
Math 276 notes / Spring 2004

SECOND ORDER
LINEAR DIFFERENTIAL EQUATIONS

1. Solving 2×2 systems of linear equations

From algebra you know how to solve a linear system of equations

(1)

{
ax+by= p

cx+dy= q

in two unknownsx andy. For instance, you could multiply the first equation withd and the
second withc, and subtract, with result(ad−bc)x = pd−qc. This gives youx. A similar
trick will give you y. In the end the solution is given by

(2) x =
dp−bq
ad−bc

, y =
aq−cp
ad−bc

.

There is a special notation for the quantityad−bc which occurs in the denominator. It is
called thedeterminantof the system, and is written as

(3)

∣∣∣∣a b
c d

∣∣∣∣ def= ad−bc.

With this notation we can reformulate the above as follows

Theorem 1 (“Cramer’s rule,” the 2×2 case). If

∣∣∣∣a b
c d

∣∣∣∣ 6= 0 then the system of equations

(1) has a solution for any given p,q∈ R. This solution is given by

x =

∣∣∣∣p b
q d

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ , y =

∣∣∣∣a p
c q

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ .
2. The Wronskian and Abel’s theorem

Consider the second order linear differential equation

(4) y′′(x)+a(x)y′(x)+b(x)y(x) = f (x),

and its associatedhomogeneous equation

(5) y′′(x)+a(x)y′(x)+b(x)y(x) = 0.

Here, and in the following all functions are assumed to be defined on some intervalx1 <
x < x2.

Definition. If y1 andy2 are solutions of the homogeneous equation, then theirWron-
skianis defined to be the function

W(x) def= W(y1,y2;x) def= y1(x)y′2(x)−y′1(x)y2(x).
1
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Using the determinant notation we have therefore defined the Wronskian to be

W(x) =
∣∣∣∣y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣ .
Theorem 2 (Niels Henrik Abel, (1802–1829)). The Wronskian of two solutions of the
linear homogeneous differential equation(5) satisfies

dW
dx

=−a(x)W(x).

HenceW(x) is given by

(6) W(x) = W(x0)e
R x
x0

a(x′)dx′

3. The Method of Variation of Constants

To solve the inhomogeneous equation (4) one can use the method ofVariation of Con-
stants(or “variation of parameters”). In this method one assumes that the solutiony is
given by

(7) y(x) = c1(x)y1(x)+c2(x)y2(x),

and that the functionsc1 andc2 satisfy

(8) y′(x) = c1(x)y′1(x)+c2(x)y′2(x),

Such functionsc1 andc2 always exist, at least if the Wronskian of the two solutionsy1 and
y2 is nonzero (see problem 4). If this is so, then one has

y′′(x) = c′1(x)y
′
1(x)+c′2(x)y

′
2(x) +c1(x)y′′1(x)+c2(x)y′′2(x)

a(x)y′(x) = a(x)c1(x)y′1(x)+a(x)c2(x)y′2(x)

b(x)y(x) = b(x)c1(x)y1(x)+b(x)c2(x)y2(x)

Keep in mind thaty1 andy2 both satisfy the homogeneous equation, and add vertically.
You find that

f (x) = c′1(x)y
′
1(x)+c′2(x)y

′
2(x).(9)

This gives us one equation forc′1(x) andc′2(x). To get a second equation we differentiate
(7), applying the product rule, and combine the result with (8). One gets

(10) 0= c′1(x)y1(x)+c′2(x)y2(x).

Equations (9) and (10) together form a system of two equations for the unknownsc′1(x)
andc′2(x), namely

(11)

{
y1(x)c′1(x)+y2(x)c′2(x) = 0

y′1(x)c
′
1(x)+y′2(x)c

′
2(x) = f (x)

If the WronskianW(x) = y′1(x)y2(x)−y1(x)y′2(x) is nonzero, then one can solve this system
for c′1(x) andc′2(x). Integratingc′1(x) andc′2(x) then givesc1(x) andc2(x), and from there
you get the solutiony(x) = c1(x)y1(x)+c2(x)y2(x).

When you work this out, you get

(12) c′1(x) =
−y2(x) f (x)

W(x)
, c′2(x) =

y1(x) f (x)
W(x)

,
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whereW(x) =
∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ is the Wronskian ofy1 andy2. Thus the solution of the inhomo-

geneous equation (4) is given by

(13) y(x) =−y1(x)
Z

y2(x) f (x)
W(x)

dx+y2(x)
Z

y1(x) f (x)
W(x)

dx.

Both indefinite integrals contain a constant, so the general solution we have found has two
undetermined constants in it.

Besides giving us a method for solving the inhomogeneous equation, this computation
also lets us prove a uniqueness theorem for the homogeneous equation.

Theorem 3. Let y1,y2 : (x1,x2)→R be two solutions of the homogeneous equation (5), for
which the Wronskian W(x) does not vanish. Then the general solution to the homogeneous
equation (5) is

(14) yh(x) = C1y1(x)+C2y2(x).

Proof. The homogeneous equation is just a special case of the inhomogeneous equation
where f (x) hapens to vanish. So we can apply the method of Variation of Constants to
get the general solution to the homogeneous equation by settingf = 0 in (13). The two
integrals that appear in (13) now are:Z

y2(x) f (x)
W(x)

dx=
Z

0dx= C1,
Z

y1(x) f (x)
W(x)

dx=
Z

0dx= C2.

Hence (13) says that the general solution is indeed given by (14). �

4. Linearity and the Superposition Principle

We abbreviate the lefthand side of the differential equation (4) by

L[y] = y′′(x)+a(x)y′(x)+b(x)y(x).

