
Math 234

Here are some solutions to the final exam from two years ago: http://www.math.
wisc.edu/~angenent/234.2015f/final/exam2013-with-some-solutions.pdf

(1) (a)

fx(x, y) = ex−2y + xex−2y

fy(x, y) = −2xex−2y

So, we have at the point x = 2, y = 1

f(2, 1) = 2

fx(2, 1) = 3

fy(2, 1) = −4

Thus the linear approximation of f(x, y) near x = 2, y = 1 is

f(x, y) ≈ 2 + 3(x− 2)− 4(y − 1).

(b)
f(1.99, 1.02) ≈ 1.89

(3) (a)

fx(x, y) = 2x

fy(x, y) = −6y + 3y2

So there are two critical points: (0, 0) and (0, 2).

(b)

fxx(x, y) = 2

fxy(x, y) = 0

fyy(x, y) = −6 + 6y

At the critical point (0, 0), the quadratic part in Taylor’s expansion is

Q(∆x,∆y) =
1

2
(2∆x2 − 6∆y2)

= ∆x2 − 3∆y2

= (∆x−
√

3∆y)(∆x+
√

3∆y)
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So (0, 0) is a saddle point. Since, ∆x = x − 0 and ∆y = y − 0, the
equations of the tangent lines to the level set are

x−
√

3y = 0

x+
√

3y = 0

At the critical point (0, 2),

Q(∆x,∆y) =
1

2
(2∆x2 + 6∆y2)

= ∆x2 + 3∆y2

So (0, 2) is a local minimum.

(4) f(x, y) = xy2, g(x, y) = x2 + y2 = 3. At the points satisfying
−→
∇g = ~0, we

cannot use Lagrange multiplier. gx = 2x and gy = 2y, so (0, 0) is the only

point making
−→
∇g zero. But this point (0, 0) does not satisfy g(x, y) = 3, which

means it’s not on the constraint set we are considering.

Now for all points on the constraint set, we could apply Lagrange multiplier,
y2 = λ2x

2xy = λ2y

x2 + y2 = 3

There are six solutions (x, y, λ) = (
√

3, 0, 0), (−
√

3, 0, 0), (1,
√

2, 1), (1,−
√

2, 1),
(−1,

√
2,−1) and (−1,−

√
2,−1). So the maxima are at points (1,

√
2), (1,−

√
2),

and the minima are at the point (−1,
√

2), (−1,−
√

2).

(7) (a) the region R in cylindrical coordinates is presented by

0 ≤ r ≤ 2
π

4
≤ θ ≤ π

2
0 ≤ z ≤ r2
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(b) ∫∫∫
R

1 dV =

∫ 2

0

∫ π
2

π
4

∫ r2

0

r dz dθ dr

= π∫∫∫
R
z dV =

∫ 2

0

∫ π
2

π
4

∫ r2

0

zr dz dθ dr

=
4

3
π

So the average of z in R is ∫∫∫
R z dV∫∫∫
R 1 dV

=
4

3
.

(8) ∫ 3

0

∫ π
2

π
4

∫ π
2

0

ρ3 sin2 φ cos θ dφ dθ dρ.

(9) See problem 1 on Dec 10’s handout.
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Here are solutions to 8,9,10 on http://www.math.wisc.edu/~angenent/234.

2015f/final/lineintegralproblems.html

(8) ~T ds = d~x =

(
dx
dy

)
, and because ~N is the unit normal obtained by rotating ~T

clockwise by

~N ds =

(
dy
−dx

)
.

Thus, we could see that

~F = ~H =

(
sin(x)
exy

)
, and ~G =

(
exy

− sin(x)

)
.

(9) Apply Green Theorem.

I =

∫
C

~F · ~T ds

= −
∫∫

R

(
∂Q

∂x
− ∂P

∂y
) dA

= −
∫∫

R

0 dA = 0

We have a negative sign above is because the curve C is in the clockwise orien-
tation. And for J , since ~N is the outward unit normal,

J =

∫
C

~F · ~N ds

=

∫∫
R

(
∂P

∂x
+
∂Q

∂y
) dA

=

∫∫
R

(x2 + y2) dA

> 0

The last step is because the integrand x2 + y2 ≥ 0.

(10) Because ~T · ~T = ‖~T‖2 = 1, ~N · ~N = ‖ ~N‖2 = 1 and ~T · ~N = 0, we have
I1 = I2 =

∫
C 1 ds represent the length of C and I3 = 0

http://www.math.wisc.edu/~angenent/234.2015f/final/lineintegralproblems.html
http://www.math.wisc.edu/~angenent/234.2015f/final/lineintegralproblems.html

