Answers and Hints

(October 30, 2008)

1 The decimal expansion of

 $1/7 = 0.\overline{142857} \, 142857 \, 142857 \, \cdots$

repeats after 6 digits. Since $2007=334\times 6+3$ the 2007^{th} digit is the same as the 3^{rd} , which happens to be a 2.

3 $100x = 31.313131 \cdots = 31 + x \implies 99x = 31 \implies$ $x = \frac{31}{99}$.

Similarly, $y = \frac{273}{999}$. In z the initial "2" is not part of the repeating pattern, so subtract it: $z = 0.2 + 0.0154154154 \cdots$. Now

$$1000 \times 0.0154154154 \cdots = 15.4154154154 \cdots$$
$$= 15.4 + 0.0154154154 \cdots$$
$$= 15\frac{2}{5} + 0.0154154154 \cdots$$
$$\implies 0.0154154 \cdots = \frac{15\frac{2}{5}}{999}.$$

From this you get

$$z = \frac{1}{5} + \frac{15\frac{2}{5}}{999} = \frac{1076}{4995}.$$

5 $\mathcal{A} = [1,2]$ contains infinitely many points. $\mathcal{C} = (-\infty, \frac{3}{2} - \frac{1}{2}\sqrt{21}) \cup (\frac{3}{2} + \frac{1}{2}\sqrt{21}, \infty)$ contains infinitely many points.

 $\mathcal{E} = \mathcal{A}$ contains infinitely many points.

 ${\cal Q}$ consists of all solutions heta of $\sin heta = {1 \over 2}$. There are infinitely many solutions. They are $\pi/6$, $\pi/6 \pm 2\pi$, $\pi/6 \pm 4\pi$, ... and are $5\pi/6$, $5\pi/6 \pm 2\pi$, $5\pi/6 \pm 4\pi$. A different way of saying this is: Q consists of the numbers

$$\frac{\pi}{6} + 2k\pi$$
, and $\frac{5\pi}{6} + 2k\pi$

where k is an arbitrary integer.

6 $\mathcal{A} \cap \mathcal{B}$ must always be an interval (or empty); $\mathcal{A} \cup \mathcal{B}$ does not have to be an interval, e.g. when $\mathcal{A} = (0, 1)$ and $\mathcal{B} = (2, 3)$.

8 They are the same function. Both are defined for all real numbers, and both will square whatever number you give them, so they are the same function.

9 Domain is all real numbers, $f(x) = 7/(1 + x^2)$.

10 Domain is
$$\{x \mid x \neq \pm 1\}, f(x) = 6/(x^2 - 1)$$

- **11** Domain is all reals, f(x) = -x + 2|x|.
- 14 Both are false:

(a) Since $\arcsin x$ is only defined if $-1 \le x \le 1$ and hence not for all x, it is not true that $\sin(\arcsin x) = x$ for all x. However, it is true that $\sin(\arcsin x) = x$ for all x in the interval [-1, 1].

(b) $\arcsin(\sin x)$ is defined for all x since $\sin x$ is defined for all x, and $\sin x$ is always between -1 and 1. However the arcsine function always returns a number (angle) between $-\pi/2$ and $\pi/2$, so $\arcsin(\sin x) = x$ can't be true when $x > \pi/2$ or $x < -\pi/2$.

19 (a) f(0) = 9/4. **(e)** $f(f(2)) = \left(\frac{\frac{1}{4}-3}{2}\right)^2 = \cdots$ Domain is all reals; Range is $[0,\infty)$.

21 No, there is no such function.

23 Range of f is $[3, \infty)$. Range of k is [-3, 5]. Range of ℓ is (0,1] (Note that 0 is not included).

24 (c) (x,y) lies on one (or more) of the lines if and only $y\geq -x^2/4.$

26 The graphs of f and g do not intersect if $n^2 + 4m < m^2$ 0.

30 (a)

$$\Delta y = (x + \Delta x)^2 - 2(x + \Delta x) + 1 - [x^2 - 2x + 1]$$

$$= (2x - 2)\Delta x + (\Delta x)^2 \text{ so that}$$

$$\frac{\Delta y}{\Delta x} = 2x - 2 + \Delta x$$

31 At A and B the graph of f is tangent to the drawn lines, so the derivative at A is -1 and ther derivative at B is +1.

32 Δx : feet. Δy pounds. $\frac{\Delta y}{\Delta x}$ and $\frac{dy}{dx}$ are measured in pounds per feet.

