
Midterm 3–solutions

(1) (a) (7%) Draw the zero set of the function f(x, y) = (y − x)(x2 + y2 − 4), and use your drawing
to predict as many critical points of f as you can without computing the derivatives of f . Explain
your answer.
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�e zero set of the function is the union of the line y = x and the circle with radius 2 and
center at the origin.

�e two points where the line intersects the circle are critical points because ~∇f is always
orthogonal to any curve in the zero set.

�e function must have a maximum in region below the line and inside the circle. �e maxi-
mum cannot be on the boundary of that region, so it is an interior maximum. It must therefore be
a critical point. �erefore the function has at least one critical point in the half of the disc below
the line y = x. Note that there could be more than one critical point in this region. All we know
is that there is at least one such critical point.

�e function must also have a minimum in the region inside the circle above the line, and we
conclude that f has at least one more critical point in the region above the line, inside the circle.

In total we know that f(x, y) has at least four critical points.

(b) (18%) Find all the critical points of f(x, y) = x2 − 4xy + y2 − 6x − 12y and use the
second derivative test to decide which of these are local minima, local maxima, or saddle points.
At saddle points compute the two tangent lines to the level set.

�e derivatives are fx(x, y) = 2x− 4y − 6, fy(x, y) = −4x+ 2y − 12.
Solving fx = 0, fy = 0, leads to x = −5, y = −4 (so there is only one critical point).
�e second order Taylor expansion at the critical point is

f(−5 + ∆x,−4 + ∆y) = f(−5,−4) + (∆x)2 − 4∆x∆y + (∆y)2 + error terms.

Completing the square in the second order terms we get(
∆x− 2∆y

)2 − 3(∆y)2 =
(
∆x− (2−

√
3)∆y

)(
∆x− (2 +

√
3)∆y

)
.

�is form is inde�nite and therefore the critical point is a saddle point. �e two tangents to the
level set at the critical point are given by

∆x = (2−
√

3)∆y, and ∆x = (2 +
√

3)∆y,

where ∆x = x− (−5) = x+ 5 and ∆y = y − (−4) = y + 4.
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�e two tangents to the level set through the critical point

(2) (a) (20%) Where does the quantity x + 4y a�ain its largest value provided (x, y) must satisfy
x2 + 4y2 = 20? Explain your answer (which equations will you solve)?

�is is a constrained optimization problem where we want to �nd the maximum of f(x, y) =
x+ 4y, subject to the constraint g(x, y) = x2 + 4y2 = 20.

�e maximum occurs either at solutions of
~∇g = ~0, g(x, y) = 20 (the exceptional case)

or
~∇f = λ~∇g, g = 20 (Lagrange multiplier case)

Exceptional case. We have gx = 2x, gy = 4y, so the equations ~∇g = ~0 boil down to 2x = 0,
4y = 0, and the only solution is x = y = 0. But this solution does not satisfy the constraint
g = 20, so here the exceptional case does not yield solutions, and themaximummust be a solution
of the Lagrange equations.
Lagrange equations. We must solve ~∇f = λ~∇g, g = 20. �ese three equations are

1 = 2λx, 4 = 8λy, x2 + 4y2 = 20.

�e �rst equation 1 = 2λx implies that x 6= 0 (because x = 0 would give 2λx = 0). �erefore
λ = 1/(2x). �e second equation implies y 6= 0 and λ = 1/(2y). Hence 1/(2x) = 1/(2y), and
thus x = y. Applying this to the constraint g = 20 we get x2 + 4x2 = 20, i.e. 5x2 = 20, so
x = ±

√
20/4 = ±2.

We get two solutions: (x, y) = (2, 2) with λ = −1/4, and (x, y) = (−2,−2) with λ = −1/4.
Of these two solutions we have f(2, 2) = 2 + 4× 2 = 10 and f(−2,−2) = −10, so that the

maximum is a�ained at (2, 2), while the minimum is at (−2,−2).

(b) (5%) Almost the same question as above: Where does the quantity x+4y a�ain its largest
value provided (x, y) must satisfy x2 + 4y2 = 0? Explain your answer (which equations will you
solve)?

�e constraint here is x2 + 4y2 = 0. �ere is only one point that satis�es this constraint,
namely, (x, y) = (0, 0). �e largest value that x+4y therefore can have subject to this constraint
is f(0, 0) = 0.

�e previous paragraph is a complete solution. However, you can also use Lagrange multipli-
ers to solve this problem. If you do that then you will �nd no solutions of the Lagrange equations
~∇f = λ~∇g that also satisfy the constraint, but you will �nd that the point (0, 0) is a solution to
~∇g(x, y) = ~0 that also satis�es the constraint.

�us for this problem the exceptional case leads you to the solution.

(3) Consider the double integral
∫ 1

0

∫ 1

√
y

sin
(
πx3

)
dx dy

(a) (7%) Draw the domain of integration.
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√
y ≤ x ≤ 1

(1,1) (1,1)

0 ≤ y ≤ x2

(b) (18%) Compute the integral. �e domain of integration is the region between the parabola√
y = x and the x-axis, with 0 ≤ x ≤ 1.
�ere is no easy antiderivative for

∫
sin(πx3)dx so we switch the order of integration and

see what happens. We can describe the region as all points (x, y) with
0 ≤ y ≤ 1 and

√
y ≤ x ≤ 1,

but also as all points (x, y) with

0 ≤ x ≤ 1 and 0 ≤ y ≤ x2.
�is leads to the following integral∫ 1

x=0

∫ x2

y=0
sin(πx3) dy dx =

∫ 1

x=0

[
y sin(πx3)

]x2
y=0

dx

=

∫ 1

x=0
x2 sin(πx3) dx

=
[
− 1

3π
cos(πx3)

]1
x=0

=
2

3π
.

(4) (25%) Compute the triple integral

I =

∫∫∫
R

dV

x2 + y2 + z2

whereR is the region above the xy-plane, and inside the sphere with radiusR, and with the origin
as center.

In spherical coordinates the regionR is given by

0 ≤ ρ ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2
.

Using x2 + y2 + z2 = ρ2 and dV = ρ2 sinφdρ dφ dθ we get

I =

∫∫∫
R

dV

x2 + y2 + z2

=

2π∫
θ=0

π/2∫
φ=0

R∫
ρ=0

ρ2 sinφdρ dφ dθ

ρ2

=

2π∫
θ=0

π/2∫
φ=0

R∫
ρ=0

sinφdρ dφ dθ

= 2Rπ.
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