x(0) is then we can compute C.

So (as an example) let's try to solve the following problem:

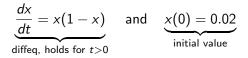
Suppose the tank initially holds 2% A and 98% B, x(0) = 0.02Then what is the fraction of A molecules at time t? x(t) = ?

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We are going to solve an initial value problem:

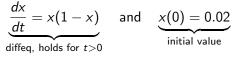
・ロン ・回 と ・ ヨ と ・ ヨ と

We are going to solve an initial value problem: Find x(t) if you know



・ロト ・回ト ・ヨト ・ヨト

We are going to solve an initial value problem: Find x(t) if you know



The solution is

$$x(t)=\frac{1}{1+49e^{-t}}.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

You learned how to solve this diffeq in calculus. The differential equation

$$\frac{dx}{dt} = x(1-x)$$

is separable. Divide both sides by x(1-x) and integrate

・ 回 と ・ ヨ と ・ ヨ と

You learned how to solve this diffeq in calculus. The differential equation

$$\frac{dx}{dt} = x(1-x)$$

is separable. Divide both sides by x(1-x) and integrate

$$\frac{1}{x(1-x)}\frac{dx}{dt} = 1 \implies \int \frac{1}{x(1-x)}\frac{dx}{dt}dt = \int dt$$
$$\implies \int \frac{dx}{x(1-x)} = \int dt$$
$$\implies \ln|x| - \ln|1-x| + C_1 = t + C_2$$
$$\implies \ln|\frac{x}{1-x}| = t + C$$

・ 回 と く ヨ と く ヨ と

You learned how to solve this diffeq in calculus. The differential equation

$$\frac{dx}{dt} = x(1-x)$$

is separable. Divide both sides by x(1-x) and integrate

$$\frac{1}{x(1-x)}\frac{dx}{dt} = 1 \implies \int \frac{1}{x(1-x)}\frac{dx}{dt}dt = \int dt$$
$$\implies \int \frac{dx}{x(1-x)} = \int dt$$
$$\implies \ln|x| - \ln|1-x| + C_1 = t + C_2$$
$$\implies \ln|\frac{x}{1-x}| = t + C$$

If you solve this for x you get the general solution. We can simplify our lives by being less ambitious and only look for solutions which satisfy 0 < x < 1. This assumption allows us to drop the absolute value signs.

Solving for x we get

$$\ln \frac{x}{1-x} = t + C \implies x = \frac{e^{t+C}}{e^{t+C} + 1} = \frac{1}{1 + e^{-t-C}}.$$
 (1)

This is the general solution with 0 < x < 1.

・ 回 と く ヨ と く ヨ と

Solving for x we get

$$\ln \frac{x}{1-x} = t + C \implies x = \frac{e^{t+C}}{e^{t+C} + 1} = \frac{1}{1 + e^{-t-C}}.$$
 (1)

This is the general solution with 0 < x < 1.

To find the constant *C* we must use the given initial data, namely x(0) = 0.02. Substitute x = 0.02, t = 0 in either of the two formulas in (1) (the one on the left is easiest):

・ロト ・回ト ・ヨト ・ ヨト

Solving for x we get

$$\ln \frac{x}{1-x} = t + C \implies x = \frac{e^{t+C}}{e^{t+C} + 1} = \frac{1}{1 + e^{-t-C}}.$$
 (1)

This is the general solution with 0 < x < 1.

To find the constant *C* we must use the given initial data, namely x(0) = 0.02. Substitute x = 0.02, t = 0 in either of the two formulas in (1) (the one on the left is easiest):

$$\ln \frac{0.02}{1 - 0.02} = 0 + C \implies C = \ln \frac{0.02}{0.98} = -\ln 49.$$

・ロト ・回ト ・ヨト ・ ヨト

Solving for x we get

$$\ln \frac{x}{1-x} = t + C \implies x = \frac{e^{t+C}}{e^{t+C} + 1} = \frac{1}{1 + e^{-t-C}}.$$
 (1)

This is the general solution with 0 < x < 1.