33 Gallons per second.

34 (a) A(x) is an area so it has units square inch and x is measured in inches, so $\frac{dA}{dx}$ is measured in $\frac{\text{inch}^2}{\text{inch}} = \text{inch}$.

(b) Hint: The extra area ΔA that you get when the side of an equilateral triangle grows from x to $x+\Delta x$ can be split into a thin parallelogram and a very tiny triangle. Ignore the area of the tiny triangle since the area of the parallelogram will be much larger. What is the area of this parallelogram?

The area of a parallelogram is "base time height" so here it is $h \times \Delta x$, where h is the height of the triangle. Conclusion: $\frac{\Delta A}{\Delta x} \approx \frac{h\Delta x}{\Delta x} = h.$ The derivative is therefore the height of the triangle.

39 $\delta = \varepsilon/2.$

40
$$\delta = \min\{1, \frac{1}{5}\varepsilon\}$$

 $\begin{array}{l} \textbf{41} \quad |f(x)-(-7)| = |x^2-7x+10| = |x-2| \cdot |x-5|.\\ \text{If you choose } \delta \leq 1 \text{ then } |x-2| < \delta \text{ implies } 1 < x < 3,\\ \text{so that } |x-5| \text{ is at most } |1-5| = 4.\\ \text{So, choosing } \delta \leq 1 \text{ we always have } |f(x)-L| < 4|x-2|\\ \text{and } |f(x)-L| < \varepsilon \text{ will follow from } |x-2| < \frac{1}{4}\varepsilon.\\ \text{Our choice is then: } \delta = \min\{1,\frac{1}{4}\varepsilon\}. \end{array}$

42 $f(x) = x^3$, a = 3, L = 27. When x = 3 one has $x^3 = 27$, so $x^3 - 27 = 0$ for x = 3. Therefore you can factor out x - 3 from $x^3 - 27$ by doing a long division. You get $x^3 - 27 = (x - 3)(x^2 + 3x + 9)$, and thus

$$|f(x) - L| = |x^3 - 27| = |x^2 + 3x + 9| \cdot |x - 3|.$$

Never choose $\delta > 1.$ Then $|x-3| < \delta$ will imply 2 < x < 4 and therefore

 $|x^2 + 3x + 9| \le 4^2 + 3 \cdot 4 + 9 = 37.$

o if we always choose
$$\delta \leq 1$$
, then we will always have
 $|x^3 - 27| \leq 37\delta$ for $|x - 3| < \delta$.

Hence, if we choose $\delta=\min\left\{1,\frac{1}{37}\varepsilon\right\}$ then $|x-3|<\delta$ guarantees $|x^3-27|<\varepsilon.$

44
$$f(x) = \sqrt{x}$$
, $a = 4$, $L = 2$.
You have
 $\sqrt{x} - 2 = \frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{\sqrt{x} + 2} = \frac{x - 4}{\sqrt{x} + 2}$

and therefore

S

$$|f(x) - L| = \frac{1}{\sqrt{x} + 2}|x - 4|.$$
(1)

Once again it would be nice if we could replace $1/(\sqrt{x}+2)$ by a constant, and we achieve this by always choosing $\delta \leq 1$. If we do that then for $|x-4| < \delta$ we always have 3 < x < 5 and hence

$$\frac{1}{\sqrt{x+2}} < \frac{1}{\sqrt{3}+2},$$

since $1/(\sqrt{x}+2)$ increases as you decrease x. So, if we always choose $\delta \leq 1$ then $|x-4| < \delta$ guarantees

$$|f(x) - 2| < \frac{1}{\sqrt{3} + 2}|x - 4|$$

which prompts us to choose $\delta = \min \left\{ 1, (\sqrt{3}+2)\varepsilon \right\}.$

A smarter solution: We can replace $1/(\sqrt{x}+2)$ by a constant in (1), because for all x in the domain of f we have $\sqrt{x}\geq 0$, which implies

$$\frac{1}{\sqrt{x}+2} \le \frac{1}{2}.$$

Therefore $|\sqrt{x}-2| \leq \frac{1}{2}|x-4|,$ and we could choose $\delta=2\varepsilon.$

45 Hints:

so

$$\sqrt{x+6} - 3 = \frac{x+6-9}{\sqrt{x+6}+3} = \frac{x-3}{\sqrt{x+6}+3}$$
$$|\sqrt{x+6}-3| \le \frac{1}{3}|x-3|.$$

