
Math 276 notes / Spring 2004

LINEAR DIFFERENTIAL EQUATIONS
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1. F I R S T O R D E R E Q U A T I O N S

1.1. Solution Method

Suppose A, B and C are continuous functions on an interval a < x < b, and
suppose A(x) 6= 0 for all x ∈ (a, b).

To solve a differential equation of the form

(1) A(x)
dy
dx

+ B(x)y(x) = C(x),

you first divide both sides by A(x), to get

(2)
dy
dx

+ P(x)y(x) = Q(x),

where P(x) = B(x)/A(x) and Q(x) = C(x)/A(x).
Next, you multiply the equation with a function m : (a, b) → R which is to be

determined later:

(3) m(x)
dy
dx

+ m(x)P(x)y(x) = m(x)Q(x),
1
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We require that m satisfies

(4)
dm
dx

= m(x)P(x).

Any function m(x) which satisfies this equation is called an integrating factor.
Equation (4) is a separable differential equation for m, so you can always solve

it. One solution is given by

(5) m(x) = e
R

P(x)dx

Let m be an integrating factor. Then (3) implies

(6) m(x)
dy
dx

+
dm
dx

y(x) = m(x)Q(x).

The left hand side here is precisely what you get if you differentiate m(x)y(x) using
the product rule, so we get

(7)
dm(x)y(x)

dx
= m(x)Q(x).

Integrate to get

(8) m(x)y(x) =
Z

m(x)Q(x) dx

and thus

(9) y(x) =
1

m(x)

Z
m(x)Q(x) dx.

1.2. The Homogeneous and the Inhomogeneous Equations

Consider the linear differential equation (1)

A(x)
dy
dx

+ B(x)y(x) = C(x)

again. This equation is called the inhomogeneous equation. The corresponding homo-
geneous equation is the equation you get by replacing the right hand side with 0. In
other words, it’s

(10) A(x)
dy
dx

+ B(x)y(x) = 0.

There are two basic important features of linear (differential) equations which are
summarized in the following two theorems.

Theorem 1 (Superposition Principle). Let y1, y2 : (a, b) → R be two solutions of the
homogeneous equation (10). Then for any two real numbers α and β the function y3(x) =
αy1(x) + βy2(x) is again a solution of the homogeneous differential equation (10).

Theorem 2 (About Particular Solutions).
(i) If yh : (a, b)→ R is a solution of the homogeneous equation (10), and if yp : (a, b)→

R is a solution of the inhomogeneous equation (1), then the sum y(x) = yp(x) + yh(x) is
also a solution of the inhomogeneous equation (1).

(ii) If y1, y2 : (a, b)→R are two solutions of the inhomogeneous equation (1), then their
difference yh(x) = y1(x)− y2(x) is a solution of the homogeneous equation.
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You should know the proofs of these theorems! They will be given in lecture.
The second theorem gives an alternative strategy for solving the inhomogen-

eous equation. Namely, first you find any old solution yp(x) of the inhomogen-
eous equation (it doesn’t matter how, sometimes there’s one obvious solution that
stands out. . . ). You call this solution a “particular solution.” Next you solve the
homogeneous equation, i.e. you find all solutions of (10). Theorem 2 then says that
if yh(x) is your solution to the homogeneous equation, then the general solution to
the inhomogeneous equation is given by

(11) yinhom(x) = yh(x) + yp(x).

2. S E C O N D O R D E R E Q U A T I O N S

2.1. Solving 2× 2 systems of linear equations

From algebra you know how to solve a linear system of equations

(12)

{
ax + by = p

cx + dy = q

in two unknowns x and y. For instance, you could multiply the first equation with
d and the second with c, and subtract, with result (ad− bc)x = pd− qc. This gives
you x. A similar trick will give you y. In the end the solution is given by

(13) x =
dp− bq
ad− bc

, y =
aq− cp
ad− bc

.

There is a special notation for the quantity ad− bc which occurs in the denomin-
ator. It is called the determinant of the system, and is written as

(14)
∣∣∣∣a b
c d

∣∣∣∣ def= ad− bc.