Thus the equations (4) and (5) can be written concisely as follows:

inhomogeneous: L[y] = f

homogeneous: L[y] = 0.

The expressionL[y] is “linear iny,” which, by definition, means thatfor any two functions
y1 and y2, and any two numbers c1 and c2 one has

(15) L[c1y1 +c2y2] = c1L[y1]+c2L[y2].

Just as for 1st order equations one has a Superposition Principle.

Theorem 4(Superposition Principle).
(i) If y1 and y2 are solutions of the homogeneous equation, then so is any linear com-

bination y= c1y1 +c2y2 (c1,c2 ∈ R).
(ii) If y1 and y2 are solutions of the inhomogeneous equationsL[y1] = f1 andL[y2] = f2

respectively, then the linear combination y= c1y1 + c2y2 (c1,c2 ∈ R constants) satisfies
L[y] = c1 f1 +c2 f2.

(iii) If y1 and y2 are solutions to the same inhomogeneous equation, i.e. ifL[y1] = f and
L[y2] = f , then their difference yh = y1−y2 satisfies the homogeneous equation:L[yh] = 0.
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5. Constant coefficient equations

There is no formula that gives you the general solution to the homogeneous equation for
an arbitrary second order linear equation. But if the coefficientsa(x) andb(x) are constant,
such a formula does exist.

Consider the differential equation

(16) y′′+ py′+qy= 0,

wherep,q ∈ R are constants. To solve this equation one looks for exponential functions
which satisfy the equation. So sety = erx for some constantr, and see if (16) holds:

y′′+ py′+qy= r2erx + prerx +qerx =
(
r2 + pr +q

)
erx.

Sinceerx 6= 0 no matter whatr andx are (even if they are complex numbers!) we see that
y = erx is a solution of the homogeneous equationif and only if r satisfies the quadratic
equation

(17) r2 + pr +q = 0.

There are now three cases:

p2−4q > 0 In this case the characteristic equation has two real roots,r1 and r2, and

we get two solutionsy1(x) = er1x andy2(x) = er2x of the homogeneous equation. it follows
from the superposition principle that

y(x) = c1er1x +c2er2x

is a solution of the homogeneous equation for anyc1,c2 ∈ R.

p2−4q < 0 In this case the characteristic equation has two complex roots, which we

write as

r± =
−p±

√
p2−4q

2
=
−p± i

√
4q− p2

2
= α± iΩ,

whereα = −p/2 andΩ = 1
2

√
4q− p2 are real numbers, andΩ > 0. The solutions in

exponential form are now

y±(x) = er±x = e(α±iΩ)x = eαxe±iΩx = eαx(cosΩx± i sinΩx
)

These solutions are compex valued. To get real valued solutions one forms these linear
combinations:

y1(x) =
1
2
(y+(x)+y−(x)) = eαx cosΩx

y2(x) =
1
2i

(y+(x)−y−(x)) = eαx sinΩx

Thus we find the following solutions for the homogeneous equation in this case:

y(x) = Ay1(x)+By2(x) = eαx(AcosΩx+BsinΩx
)
.

p2−4q = 0 In this last case the characteristic equation has one double root, namely

r = −p/2. There is therefore only one exponential functiony(x) = erx which satisfies the
equation. It turns out that in this case there is another solution which is not exponential,
namely,xerx. So in this case we have the following solution to our constant coefficent
equation (16),

y(x) = c1erx +c2xerx =
(
c1 +c2x

)
erx.
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6. Questions and Problems

1 Derive the solutions in (2) (i.e. check those formulas.)

2 Solve {
x+ iy = 2+6i

ix+y =−4
and

{
(2+ i)x−2y = 2+6i

−2x+(2− i)y =−4

“by hand,” and again using Cramer’s rule.

3 Prove Abel’s theorem: verify that the Wronskian really does satisfyW′(x) =−a(x)W(x).

4 Supposey1 andy2 are two solutions of the homogeneous equation (5) whose Wronskian
does not vanish.Show: If y is an arbitrary differentiable function, then there always exist
functionsc1(x) andc2(x) such that (7) and (8) hold. (Can you write down a formula forc1

andc2 in terms ofy, y′, y1, y2, y′1 andy′2? )

5 Which are the known functions, and which are the unknown functions in (11)?

6 Prove that (10) does indeed follow from the assumptions (7) and (8).

7 (i) State the definition of the statementL[y] is linear iny.”
(ii) Show that the expressionL[y] = y′′(x)+a(x)y′(x)+b(x)y(x) is indeed linear iny.

8 Consider the operatorM defined byM[y] = dy
dx +y2.

(i) ComputeM[y] wheny is the functiony(x) = sinx. Do the same fory = 2sinx.
(ii) Is M[y] linear iny?

9 Prove Theorem 4!!

10 Find the general solutions to the following diffeqs:

2y′′(x)+3y′(x)+y(x) = 0 y′′(x)−16y(x) = 0

y′′(x)+Ay′(x)+y(x) = 0 y′′(x)−y′(x)+Ay(x) = 0

whereA > 0 is some constant.

11 Explain how you can use the Superposition Principle (Theorem 4) to find a particular and
from there the general solution to the differential equations

y′′(x)+ω2y(x) = 1+x+x2

y′′(x)+2y′(x)−y(x) = x2 +sin(Ax)

6y′′(x)+5y′(x)+y(x) = eAx

HereA andω are positive constants.

12 Use Variation of Constants to find the general solution of the following equations:

y′′(x)−y(x) = x

y′′(x)+4y(x) = sinAx A> 0 is some constant.

y′′(x)−y′(x) = eiωx ω > 0 is a constant.