46 We have

$$\left|\frac{1+x}{4+x} - \frac{1}{2}\right| = \frac{1}{2} \left|\frac{x-2}{4+x}\right|.$$

If we choose $\delta \leq 1$ then $|x-2| < \delta$ implies 1 < x < 3 so that

$$\frac{1}{7} < \frac{1}{4+x} < \frac{1}{5}$$

We don't care about the " $\frac{1}{7} < \cdots$ " part, but the other inequality implies

$$\frac{1}{2} \left| \frac{x-2}{4+x} \right| < \frac{1}{10} |x-2|.$$

So if we want $|f(x)-\frac{1}{2}|<\varepsilon$ then we must require $|x-2|<10\varepsilon.$ This leads us to choose

$$\delta = \min\left\{1, 10\varepsilon\right\}.$$

51 The equation (??) already contains a function f, but that is not the right function. In (??) Δx is the variable, and $g(\Delta x) = (f(x + \Delta x) - f(x))/\Delta x$ is the function; we want $\lim_{\Delta x \to 0} g(\Delta x)$.

52 -9

53 Sneaky question: $\lim_{x \to 7^-} (2x + 5) = \lim_{x \nearrow 7} (2x + 5) = 19.$

56 -1.

57 D.N.E.

61 1.

62 DNE or $+\infty$.

67
$$A(\frac{2}{5}, -1);$$
 $B(\frac{2}{5}, 1);$ $C(\frac{2}{7}, -1);$ $D(-1, 0);$
 $E(-\frac{2}{5}, -1).$

68 False! The limit must not only exist *but also be* equal to f(a)!

69 There are of course many examples. Here are two: f(x) = 1/x and $f(x) = \sin(\pi/x)$ (see §??)

70 False! Here's an example: $f(x) = \frac{1}{x}$ and $g(x) = x - \frac{1}{x}$. Then f and g don't have limits at x = 0, but f(x) + g(x) = x does have a limit as $x \to 0$.

71 False again, as shown by the example $f(x) = g(x) = \frac{1}{x}$.

73 1/6.

74 -1/4.

75
$$-1/(4\sqrt{2})$$

77 $\sin 2\alpha = 2 \sin \alpha \cos \alpha$ so the limit is $\lim_{\alpha \to 0} \frac{2 \sin \alpha \cos \alpha}{\sin \alpha} = \lim_{\alpha \to 0} 2 \cos \alpha = 2.$

Other approach: $\frac{\sin 2\alpha}{\sin \alpha} = \frac{\frac{\sin 2\alpha}{2\alpha}}{\frac{\sin \alpha}{\alpha}} \cdot \frac{2\alpha}{\alpha}$. Take the limit and you get 2.

78 $\frac{3}{2}$.

79 Hint: $\tan \theta = \frac{\sin \theta}{\cos \theta}$. Answer: the limit is 1.

80 $\frac{\tan 4\alpha}{\sin 2\alpha} = \frac{\tan 4\alpha}{4\alpha} \cdot \frac{2\alpha}{\sin 2\alpha} \cdot \frac{4\alpha}{2\alpha} = 1 \cdot 1 \cdot 2 = 2$

81 Hint: multiply top and bottom with $1 + \cos x$.

82 Hint: substitute $\theta=\frac{\pi}{2}-\varphi,$ and let $\varphi\rightarrow 0.$ Answer: -1.

88 Substitute $\theta = x - \pi/2$ and remember that $\cos x = \cos(\theta + \frac{\pi}{2}) = -\sin\theta$. You get

$$\lim_{x \to \pi/2} \frac{x - \frac{\pi}{2}}{\cos x} = \lim_{\theta \to 0} \frac{\theta}{-\sin \theta} = -1.$$

89 Similar to the previous problem, once you use $\tan x = \frac{\sin x}{\cos x}$. The answer is again -1.

91 Substitute $\theta = x - \pi$. Then $\lim_{x \to \pi} \theta = 0$, so

$$\lim_{x \to \pi} \frac{\sin x}{x - \pi} = \lim_{\theta \to 0} \frac{\sin(\pi + \theta)}{\theta} = -\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = -1.$$

Here you have to remember from trigonometry that $\sin(\pi+\theta)=-\sin\theta.$

93 Note that the limit is for $x \to \infty$! As x goes to infinity $\sin x$ oscillates up and down between -1 and +1. Dividing by x then gives you a quantity which goes to zero. To give a good proof you use the Sandwich Theorem like this:

Since $-1 \leq \sin x \leq 1$ for all x you have

$$\frac{-1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}.$$

Since both -1/x and 1/x go to zero as $x\to\infty$ the function in the middle must also go to zero. Hence

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0.$$

97 No. As $x \to 0$ the quantity $\sin \frac{1}{x}$ oscillates between -1 and +1 and does not converge to any particular value. Therefore, no matter how you choose k, it will never be true that $\lim_{x\to 0} \sin \frac{1}{x} = k$, because the limit doesn't exist.

