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1(c) The solution is the sum of a solution to the homogeneous equation and a par-

ticular solution. The characteristic equation is r r
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To find a particular solution one tries y Ce x De xp

x x= +− −
sin cos2 2 . You then get

′′ − ′ − = − +( ) + − −( )− −
y x y x y x C D e x C D e xp p p

x x
( ) ( ) ( ) sin cos3 4 4 10 2 10 4 2

For this to be equal to e x
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So the general solution is:
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To satisfy the initial conditions you have to solve the following equations in A and 
B: A B K A B+ = + − =5
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2.  Use reduction of order. Put y x x u x( ) ( )= +( )1
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Put v x u x( ) ( )= ′ and solve the resulting equation for v x( )with result
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Hence the general solution is

y x A x u x B x A x
dx

x
B x( ) ( )= +( ) + +( ) = +( )

+( )
+ +( )∫1 1 1

1
1

2 2 2

2 2

2

MATH 319 Solutions to the First Midterm ExamÑSpring 1998


