The following figure shows some level sets of a function $f(x,y)$ (in grey), some points $K$, $L$, $M$, $N$, and $O$, and
four paths $\cC_1$, … , $\cC_4$.
- True/False? $\int_{\cC_2} f ds = 0.2$ ?
- True/False? $\int_{\cC_2} \vec\nabla f\cdot d\vec x = 0.2$ ?
- True/False? $\int_{\cC_2} f ds \gt 0$ ?
- True/False? $\int_{\cC_2} \vec\nabla f\cdot d\vec x \gt 0$ ?
- True/False? $\int_{\cC_2} f ds = 0$ ?
- True/False? $\int_{\cC_1} \vec\nabla f\cdot d\vec x \gt 0$ ?
- True/False? $\int_{-\cC_1} f ds \lt 0$ ?
- True/False? $\int_{- \cC_1} \vec\nabla f\cdot d\vec x \gt 0$ ?
- True/False? $\int_{\cC_1+\cC_2} \vec\nabla f\cdot d\vec x = \int_{\cC_2} \vec\nabla f\cdot d\vec x$ ?
- True/False? $\int_{\cC_1+\cC_2} \vec\nabla f\cdot d\vec x = \int_{\cC_4} \vec\nabla f\cdot d\vec x$ ?
- True/False? $\int_{\cC_3} \vec\nabla f\cdot d\vec x \gt 0$ ?
Answers