98 The function $f(x) = (\sin x)/x$ is continuous at all $x \neq 0$, so we only have to check that $\lim_{x\to 0} f(x) = f(0)$, i.e. $\lim_{x\to 0} \frac{\sin x}{2x} = A$. This only happens if you choose $A = \frac{1}{2}$.

109

$$f'(x) = 8x^7 + 24x^5 + 24x^3 + 8x$$

112
$$f'(x) = \frac{-3x^4 + 8x^3 + 1}{x^8 + 2x^4 + 1}$$

113 f'(x) = 1.

114
$$f'(x) = \frac{-x}{\sqrt{1-x^2}}$$

115 $f'(x) = \frac{ad-bc}{(cx+d)^2} = \frac{ad-bc}{c^2x^2+2cdx+d^2}$
2: $\sqrt{x} + 1$

119
$$f'(x) = \frac{2\sqrt{x+1}}{6\sqrt{x}(x+\sqrt{x})^{2/3}}$$

120
$$\phi'(t) = \frac{\sqrt{t+2}}{2t+4\sqrt{t+2}}$$

121
$$g'(s) = -\frac{\sqrt{s+1}}{\sqrt{1-s(s^2+2s+1)}}$$

122
$$h'(\rho) = \frac{2\sqrt{\rho}+1}{6\sqrt{\rho}(\rho+\sqrt{\rho})^{2/3}}$$

123

(a)
$$f'(x) = \frac{4}{3}x^{1/3}$$

(b) $\frac{127^{4/3} - 125^{4/3}}{2} \approx f'(125)$
 $= \frac{4}{3}125^{1/3} = \frac{20}{3}$

125

$$f' = -\frac{4x^5 + 8x^3 - 14x}{4x^8 + 28x^4 + 49}$$
$$g' = \frac{4x^5 + 8x^3 - 14x}{x^4 + 2x^2 + 1}$$
(b) FALSE ; (c) FALSE ; (d) TRUE

126

$$\frac{dx}{dt} = -\frac{4t}{t^4 + 2t^2 + 1} \frac{dy}{dt} = -\frac{2t^2 - 2}{t^4 + 2t^2 + 1}$$
$$u(x) = \frac{2t}{1 - t^2}$$
$$\frac{du}{dt} = \frac{x'y - y'x}{y^2} = \frac{2t^2 + 2}{t^4 - 2t^2 + 1}$$

$$\begin{split} & \mathbf{128} \ f'(x) = 4(x+1)^3 \\ & f''(x) = 4 \cdot 3(x+1)^2 \\ & f^{(3)}(x) = 4 \cdot 3 \cdot 2(x+1). \\ & g'(x) = 8x(x^2+1)^3 \\ & g''(x) = 8x(x^2+1)^3 + 48x^2(x^2+1)^2 \\ & g'''(x) = 144x(x^2+1) + 192x^3(x^2+1). \\ & h'(x) = \frac{1}{2}(x-2)^{-1/2} \\ & h''(x) = -\frac{1}{4}(x-2)^{-3/2} \\ & h^{(3)}(x) = -\frac{3}{8}(x-2)^{-5/2}. \\ & h'(x) = \frac{1}{3}(1+1/x^2)(x-1/x)^{-2/3} \\ & h''(x) = -\frac{2}{3}x^{-3}(x-1/x)^{-2/3} - \frac{2}{9}(1+1/x^2)^2(x-1/x)^{-5/3} \\ & h'''(x) = 2x^{-4}(x-1/x)^{-2/3} + \frac{8}{9}x^{-3}(1+1/x^2)(x-1/x)^{-5/3} \\ & h'''(x) = \frac{1}{27}(1+1/x^2)^3(x-1/x)^{-8/3} \end{split}$$

134
$$f'(x) = \cos x - \sin x$$

- **135** $f'(x) = 2\cos x + 3\sin x$
- 137 $f'(x) = x \cos x$.
- **138** $f'(x) = x \sin x$.
- **139** $f'(x) = (x \cos x \sin x)/x^2$
- **140** $f'(x) = -2\cos x \sin x$

141 Careful! If x is such that $\cos x > 0$, then the function is $f(x) = \cos x$ and $f'(x) = -\sin x$; on the other hand, if $\cos x < 0$ then $f(x) = -\cos x$, so that $f'(x) = +\sin x$.