To find the constant *C* we must use the given initial data, namely x(0) = 0.02. Substitute x = 0.02, t = 0 in either of the two formulas in (1) (the one on the left is easiest):

$$\ln \frac{0.02}{1 - 0.02} = 0 + C \implies C = \ln \frac{0.02}{0.98} = -\ln 49.$$

This implies that the solution we are looking for is

$$x = \frac{1}{1 + e^{-t-C}} = \frac{1}{1 + 49e^{-t}}$$

Math 320

소리가 소문가 소문가 소문가

(1707 - 1783)

Math 320 diffeqs and Euler's method

・ロン ・雪 と ・ ヨ と ・ ヨ と

Solving $\frac{dx}{dt} = x(1-x)$

Math 320 diffeqs and Euler's method

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

Solving $\frac{dx}{dt} = x(1-x)$

I can't solve the equation because I don't know what $\frac{dx}{dt}$ is. So pick a small number h > 0 and say that

$$\frac{dx}{dt}\approx\frac{x(t+h)-x(t)}{h}$$

イロン イヨン イヨン イヨン

æ

Solving $\frac{dx}{dt} = x(1-x)$

I can't solve the equation because I don't know what $\frac{dx}{dt}$ is. So pick a small number h > 0 and say that

$$\frac{dx}{dt} \approx \frac{x(t+h) - x(t)}{h}$$

The diffeq then becomes

$$\frac{x(t+h)-x(t)}{h}\approx x(t)(1-x(t)).$$

・ロン ・回と ・ヨン ・ヨン

Solving $\frac{dx}{dt} = x(1-x)$

I can't solve the equation because I don't know what $\frac{dx}{dt}$ is. So pick a small number h > 0 and say that

$$\frac{dx}{dt} \approx \frac{x(t+h) - x(t)}{h}$$

The diffeq then becomes

$$\frac{x(t+h)-x(t)}{h}\approx x(t)(1-x(t)).$$

If you know x(t) and h then you can solve this equation for x(t+h).

・ロン ・四マ ・ヨマ ・ヨマ

Solving
$$\frac{dx}{dt} = x(1-x)$$

$$\frac{x(t+h)-x(t)}{h}\approx x(t)(1-x(t)).$$

$$x(t+h) \approx x(t) + h \cdot x(t)(1-x(t)).$$

< □ > < □ > < □ > < □ > < □ > < □ > = □

Solving
$$\frac{dx}{dt} = x(1-x)$$

$$\frac{x(t+h)-x(t)}{h}\approx x(t)(1-x(t)).$$

$$x(t+h) \approx x(t) + h \cdot x(t)(1-x(t)).$$

Example (t = 0**):** If we know x(0), then this equation allows us to compute x(0 + h) = x(h).

イロン イロン イヨン イヨン 三日

Solving
$$\frac{dx}{dt} = x(1-x)$$

$$\frac{x(t+h)-x(t)}{h}\approx x(t)(1-x(t)).$$

$$x(t+h) \approx x(t) + h \cdot x(t)(1-x(t)).$$

Example (t = 0**):** If we know x(0), then this equation allows us to compute x(0 + h) = x(h).

Example (t = h**):** Knowing x(h) you can find x(h+h) = x(2h)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Solving
$$\frac{dx}{dt} = x(1-x)$$

$$\frac{x(t+h)-x(t)}{h}\approx x(t)(1-x(t)).$$

$$x(t+h) \approx x(t) + h \cdot x(t)(1-x(t)).$$

Example (t = 0**):** If we know x(0), then this equation allows us to compute x(0 + h) = x(h).

Example (t = h**):** Knowing x(h) you can find x(h+h) = x(2h), And then x(2h+h) = x(3h),

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

Solving
$$\frac{dx}{dt} = x(1-x)$$

$$\frac{x(t+h)-x(t)}{h}\approx x(t)(1-x(t)).$$

has as solution

$$x(t+h) \approx x(t) + h \cdot x(t)(1-x(t)).$$

Example (t = 0**):** If we know x(0), then this equation allows us to compute x(0 + h) = x(h).

Example (t = h**):** Knowing x(h) you can find x(h + h) = x(2h), And then x(2h + h) = x(3h), x(3h + h) = x(4h), etc...

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

Pick a small number h > 0, and compute

$$x(h) = x(0) + h \cdot x(0)[1 - x(0)]$$

イロン イヨン イヨン イヨン

Pick a small number h > 0, and compute

$$\begin{array}{rcl} x(h) & = & x(0) + h \cdot x(0)[1 - x(0)] \\ & \searrow & \\ x(2h) & = & x(h) + h \cdot x(h)[1 - x(h)] \end{array}$$

