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A chemical reaction

A

B

A chemical reactor contains two kinds of molecules, A and B.

Whenever an A and B molecule bump into each other the B turns
into an A:

A + B −→ 2A

As the reaction proceeds, all B gets converted to A. How long does
this take?
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Reaction rate for A+B−→ 2A

The total number of molecules (A and B) stays constant.

Let’s call x(t) the fraction of all molecules that at time t are of
type A:

x(t) =
amount of A

amount of A + amount of B

Then 0 ≤ x(t) ≤ 1, and the fraction of all molecules in the reactor
which (at time t) are of type B is 1− x(t).

Every time a reaction takes place, the ratio x(t) increases, so

dx

dt
is proportional to the reaction rate.
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Reaction rate for A+B−→ 2A

“Chemistry” tells us that

dx

dt
= K · amount of A · amount of B

= Kx(1− x).

K is a proportionality constant, which depends on the particular
kind of molecules A and B in this reaction. You would have to
measure it to find its value.This is a calculus class, so let’s assume
K = 1.
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Solving dx
dt = x(1− x)

We have to solve the diffeq

dx

dt
= x(1− x).

The solution will have an arbitrary constant (“C”). If we know
what x(0) is then we can compute C .

So (as an example) let’s try to solve the following problem:

Suppose the tank initially holds 2% A and 98% B, x(0) = 0.02
Then what is the fraction of A molecules at time t? x(t) =?
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Summary of the problem

We are going to solve an initial value problem:

Find x(t) if you know

dx

dt
= x(1− x)︸ ︷︷ ︸

diffeq, holds for t>0

and x(0) = 0.02︸ ︷︷ ︸
initial value

The solution is

x(t) =
1

1 + 49e−t
.
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The calculus solution (1)

You learned how to solve this diffeq in calculus. The differential
equation

dx

dt
= x(1− x)

is separable. Divide both sides by x(1− x) and integrate

1

x(1− x)

dx

dt
= 1 =⇒

∫
1

x(1− x)

dx

dt
dt =

∫
dt

=⇒
∫

dx

x(1− x)
=

∫
dt

=⇒ ln |x | − ln |1− x |+ C1 = t + C2

=⇒ ln | x

1− x
| = t + C

If you solve this for x you get the general solution. We can simplify
our lives by being less ambitious and only look for solutions which
satisfy 0 < x < 1. This assumption allows us to drop the absolute
value signs.
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The calculus solution (2)

Solving for x we get

ln
x

1− x
= t + C =⇒ x =

et+C

et+C + 1
=

1

1 + e−t−C
. (1)

This is the general solution with 0 < x < 1.

To find the constant C we must use the given initial data, namely
x(0) = 0.02. Substitute x = 0.02, t = 0 in either of the two
formulas in (1) (the one on the left is easiest):

ln
0.02

1− 0.02
= 0 + C =⇒ C = ln

0.02

0.98
= − ln 49.

This implies that the solution we are looking for is

x =
1

1 + e−t−C
=

1

1 + 49e−t
.
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Leonhard “eπi + 1 = 0” Euler (1707 - 1783)
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Solving dx
dt = x(1− x)

Euler’s idea:

I can’t solve the equation because I don’t know what dx
dt is. So

pick a small number h > 0 and say that

dx

dt
≈ x(t + h)− x(t)

h
.

The diffeq then becomes

x(t + h)− x(t)

h
≈ x(t)(1− x(t)).

If you know x(t) and h then you can solve this equation for
x(t + h).
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Solving dx
dt = x(1− x)

x(t + h)− x(t)

h
≈ x(t)(1− x(t)).

has as solution

x(t + h) ≈ x(t) + h · x(t)(1− x(t)).

Example (t = 0): If we know x(0), then this equation allows us
to compute x(0 + h) = x(h).

Example (t = h): Knowing x(h) you can find x(h + h) = x(2h),

And then x(2h + h) = x(3h), x(3h + h) = x(4h), etc.. . .
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Euler’s (approximate) solution

Pick a small number h > 0, and compute

x(h) = x(0) + h · x(0)[1− x(0)]

↘
x(2h) = x(h) + h · x(h)[1− x(h)]

↘
x(3h) = x(2h) + h · x(2h)[1− x(2h)]

↘
x(4h) = x(3h) + h · x(3h)[1− x(3h)]

...

Now let’s choose h = 0.2 and x(0) = 0.02, and compute x(0.2),
x(0.4), x(0.6), x(0.8), x(1.0), . . .
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Doing the calculations

Doing all these calculations is a drag of course. How did Euler do
this? By hand!! (and with a lot of patience).

How do we do this in the 21st century? With a computer.

For more complicated diffeqs one should learn to program a
computer, but for the example we’ve been looking at you can get
Excel (or some other spreadsheet program like Open Office) to
compute and plot the solutions.
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What the spreadsheet computed
Here are the numbers, and graphs. The exact solution is x(t) = 1/(1 + 49e−t ).

Solving x'=x(1-x)

by Euler's method

h t x(t) x'(t) exact 

solution

0.2 0 0.020000 0.019600 0.020000

0.2 0.2 0.023920 0.023348 0.024320

0.2 0.4 0.028590 0.027772 0.029546

0.2 0.6 0.034144 0.032978 0.035853

0.2 0.8 0.040740 0.039080 0.043446

0.2 1 0.048556 0.046198 0.052559

0.2 1.2 0.057795 0.054455 0.063458

0.2 1.4 0.068686 0.063968 0.076434

0.2 1.6 0.081480 0.074841 0.091803

0.2 1.8 0.096448 0.087146 0.109894

0.2 2 0.113877 0.100909 0.131037

0.2 2.2 0.134059 0.116087 0.155537

0.2 2.4 0.157277 0.132541 0.183649

0.2 2.6 0.183785 0.150008 0.215545

0.2 2.8 0.213786 0.168082 0.251276

0.2 3 0.247403 0.186195 0.290734

0.2 3.2 0.284642 0.203621 0.333628

0.2 3.4 0.325366 0.219503 0.379465

0.2 3.6 0.369266 0.232909 0.427558

0.2 3.8 0.415848 0.242918 0.477061

0.2 4 0.464432 0.248735 0.527019

0.2 4.2 0.514179 0.249799 0.576441

0.2 4.4 0.564138 0.245886 0.624380

0.2 4.6 0.613316 0.237160 0.669999

0.2 4.8 0.660748 0.224160 0.712628

0.2 5 0.705580 0.207737 0.751790

0.2 5.2 0.747127 0.188928 0.787208

0.2 5.4 0.784913 0.168825 0.818791

0.2 5.6 0.818678 0.148445 0.846600

0.2 5.8 0.848367 0.128641 0.870815

0.2 6 0.874095 0.110053 0.891696

0.2 6.2 0.896105 0.093101 0.909552

0.2 6.4 0.914725 0.078003 0.924713

0.2 6.6 0.930326 0.064820 0.937508

0.2 6.8 0.943290 0.053494 0.948249

0.2 7 0.953989 0.043894 0.957229

0.2 7.2 0.962768 0.035846 0.964708

0.2 7.4 0.969937 0.029159 0.970920

0.2 7.6 0.975769 0.023644

Solving x'=x(1-x)

by Euler's method
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Point and click on-line diffeq solver

There are several graphical on-line solvers for differential equations.
If you go to this web page:

http://virtualmathmuseum.org/ODE/1o1d-MassAction

you can see graphs of the solution to our equation dx
dt = x(1− x).

Math 320 diffeqs and Euler’s method

http://virtualmathmuseum.org/ODE/1o1d-MassAction