The straightforward (unthinking) answer is $f'(x) = \frac{-\sin x \cos x}{\sqrt{1-\sin^2 x}}$, which is correct, but looks much more complicated than necessary.

142
$$f'(x) = -\cos x(1+\sin x)^{-3/2}(1-\sin x)^{-1/2}$$

143 $\cot'(x) = \frac{-1}{\sin^2 x} = -1 - \cot^2(x)$

144 To make the function continuous you need $a + b\pi/4 = \frac{1}{2}\sqrt{2}$. To make the function differentiable you need $b = -\frac{1}{2}\sqrt{2}$. Solve these equations for a and b and you find $a = \frac{1}{2}\sqrt{2}(1 + \frac{\pi}{4}))$, $b = -\frac{1}{2}\sqrt{2}$.

See the next problem for a more detailed write up of the solution.

 ${\bf 145}\,$ First we make sure that the function is continuous at $x=\pi/6.$ We compute

$$f(\pi/6) = a + b\pi/6,$$

$$\lim_{x \nearrow \pi/6} f(x) = \tan \pi/6 = \frac{1}{2}\sqrt{3},$$

$$\lim_{x \searrow \pi/6} f(x) = a + b\pi/6.$$

These three quantities are equal if

$$a + b\pi/6 = \frac{1}{2}\sqrt{3}.$$

Assume from now on that a and b satisfy this condition. Then $f(\pi/6) = a + b\pi/6$

$$f(\pi/6) = a + b\pi$$

$$f(\pi/6) = \frac{1}{2}\sqrt{3}.$$

We will use this below.

To see if f is differentiable at $x=\pi/6,$ we compute the left and right hand limits

$$R = \lim_{x \nearrow 0} \frac{f(x) - f(\pi/6)}{x - \pi/6} = \lim_{x \nearrow 0} \frac{\tan x - \tan \pi/6}{x - \pi/6},$$

and

but also

$$L = \lim_{x \searrow 0} \frac{f(x) - f(\pi/6)}{x - \pi/6} = \lim_{x \searrow 0} \frac{a + bx - (a + b\pi/6)}{x - \pi/6}.$$

The limit R is by definition the derivative of the function $y=\tan x$ at $x=\pi/6,$ so we know

$$R = \frac{1}{\cos^2 \pi/6} = \frac{4}{3}.$$

The left hand limit is, again by definition, the derivative of the function y=a+bx at $x=\pi/6,$ which tells us that

$$L = 0.$$

We want the left and right hand limits to be the same, so we get

$$b = \frac{4}{3}.$$

Continuity of the function told us that $a+b\pi/6=\frac{1}{2}\sqrt{3},$ so we get

$$a = \frac{1}{2}\sqrt{3} - \frac{2\pi}{9}.$$

148 $f'(x) = 2 \tan x / \cos^2 x$ and $f''(x) = 2 / \cos^4 x + 4 \tan x \sin x / \cos^3 x$. Since $\tan^2 x = \frac{1}{\cos^2 x} - 1$ one has g'(x) = f'(x) and g''(x) = f''(x).

153 $f \circ g(x)$ is another way of expressing f(g(x)), so

$$\begin{split} v(x) &= f \circ g(x) = \sqrt{1 + x^2}, \\ w(x) &= g \circ f(x) = 1 + (\sqrt{x})^2 = 1 + |x|. \end{split}$$

 $v'(x) = \frac{x}{\sqrt{1+x^2}}$

Hence

and

$$w'(x) = \begin{cases} +1 & \text{when } x > 0 \\ -1 & \text{when } x < 0 \end{cases}$$

154
$$f'(x) = 2\cos 2x + 3\sin 3x$$
.

