
1. Linear combinations of vectors

If \vec{a} and \vec{b} are two vectors, then the expression $s\vec{a} + t\vec{b}$, where s and t are numbers, is called a *linear combination* of \vec{a} and \vec{b} .

- Problems 1. Draw the vectors $2\vec{v} + \frac{1}{2}\vec{w}$, $-\frac{1}{2}\vec{v} + \vec{w}$, and $\frac{3}{2}\vec{v} \frac{1}{2}\vec{w}$ 2. Find real numbers s, t such that $s\vec{v} + t\vec{w} = \vec{a}$. 3. Find real numbers p, q such that $p\vec{v} + q\vec{w} = \vec{b}$.

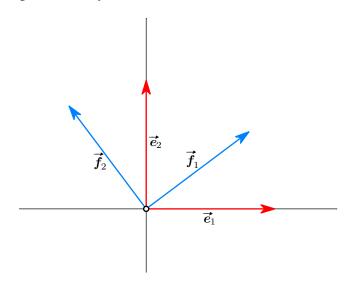
2. Vectors and Coordinates

Two observers, A (Albert) and B (Bernice), are describing points in the plane. They both choose a special point, which they call the origin *O*.

Observer A chooses two vectors \vec{e}_1 and \vec{e}_2 , and makes sure that \vec{e}_1 and \vec{e}_2 form an *orthonormal set of vectors*. This means by definition that

- both vectors \vec{e}_1 and \vec{e}_2 have length 1, and
- the vectors \vec{e}_1 and \vec{e}_2 are perpendicular $(\vec{e}_1 \perp \vec{e}_2)$

A pair of vectors $\{\vec{e}_1, \vec{e}_2\}$ with these properties is sometimes also called an *orthonormal basis*.


Observer A uses these two vectors to assign (x_1, x_2) coordinates to points in the plane. A does this by saying that (x_1, x_2) are the coordinates of the point P if

$$\overrightarrow{OP} = x_1 \, \overrightarrow{e}_1 + x_2 \, \overrightarrow{e}_2.$$

Observer B, chooses a different orthonormal set of vectors \vec{f}_1 and \vec{f}_2 , and assigns coordinates (y_1, y_2) to the same point P if

$$\overrightarrow{OP} = y_1 \overrightarrow{f}_1 + y_2 \overrightarrow{f}_2.$$

Note that while A and B have different coordinate axes, they did choose the same point *O* to be the origin. *How can you translate between A and B's coordinates?*

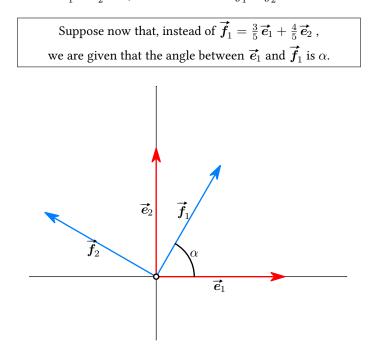
Problems

Suppose that B's first basis vector \vec{f}_1 can be written in terms of A's basis vectors \vec{e}_1, \vec{e}_2 as

$$\vec{f}_1 = \frac{4}{5}\vec{e}_1 + \frac{3}{5}\vec{e}_2.$$

1. Draw the two coordinate axes that B uses.

2. According to observer A, P is the point with coordinates (1, 1). Draw the point, and, using your drawing, estimate the coordinates the observer B would assign to P.


3. Write \vec{f}_1 and \vec{f}_2 in terms of \vec{e}_1 and \vec{e}_2 .

2

4. Write \vec{e}_1 and \vec{e}_2 in terms of \vec{f}_1 and \vec{f}_2 .

5. Express x_1 and x_2 in terms of y_1 and y_2 .

6. Express y₁ and y₂ in terms of x₁ and x₂. Compute observer B's coordinates for the point P, and compare the answer with your estimate from question 1.
7. If you know that x₁² + x₂² = 5, then how much is y₁² + y₂²?

8. Answer questions 1–7 in this, more general, setting.