$\vec{n} = \vec{a} \times \vec{b}$

7.3. Finding the normal to a plane. If you know two vectors \vec{a} and \vec{b} which are parallel to a given plane \mathcal{P} but not parallel to each other, then you can find a normal vector for the plane \mathcal{P} by computing

$$\vec{n} = \vec{a} \times \vec{b}$$
.

We have just seen that the vector \vec{n} must be perpendicular to both \vec{a} and \vec{b} , and hence³ it is perpendicular to the plane \mathcal{P} .

This trick is especially useful when you have three points A, B and C, and you want to find the defining equation for the plane $\mathcal P$ through these points. We will assume that the three points do not all lie on one line, for otherwise there are many planes through A, B and C.

To find the defining equation we need one point on the plane (we have three of them),

and a normal vector to the plane. A normal vector can be obtained by computing the cross product of two vectors parallel to the plane. Since \overrightarrow{AB} and \overrightarrow{AC} are both parallel to \mathcal{P} , the vector $\overrightarrow{n} = \overrightarrow{AB} \times \overrightarrow{AC}$ is such a normal vector.

Thus the defining equation for the plane through three given points A, B and C is

$$\vec{n} \cdot (\vec{x} - \vec{a}) = 0$$
, with $\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC} = (\vec{b} - \vec{a}) \times (\vec{c} - \vec{a})$.

7.4. Example. Find the defining equation of the plane \mathcal{P} through the points A(2,-1,0) B(2,1,-1) and C(-1,1,1). Find the intersections of \mathcal{P} with the three coordinate axes, and find the distance from the origin to \mathcal{P} .

Solution: We have

$$\overrightarrow{AB} = \begin{pmatrix} 0\\2\\-1 \end{pmatrix}$$
 and $\overrightarrow{AC} = \begin{pmatrix} -3\\2\\1 \end{pmatrix}$

so that

$$\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \times \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 6 \end{pmatrix}$$

is a normal to the plane. The defining equation for \mathcal{P} is therefore

$$0 = \vec{n} \cdot (\vec{x} - \vec{a}) = \begin{pmatrix} 4 \\ 3 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} x_1 - 2 \\ x_2 + 1 \\ x_3 - 0 \end{pmatrix}$$

i.e.

$$4x_1 + 3x_2 + 6x_3 - 5 = 0.$$

The plane intersects the x_1 axis when $x_2=x_3=0$ and hence $4x_1-5=0$, i.e. in the point $(\frac{5}{4},0,0)$. The intersections with the other two axes are $(0,\frac{5}{3},0)$ and $(0,0,\frac{5}{6})$.