155
$$f'(x) = -\frac{\pi}{x^2} \cos \frac{\pi}{x}$$

156
$$\begin{aligned} f'(x) &= \cos(\cos 3x) \cdot (-\sin 3x) \cdot 3 \\ &= -3\sin(3x)\cos(\cos 3x). \end{aligned}$$

157
$$f'(x) = \frac{x^2 \cdot 2x \cos x^2 - 2x \sin x^2}{x^4}$$
$$= 2x^{-1} \cos x^2 - 2x^{-3} \sin x^2$$

158
$$f'(x) = \frac{1}{\left(\cos\sqrt{1+x^2}\right)^2} \frac{1}{2\sqrt{1+x^2}} \cdot 2x$$

159
$$f'(x) = 2(\cos x)(-\sin x) + 2(\sin x^2) \cdot 2x$$

161 $f'(x) = \cos \frac{\pi}{x} + \frac{\pi}{x} \sin \frac{\pi}{x}$. At C one has $x = -\frac{2}{3}$, so $\cos \frac{\pi}{x} = 0$ and $\sin \frac{\pi}{x} = -1$. So at C one has $f'(x) = -\frac{3}{2}\pi$.

162 $v(x) = f(g(x)) = (x+5)^2 + 1 = x^2 + 10 x + 26$ $w(x) = g(f(x)) = (x^2 + 1) + 5 = x^2 + 6$ $p(x) = f(x)g(x) = (x^2 + 1)(x+5) = x^3 + 5x^2 + x + 5$ q(x) = g(x)f(x) = f(x)g(x) = p(x). 165 (a) If $f(x) = \sin ax$, then $f''(x) = -a^2 \sin ax$, so f''(x) = -64f(x) holds if $a^2 = 64$, i.e. $a = \pm 8$. So $\sin 8x$ and $\sin(-8x) = -\sin 8x$ are the two solutions you find this way.

(b) $a = \pm 8$, but A and b can have any value. All functions of the form $f(x) = A\sin(8x+b)$ satisfy (†). In addition, if either A = 0 or a = 0 and $b = k\pi$, then the function f(x) is always f(x) = 0, and also satisfies (†).

166 (a) $V = S^3$, so the function f for which V(t) = f(S(t)) is the function $f(x) = x^3$.

(b) S'(t) is the rate with which Bob's side grows with time. V'(t) is the rate with which the Bob's volume grows with time.

Quantity Units

t	minutes
S(t)	inch
V(t)	inch ³
S'(t)	inch/minute
V'(t)	inch ³ /minute

(c) Three versions of the same answer:

V(t) = f(S(t)) so the chain rule says V'(t) = f'(S(t))S'(t) $V(t) = S(t)^3$ so the chain rule says $V'(t) = 3S(t)^2S'(t)$ $V = S^3$ so the chain rule says $\frac{dV}{dt} = 3S^2\frac{dS}{dt}$. (d) We are given V(t) = 8, and V'(t) = 2. Since $V = S^3$ we get S = 2. From (c) we know $V'(t) = 3S(t)^2S'(t)$ so $2 = 3 \cdot 2^2 \cdot S'(t)$ whence S'(t) = 1 $3S(t)^2 S'(t)$, so $2 = 3 \cdot 2^2 \cdot S'(t)$, whence $S'(t) = \frac{1}{6}$ inch per minute.

167 $\frac{d(xy)}{dx} = 0 \implies x\frac{dy}{dx} + y = 0$. Therefore the function y satisfies $\frac{dy}{dx} = -y/x$.

168 $\frac{d\sin(xy)}{dx} = 0 \implies \cos(xy)x\frac{dy}{dx} + y\cos(xy) = 0.$ As long as $\sin(xy) \neq 0$ we can divide by $\sin(xy)$, and we find that the function y satisfies $\frac{dy}{dx} = -y/x$. When sin(xy) = 0 the method doesn't tell us anything.

169 Differentiate the equation defining y and you get

$$\frac{d\frac{xy}{x+y}}{dx} = \frac{\left(x\frac{dy}{dx} + y\right)(x+y) - xy(1+\frac{dy}{dx})}{(x+y)^2} = 0.$$

Assume $x+y\neq 0$ (otherwise the defining equation $\frac{xy}{x+y}=1$ already doesn't make sense) and solve for dy/dx (be careful, there are several cancelations). You get

$$\frac{dy}{dx} = -\frac{y^2}{x^2}$$

170 Note that this probem is the same as the previous: $\frac{xy}{x+y} = 1$ if and only if xy = x + y, so both equations define the same function. We should get the same answer:

$$\frac{d(xy)}{dx} = \frac{d(x+y)}{dx}$$
$$x\frac{dy}{dx} + y = 1 + \frac{dy}{dx},$$

implies

from which you can get

$$\frac{dy}{dx} = \frac{1-y}{x-1}.$$

This answer does not look like the previous answer! However, if you remember that x and y satisfy xy = x + ythen you can show that

$$-\frac{y^2}{x^2} = \frac{1-y}{x-1}$$

holds.