Pick a small number h > 0, and compute

$$x(h) = x(0) + h \cdot x(0)[1 - x(0)]$$

$$x(2h) = x(h) + h \cdot x(h)[1 - x(h)]$$

$$x(3h) = x(2h) + h \cdot x(2h)[1 - x(2h)]$$

回 と く ヨ と く ヨ と

Pick a small number h > 0, and compute

$$x(h) = x(0) + h \cdot x(0)[1 - x(0)]$$

$$x(2h) = x(h) + h \cdot x(h)[1 - x(h)]$$

$$x(3h) = x(2h) + h \cdot x(2h)[1 - x(2h)]$$

$$x(4h) = x(3h) + h \cdot x(3h)[1 - x(3h)]$$

Pick a small number h > 0, and compute

$$x(h) = x(0) + h \cdot x(0)[1 - x(0)]$$

$$x(2h) = x(h) + h \cdot x(h)[1 - x(h)]$$

$$x(3h) = x(2h) + h \cdot x(2h)[1 - x(2h)]$$

$$x(4h) = x(3h) + h \cdot x(3h)[1 - x(3h)]$$

$$\vdots$$

Pick a small number h > 0, and compute

$$x(h) = x(0) + h \cdot x(0)[1 - x(0)]$$

$$x(2h) = x(h) + h \cdot x(h)[1 - x(h)]$$

$$x(3h) = x(2h) + h \cdot x(2h)[1 - x(2h)]$$

$$x(4h) = x(3h) + h \cdot x(3h)[1 - x(3h)]$$

$$\vdots$$

Now let's choose h = 0.2 and x(0) = 0.02, and compute x(0.2), x(0.4), x(0.6), x(0.8), x(1.0), ...

・ロト ・回ト ・ヨト ・ヨト

Doing all these calculations is a drag of course. How did Euler do this? By hand!! (and with a lot of patience).

Doing all these calculations is a drag of course. How did Euler do this? By hand!! (and with a lot of patience).

How do we do this in the 21st century? With a computer.

・ 同 ト ・ ヨ ト ・ ヨ ト

Doing all these calculations is a drag of course. How did Euler do this? By hand!! (and with a lot of patience).

How do we do this in the 21st century? With a computer.

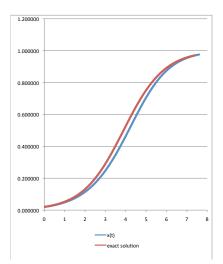
For more complicated diffeqs one should learn to program a computer, but for the example we've been looking at you can get Excel (or some other spreadsheet program like Open Office) to compute and plot the solutions.

・ 同 ト ・ ヨ ト ・ ヨ ト

What the spreadsheet computed

Here are the numbers, and graphs. The exact solution is $x(t) = 1/(1 + 49e^{-t})$.

h	t	x(t)	x'(t)	exact
				solution
0.2	0	0.020000	0.019600	0.020000
0.2	0.2	0.023920	0.023348	0.024320
0.2	0.4	0.028590	0.027772	0.029546
0.2	0.6	0.034144	0.032978	0.035853
0.2	0.8	0.040740	0.039080	0.043446
0.2	1	0.048556	0.046198	0.052559
0.2	1.2	0.057795	0.054455	0.063458
0.2	1.4	0.068686	0.063968	0.076434
0.2	1.6	0.081480	0.074841	0.091803
0.2	1.8	0.096448	0.087146	0.109894
0.2	2	0.113877	0.100909	0.131037
0.2	2.2	0.134059	0.116087	0.155537
0.2	2.4	0.157277	0.132541	0.183649
0.2	2.6	0.183785	0.150008	0.215545
0.2	2.8	0.213786	0.168082	0.251276
0.2	3	0.247403	0.186195	0.290734
0.2	3.2	0.284642	0.203621	0.333628
0.2	3.4	0.325366	0.219503	0.379465
0.2	3.6	0.369266	0.232909	0.427558
0.2	3.8	0.415848	0.242918	0.477061
0.2	4	0.464432	0.248735	0.527019
0.2	4.2	0.514179	0.249799	0.576441
0.2	4.4	0.564138	0.245886	0.624380
0.2	4.6	0.613316	0.237160	0.669999
0.2	4.8	0.660748	0.224160	0.712628
0.2	5	0.705580	0.207737	0.751790
0.2	5.2	0.747127	0.188928	0.787208
0.2	5.4	0.784913	0.168825	0.818791
0.2	5.6	0.818678	0.148445	0.846600
0.2	5.8	0.848367	0.128641	0.870815
0.2	6	0.874095	0.110053	0.891696
0.2	6.2	0.896105	0.093101	0.909552
0.2	6.4	0.914725	0.078003	0.924713
0.2	6.6	0.930326	0.064820	0.937508
0.2	6.8	0.943290	0.053494	0.948249
0.2	7	0.953989	0.043894	0.957229
0.2	7.2	0.962768	0.035846	0.964708
0.2	7.4	0.969937	0.029159	0.970920
0.2	7.6	0.975769	0.023644	



・ロト ・回ト ・ヨト ・ヨト

Э

Math 320

There are several graphical on-line solvers for differential equations. If you go to this web page:

http://virtualmathmuseum.org/ODE/101d-MassAction you can see graphs of the solution to our equation $\frac{dx}{dt} = x(1-x)$.