With this notation we can reformulate the above as follows

Theorem 3 (“Cramer’s rule,” the 2×2 case). If
∣∣∣∣a b
c d

∣∣∣∣ 6= 0 then the system of equations

(12) has a solution for any given p, q ∈ R. This solution is given by

x =

∣∣∣∣p b
q d

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ , y =

∣∣∣∣a p
c q

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ .
2.2. The Wronskian and Abel’s theorem

Consider the second order linear differential equation

(15) y′′(x) + a(x)y′(x) + b(x)y(x) = f (x),

and its associated homogeneous equation

(16) y′′(x) + a(x)y′(x) + b(x)y(x) = 0.
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Here, and in the following all functions are assumed to be defined on some interval
x1 < x < x2.

Definition. If y1 and y2 are solutions of the homogeneous equation, then their
Wronskian is defined to be the function

W(x) def= W(y1, y2; x) def= y1(x)y′2(x)− y′1(x)y2(x).

Using the determinant notation we have therefore defined the Wronskian to be

W(x) =
∣∣∣∣y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣ .
Theorem 4 (Niels Henrik Abel, (1802–1829)). The Wronskian of two solutions of the
linear homogeneous differential equation (16) satisfies

dW
dx

= −a(x)W(x).

Hence W(x) is given by

(17) W(x) = W(x0)e
R x

x0
a(x′)dx′

2.3. The Method of Variation of Constants

To solve the inhomogeneous equation (15) one can use the method of Variation
of Constants (or “variation of parameters”). In this method one assumes that the
solution y is given by

(18) y(x) = c1(x)y1(x) + c2(x)y2(x),

and that the functions c1 and c2 satisfy

(19) y′(x) = c1(x)y′1(x) + c2(x)y′2(x),

Such functions c1 and c2 always exist, at least if the Wronskian of the two solutions
y1 and y2 is nonzero (see problem 4). If this is so, then one has

y′′(x) = c′1(x)y′1(x) + c′2(x)y′2(x) +c1(x)y′′1 (x) + c2(x)y′′2 (x)

a(x)y′(x) = a(x)c1(x)y′1(x) + a(x)c2(x)y′2(x)

b(x)y(x) = b(x)c1(x)y1(x) + b(x)c2(x)y2(x)

Keep in mind that y1 and y2 both satisfy the homogeneous equation, and add
vertically. You find that

f (x) = c′1(x)y′1(x) + c′2(x)y′2(x).(20)

This gives us one equation for c′1(x) and c′2(x). To get a second equation we dif-
ferentiate (18), applying the product rule, and combine the result with (19). One
gets

(21) 0 = c′1(x)y1(x) + c′2(x)y2(x).
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Equations (20) and (21) together form a system of two equations for the unknowns
c′1(x) and c′2(x), namely

(22)

{
y1(x)c′1(x) + y2(x)c′2(x) = 0

y′1(x)c′1(x) + y′2(x)c′2(x) = f (x)

If the Wronskian W(x) = y′1(x)y2(x)− y1(x)y′2(x) is nonzero, then one can solve this
system for c′1(x) and c′2(x). Integrating c′1(x) and c′2(x) then gives c1(x) and c2(x), and
from there you get the solution y(x) = c1(x)y1(x) + c2(x)y2(x).

When you work this out, you get

(23) c′1(x) =
−y2(x) f (x)

W(x)
, c′2(x) =

y1(x) f (x)
W(x)

,

where W(x) =
∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ is the Wronskian of y1 and y2. Thus the solution of the

inhomogeneous equation (15) is given by

(24) y(x) = −y1(x)
Z y2(x) f (x)

W(x)
dx + y2(x)

Z y1(x) f (x)
W(x)

dx.

Both indefinite integrals contain a constant, so the general solution we have found
has two undetermined constants in it.

Besides giving us a method for solving the inhomogeneous equation, this com-
putation also lets us prove a uniqueness theorem for the homogeneous equation.

Theorem 5. Let y1, y2 : (x1, x2)→ R be two solutions of the homogeneous equation (16),
for which the Wronskian W(x) does not vanish. Then the general solution to the homogen-
eous equation (16) is

(25) yh(x) = C1y1(x) + C2y2(x).

Proof. The homogeneous equation is just a special case of the inhomogeneous
equation where f (x) hapens to vanish. So we can apply the method of Variation
of Constants to get the general solution to the homogeneous equation by setting
f = 0 in (24). The two integrals that appear in (24) now are:Z y2(x) f (x)

W(x)
dx =

Z
0 dx = C1,

Z y1(x) f (x)
W(x)

dx =
Z

0 dx = C2.