173
$$\frac{dy}{dx} = 1 - \frac{1}{2(y-x)}$$

175 $\frac{dy}{dx} = \frac{-1}{4y(y^2-1)}$
178 $\frac{dy}{dx} = -\frac{\cos x}{\cos y}$
179 $\frac{dy}{dx} = -\frac{y+\cos x}{5y^4+x}$
180 $\frac{dy}{dx} = -\frac{\cos^2 y}{\cos^2 x}$
181 $y = f(x)$ satisfies $y^2 = 1 - x$. Hence $\frac{dy}{dx} = -1/2y$.

182 From $y^4 = x + x^2$ you get $\frac{dy}{dx} = (1+2x)/4y^3$.

183 Square to get $y^2 = 1 - \sqrt{x}$ and thus $y^2 - 1 = \sqrt{x}$. Square again to get $(y^2 - 1)^2 = x$. The derivative is

$$\frac{dy}{dx} = \frac{1}{4y(y^2 - 1)}$$

184 y satisfies $(y^4 - x)^2 = x$. Hence

$$\frac{dy}{dx} = \frac{1}{4y^3} + \frac{1}{8y^3(y^4 - x)^3}$$

187 y satisfies $(y^3 - x)^2 = 2x + 1$. Hence

$$\frac{dy}{dx} = \frac{1}{3y^2} + \frac{1}{3y^2(y^3 - x)}$$

189 sin $\arcsin x = x$ for all x with $-1 \le x \le 1$. $\cos \arcsin x = \sqrt{1 - x^2}$ for all x with $-1 \le x \le 1$. $\tan \arctan z = z$ fro all real numbers z. $\arcsin(\sin\theta) = \theta$ if $-\pi/2 \le \theta \le \pi/2$ $\arctan(\tan\theta) = \theta$ if $-\pi/2 \le \theta \le \pi/2$.

190
$$f'(x) = \frac{2}{\sqrt{1-4x^2}}$$

191 $f'(x) = \frac{1}{2\sqrt{x(1-x)}}$.
192 $f'(x) = \frac{\cos x}{1+\sin^2 x}$
193 $f'(x) = \frac{\cos x - 1}{\cos \arctan x}$

193
$$f'(x) = \frac{1}{1+x^2}$$

194
$$f'(x) = 2(\arcsin x)/\sqrt{1-x^2}$$

195
$$f'(x) = \frac{-2 \arctan x}{(1 + \arctan^2 x)(1 + x^2)}$$

197 $f'(x) = \frac{\frac{\arcsin x}{1 + x^2} - \frac{\arctan x}{\sqrt{1 - x^2}}}{\arcsin^2 x}$

5

 ${\bf 198}\,$ Pythagoras says that the sides a(t) and b(t) satisfy

$$a(t)^{2} + b(t)^{2} = 10^{2} = 100.$$
 (*)

We want to find $a^\prime(t).$ So we differentiate the relation (\ast) to get

$$2a(t)a'(t) + 2b(t)b'(t) = 0.$$

The bottom of the pole is sliding with speed 7 feet per second, so

$$b'(t) = 7.$$

When this happens we have b(t)=8, and (by Pythagoras again) $a(t)=6,\,{\rm so}$

$$a'(t)=-rac{b(t)b'(t)}{a(t)}=-rac{8\cdot7}{6}$$
ft/sec

199 The situation is the same as in exercise $\ref{sec:exercise}$. See the drawing for that problem. The angle in this problem is the angle between the pole and the wall. If we call that angle $\alpha(t)$, then $\sin\alpha(t)=b(t)/10$. Differentiate, and you find

$$\cos\alpha \frac{d\alpha}{dt} = \frac{1}{10} \frac{db}{dt}.$$
 (†)

We are asked to find $d\alpha/dt$ when $\alpha = \pi/4$ and db/dt = 10. Equation (†) implies

$$\frac{d\alpha}{dt} = \frac{2}{\frac{1}{2}\sqrt{2} \cdot 10} = \frac{1}{5}\sqrt{2} \text{ radians/sec.}$$

200 -5/6 meters per second.

