
MATH 319 Final Exam—Spring 1998

A. Power series
Is   x = 0  a regular or regular singular point for the following equation
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Find one nonzero solution of the equation in part A by the appropriate power series method (find the 
recurrence relation, and a formula for the coefficient an ).

B. Laplace transform
1. Compute the Laplace transform of the function y t( ) with the depicted graph:
Let f t( )be a function whose Laplace transform is given 
by
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Compute   f ( )3

4 π .

2. Use convolutions to find the solution to the 
following equation (you may leave an integral in your 
answer!)
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3. Find the Laplace transform of y t( ) where x t( ) and y t( ) are the solution of the following system:
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(The Laplace transform F s( )  of the unknown function f t( ) may appear in you answer.)
C. Eigenvector & value analysis

1. Let A  be a   2 2×  matrix whose eigenvalues&vectors are  
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Sketch the phase portrait of the linear system   ′ =x x( ) ( )t A t ; in particular draw the trajectory that goes through a 
point on the y-axis (draw but do not compute!).

2. Consider the matrix 
  
B =

− −

−











1 1

1 4
. If you compute them you find that the eigenvalues of B  are   λ± = − ±2 i  . 

Again, sketch the phase portrait of the linear system   ′ =x x( ) ( )t B t  and in particular draw (but don’t compute) the 
trajectory that goes through a point on the y-axis.

D. Phase plane and linearized stability
Consider the system of differential equations

(§)
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1. Find all equilibrium points of the system (§). Also draw the “direction field,” i.e. the regions where   ′> <x 0 0,
and also the regions where   ′> <y 0 0, .

2. The system (§) has an equilibrium ( , )x y0 0  in the first quadrant (i.e. with both   x0 0>  and   y0 0> ). Use the 
method of linearized stability to determine whether this equilibrium is stable or not.
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