math 234 – the first midterm – lecture 1 september 30, 2015

1. (25%) Let two points A(2, 2, 1) and B(2, 0, 3) be given

(a) Find a parametric representation for the line through A and B.

Solution. We need a point on the line (we choose A, although B would be just as good).

We need a vector in the direction of the line. Here we can choose either \overrightarrow{AB} or \overrightarrow{BA} . Let's choose the first. We get

$$\vec{a} = \overrightarrow{OA} = \begin{pmatrix} 2\\2\\1 \end{pmatrix}, \qquad \overrightarrow{AB} = \begin{pmatrix} b_1 - a_1\\b_2 - a_2\\b_3 - a_3 \end{pmatrix} = \begin{pmatrix} 2-2\\0-2\\3-1 \end{pmatrix} = \begin{pmatrix} 0\\-2\\2 \end{pmatrix}$$

A parametric equation for the line is

$$\vec{x}(t) = \vec{a} + t\overrightarrow{AB} = \begin{pmatrix} 2\\2\\1 \end{pmatrix} + t\begin{pmatrix} 0\\-2\\2 \end{pmatrix} = \begin{pmatrix} 2\\2-2t\\1+2t \end{pmatrix}.$$

(b) Find an equation for the plane through A, B, and the origin.

Solution. We have three points on the plane A, B, and the origin O(0, 0, 0) From these we compute a normal

$$\vec{n} = \overrightarrow{OA} \times \overrightarrow{OB} = \begin{pmatrix} 2\\2\\1 \end{pmatrix} \times \begin{pmatrix} 2\\0\\3 \end{pmatrix} = \begin{pmatrix} -1\\-4\\-4 \end{pmatrix}.$$

The equation for the plane is then $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$, where \vec{p} is the position vector of any point we know to be on the plane: we can choose \vec{p} to be either \overrightarrow{OA} , \overrightarrow{OB} , or $\vec{0}$ (the position vector of the origin). We choose $\vec{p} = \vec{0}$ because that is the easiest, but the other choices should give the same answer. Thus we find the equation for the plane to be

$$-x_1 - 4x_2 - 4x_3 = 0.$$

If you don't like all the minus signs, then you can multiply both sides with -1, which gives you $x_1 + 4x_2 + 4x_3 + 4x_4 +$ $4x_2 = 0.$

2. (30%)The vector function
$$\vec{x}(t) = \begin{pmatrix} t \\ 1 - t^2 \\ 1 + t^2 \end{pmatrix}$$
 describes the motion of a point $X(t)$ in space

(a) Compute the velocity, speed, and acceleration of the point at any time *t*.

Solution. Velocity :
$$\vec{x}'(t) = \begin{pmatrix} 1 \\ -2t \\ 2t \end{pmatrix}$$
.

Speed is length of velocity: $\|\vec{x}'(t)\| = \sqrt{1 + (-2t)^2 + (2t)^2} = \sqrt{1 + 8t^2}.$

Acceleration (always a vector) : $\vec{x}''(t) = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}$.

(b) Where does the tangent line to the curve at the point X(t) with t = 1 intersect the xy plane?

Solution. A parametrization for the tangent line at X(1) is

$$\vec{\boldsymbol{y}}(s) = \vec{\boldsymbol{x}}(1) + s\vec{\boldsymbol{x}}'(1) = \begin{pmatrix} 1\\0\\2 \end{pmatrix} + s\begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \begin{pmatrix} 1+s\\-2s\\2+2s \end{pmatrix}$$

This vector is on the xy-plane when its z-component is zero, i.e. when 2 + 2s = 0. That happens when s = -1, so the intersection with the xy-plane is at

$$\vec{\boldsymbol{y}}(-1) = \begin{pmatrix} 0\\2\\0 \end{pmatrix}.$$

(c) Find the unit tangent vector to the curve at X(t) when t = 1.

Solution. A tangent vector is
$$\vec{x}'(1) = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$
. The length of that vector is
$$\|\vec{x}'(1)\| = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{9} = 3.$$

To get a unit vector with the same direction, divide $\vec{x}'(1)$ by its length

$$\vec{T} = \frac{\vec{x}'(t)}{\|\vec{x}'(t)\|} = \begin{pmatrix} 1/3 \\ -2/3 \\ 2/3 \end{pmatrix}.$$

(d) Find an integral for the length of the part of the curve for which $0 \le t \le 1$ (no need to compute the integral).

Solution. The length of the path from X(0) to X(1) traced out by the vector function $\vec{x}(t)$ is the "distance traveled," which is

distance traveled =
$$\int_{t=0}^{1}$$
 Speed $dt = \int_{0}^{1} \sqrt{1+8t^2} dt$.

- 3. (30%) For each of the following functions
 - decide if they are positive definite, negative definite, indefinite, or semidefinite quadratic forms.
 - *draw the zero set* of the function, and indicate *the region where the function is positive*, and *the region where the function is negative*.

(a)
$$f(x, y) = x^2 - 2xy - 24y^2$$

(b) $g(x, y) = xy - 3y^2$
(c) $h(x, y) = -x^2 + 4xy - 4y^2$

Solution.

$$f(x,y) = x^{2} - 2xy - 24y^{2}$$

= $(x - y)^{2} - y^{2} - 24y^{2}$
= $(x - y)^{2} - 25y^{2}$
= $(x - y - 5y)(x - y + 5y)$
= $(x - 6y)(x + 4y)$

So, f(x, y) is indefinite.

-4 -2 -0 2 4

 $g(x,y) = xy - 3y^2 = (x - 3y)y$ Conclusion: g(x,y) is also indefinite.

$$h(x,y) = -x^{2} + 4xy - 4y^{2}$$

= -(x^{2} - 4xy + 4y^{2})
= -(x - 2y)^{2}.

This shows that h(x, y) is semidefinite. Because of the minus sign you can be more precise and say that h(x, y) is *negative semidefinite*. h(x, y) is everywhere negative, except on its zeroset,

which is the line x = 2y.

4. (15%)

Suppose a point X(t) is moving through space, and suppose its position vector at time t is $\vec{x}(t)$.

At first the point is moving slowly. Then it speeds up, and later it slows down again. We are given that the point reaches its highest speed at time $t = t_0$.

Explain why at the moment $t = t_0$ the velocity and acceleration of the point are perpendicular.

Suggestion: first explain why the function $\|\vec{x}'(t)\|^2$ has a maximum at time $t = t_0$.

Solution. The speed of the point is $\|\vec{x}'(t)\|$. It is a function of time *t*, and it reaches its maximum value at $t = t_0$.

The square of the speed therefore also reaches its maximal value at time $t = t_0$.

When a function reaches its maximum its derivative is zero, so at the moment $t = t_0$ we know that

$$\frac{d\|\vec{x}'(t)\|^2}{dt} = 0.$$

We can expand the derivative by using $\|\vec{a}\|^2 = \vec{a} \cdot \vec{a}$. We find that at any time t we have

$$\frac{d\|\vec{x}'(t)\|^2}{dt} = \frac{d\vec{x}'(t)\cdot\vec{x}'(t)}{dt} = \vec{x}'(t)\cdot\vec{x}''(t) + \vec{x}''(t)\cdot\vec{x}'(t) = 2\vec{x}'(t)\cdot\vec{x}''(t).$$

When $t = t_0$ we have $\frac{d\|\vec{x}'\|^2}{dt} = 0$, so at that time we also have

$$\vec{\boldsymbol{x}}'(t_0) \cdot \vec{\boldsymbol{x}}''(t_0) = 0.$$

This implies that velocity and acceleration are perpendicular at time t_0 .