Hence (24) says that the general solution is indeed given by (25). �

2.4. Linearity and the Superposition Principle

We abbreviate the lefthand side of the differential equation (15) by

L[y] = y′′(x) + a(x)y′(x) + b(x)y(x).

Thus the equations (15) and (16) can be written concisely as follows:

inhomogeneous: L[y] = f

homogeneous: L[y] = 0.
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The expression L[y] is “linear in y,” which, by definition, means that for any two
functions y1 and y2, and any two numbers c1 and c2 one has

(26) L[c1y1 + c2y2] = c1 L[y1] + c2 L[y2].

Just as for 1st order equations one has a Superposition Principle.

Theorem 6 (Superposition Principle).
(i) If y1 and y2 are solutions of the homogeneous equation, then so is any linear com-

bination y = c1y1 + c2y2 (c1, c2 ∈ R).
(ii) If y1 and y2 are solutions of the inhomogeneous equations L[y1] = f1 and L[y2] =

f2 respectively, then the linear combination y = c1y1 + c2y2 (c1, c2 ∈R constants) satisfies
L[y] = c1 f1 + c2 f2.

(iii) If y1 and y2 are solutions to the same inhomogeneous equation, i.e. if L[y1] = f
and L[y2] = f , then their difference yh = y1 − y2 satisfies the homogeneous equation:
L[yh] = 0.

2.5. Constant coefficient equations

There is no formula that gives you the general solution to the homogeneous
equation for an arbitrary second order linear equation. But if the coefficients a(x)
and b(x) are constant, such a formula does exist.

Consider the differential equation

(27) y′′ + py′ + qy = 0,

where p, q ∈R are constants. To solve this equation one looks for exponential func-
tions which satisfy the equation. So set y = erx for some constant r, and see if (27)
holds:

y′′ + py′ + qy = r2erx + prerx + qerx =
(
r2 + pr + q

)
erx.

Since erx 6= 0 no matter what r and x are (even if they are complex numbers!) we
see that y = erx is a solution of the homogeneous equation if and only if r satisfies
the quadratic equation

(28) r2 + pr + q = 0.

There are now three cases:

p2 − 4q > 0 In this case the characteristic equation has two real roots, r1 and r2,

and we get two solutions y1(x) = er1x and y2(x) = er2x of the homogeneous equa-
tion. it follows from the superposition principle that

y(x) = c1er1x + c2er2x

is a solution of the homogeneous equation for any c1, c2 ∈ R.

p2 − 4q < 0 In this case the characteristic equation has two complex roots, which

we write as

r± =
−p±

√
p2 − 4q

2
=
−p± i

√
4q− p2

2
= α± iΩ,



7

where α = −p/2 and Ω = 1
2

√
4q− p2 are real numbers, and Ω > 0. The solutions

in exponential form are now

y±(x) = er±x = e(α±iΩ)x = eαxe±iΩx = eαx(cos Ωx± i sin Ωx
)

These solutions are compex valued. To get real valued solutions one forms these
linear combinations:

y1(x) =
1
2

(y+(x) + y−(x)) = eαx cos Ωx

y2(x) =
1
2i

(y+(x)− y−(x)) = eαx sin Ωx

Thus we find the following solutions for the homogeneous equation in this case:

y(x) = Ay1(x) + By2(x) = eαx(A cos Ωx + B sin Ωx
)
.

p2 − 4q = 0 In this last case the characteristic equation has one double root,

namely r =−p/2. There is therefore only one exponential function y(x) = erx which
satisfies the equation. It turns out that in this case there is another solution which
is not exponential, namely, xerx. So in this case we have the following solution to
our constant coefficent equation (27),

y(x) = c1erx + c2xerx =
(
c1 + c2x

)
erx.

2.6. An Example

Problem: Solve the equation

y′′ − y = f (x) (in class we had f (x) = ex).

Solution: The homogeneous equation is y′′ − y = 0, which is a constant coefficient
equation. So you can find its solutions by trying an exponential y = erx. This leads
to the characteristic equation r2 − 1 = 0, whose solutions are r = ±1. We get two
solutions

y1(x) = ex, and y2(x) = e−x.

The Wronskian of these two solutions is

W(x) =
∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ =
∣∣∣∣ex e−x

ex −e−x

∣∣∣∣ = −2.

Since the Wronskian does not vanish the solutions y1 and y2 are suitable for the
method of Variation of Constants.

We write the unknown solution to our problem as

y(x) = c1(x)y1(x) + c2(x)y2(x) = c1(x)ex + c2(x)e−x,

and require additionally that

y′(x) = c1(x)y′1(x) + c2(x)y′2(x) = c1(x)ex − c2(x)e−x.

This happens if and only if

(29) 0 = c′1(x)ex + c′2(x)e−x.
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Substituting y = c1ex + c2e−x in the differential equation, we get

f (x) = y′′ − y

= c′1(x)ex + c1(x)ex + c′2(x)e−x − c2(x)e−x −
(
c1(x)ex + c2(x)e−x).

= c′1(x)ex − c′2(x)e−x.

Thus we have two equations for c′1(x) and c′2(x), namely

c′1(x)ex + c′2(x)e−x = 0

c′1(x)ex − c′2(x)e−x = f (x).

Solving these gives

c′1(x) =
1
2

f (x)e−x, c′2(x) = −1
2

f (x)ex.

In the example in class we had f (x) = ex, so

c′1(x) =
1
2
, c′2(x) = −1

2
e2x

and hence, by integration,

c1(x) =
x
2

+ C1, c2(x) = −1
4

e2x + C2

where C1 and C2 are constants.
The general solution to our differential equation therefore is

y(x) = c1(x)ex + c2(x)e−x

=
1
2

xex − 1
4

e2x−x + C1ex + C2e−x

=
1
2

xex +
(
C1 − 1

4

)
ex + C2e−x.

You can simpify the appearance of this general solution by calling A = C1 − 1
4 ad

B = C2. You then get

y(x) =
1
2

xex + Aex + Be−x.

where A and B are arbitrary constants.

2.7. Questions about the Theory

1 Derive the solutions in (13) (i.e. check those formulas.)

2 Solve {
x + iy = 2 + 6i

ix + y = −4
and

{
(2 + i)x− 2y = 2 + 6i

−2x + (2− i)y = −4
“by hand,” and again using Cramer’s rule.

3 Prove Abel’s theorem: verify that the Wronskian really does satisfy W′(x) =−a(x)W(x).

4 Suppose y1 and y2 are two solutions of the homogeneous equation (16) whose
Wronskian does not vanish. Show: If y is an arbitrary differentiable function, then
there always exist functions c1(x) and c2(x) such that (18) and (19) hold. (Can you
write down a formula for c1 and c2 in terms of y, y′, y1, y2, y′1 and y′2? )



9

5 Which are the known functions, and which are the unknown functions in (22)?

6 Prove that (21) does indeed follow from the assumptions (18) and (19).

7 (i) State the definition of the statement “L[y] is linear in y.”
(ii) Show that the expression L[y] = y′′(x) + a(x)y′(x) + b(x)y(x) is indeed linear in
y.

8 Consider the operator M defined by M[y] = dy
dx + y2.

(i) Compute M[y] when y is the function y(x) = sin x. Do the same for y = 2 sin x.
(ii) Is M[y] linear in y?

9 Prove Theorem 6!!

2.8. Problems to practice the solution methods

10 Find the general solutions to the following diffeqs:

2y′′(x) + 3 y′(x) + y(x) = 0 y′′(x)− 16y(x) = 0

y′′(x) + Ay′(x) + y(x) = 0 y′′(x)− y′(x) + Ay(x) = 0

where A > 0 is some constant.

11 Explain how you can use the Superposition Principle (Theorem 6) to find a par-
ticular and from there the general solution to the differential equations

y′′(x) + ω2y(x) = 1 + x + x2

y′′(x) + 2y′(x)− y(x) = x2 + sin(Ax)

6y′′(x) + 5y′(x) + y(x) = eAx

y′′ − 3y′ + 2y = eAx

Here A and ω are positive constants.

12 Use Variation of Constants to find the general solution of the following equations:

y′′(x)− y(x) = x

y′′ + y = ex + sin x

y′′(x) + 4y(x) = sin Ax A > 0 is some constant.

y′′(x)− y′(x) = eiωx ω > 0 is a constant.

13 Instead of choosing y1(x) = ex and y2(x) = e−x in the example of § 2.6, we could
have chosen y1(x) = sinh x and y2(x) = cosh x. Go through the same example with
this choice of y1 and y2. Check that you get the same solutions!