201 (a) Let h(t) be the height of the rocket, and d(t) the distance from the camera to the rocket. Pythagoras says $d(t)^2=(4000)^2+h(t)^2.$ Differentiate this and you get

$$2d(t)d'(t) = 2h(t)h'(t).$$
 (%)

We are asked to find d'(t) at the moment when h(t)=3000. At that moment we also have $d(t)=\sqrt{4000^2+3000^2}=5000,$ and hence, by (%),

$$d'(t) = \frac{h(t)h'(t)}{d(t)} = \frac{4000 \cdot 600}{5000} = 480$$
ft/sec

(b) Call the angle $\theta(t).$ Then $\tan\theta(t)=h(t)/4000,$ and thus

$$\frac{1}{\cos^2\theta}\theta'(t) = h'(t)/4000 \qquad (\#)$$

Since h'(t)=600 we get $\theta'(t)=\frac{3}{20}\cos^2\theta(t)$. When the rocket has reached height 3000 we have d(t)=5000 and thus $\cos\theta=4/5$. Therefore the angle θ is increasing at a rate of $\theta'(t)=(\frac{4}{5})^2\frac{3}{20}=\frac{12}{125}$ radians per second.

202 The answer: 4 feet per second. See this drawing

203 Let one of the two equal sides be the base of the triangle. Then the height of the triangle is $2\sin\theta$, and its area is $A(t) = 2\sin\theta(t)$. Therefore

$$\frac{dA}{dt} = 2\cos\theta(t)\frac{d\theta}{dt}.$$

At the moment that $\theta=60^\circ$ you get $A'(t)=2\times \frac{1}{2}\theta'(t),$ and therefore $\theta(t)=A'(t)=1$ radian per second.

204 The y coordinate of P is always 10. Let x(t) be the x coordinate of the point P at time t. The $\frac{10}{x(t)} = \tan \theta(t)$, or $10 = x(t) \tan \theta(t)$.

- (b) When $\theta = \pi/3$ one has $x(t) = \frac{10}{3}\sqrt{3}$.
- (c) Differentiate $10 = x(t) \tan \theta(t)$, to get
 - $x'(t)\tan\theta(t) + x(t)\theta'(t)/\cos^2\theta(t) = 0$

Substitute $\theta=\pi/3$ (radians) and x'=-3 (feet per second), and you get $\theta'(t)=\frac{9}{40}$ radians per second.

205 The situation is as follows:

(a) The distance from Q to the origin decreases at 3 m/sec.

(b) Let x(t) be the x coordinate of the point Q. It is then also the y coordinate because Q lies on the line y=x. The distance from Q to the origin is $OQ=\sqrt{2}x(t).$ Therefore $x'(t)=-3/\sqrt{2}=-\frac{3}{2}\sqrt{2}$ meters per second. If the distance from Q to R is d(t), then

$$d(t)^{2} = (2 - x(t))^{2} + x(t)^{2} = 4 - 2x(t) + 2x(t)^{2}.$$

Differentiate:

$$2d(t)d'(t) = (-2 + 4x(t))x'(t).$$

At the given moment we have $x=2,~x'=-\frac{3}{2}\sqrt{2}$ and $d=2\sqrt{2},$ so

$$d'(t) = -\frac{3 \cdot \frac{3}{2}\sqrt{2}}{2\sqrt{2}} = -\frac{9}{4}$$

(c) Let $\theta(t)$ be the angle $\angle ORQ$. Then

$$\tan \theta = \frac{x}{2-x}$$

Differentiate, to get

$$\frac{1}{\cos^2\theta}\theta'(t) = \frac{x'(t)}{(2-x(t))^2}.$$

When x(t) = 1 you have $\cos \theta = \frac{1}{2}\sqrt{2}$, and therefore

$$\theta'(t) = \frac{1}{2} \frac{-\frac{3}{2}\sqrt{2}}{1^2} = -\frac{3}{4}\sqrt{2}.$$

206 Here's a drawing:

(a) If d(t) is the distance from P to the origin, then

$$d(t)^{2} = x(t)^{2} + y(t)^{2} = x(t)^{2} + x(t)^{4}$$

Hence

$$2d(t)d'(t) = (2x(t) + 4x(t)^3)x'(t).$$

When P is (3,9), then x=3, $d=\sqrt{90}=3\sqrt{10},$ and x'=2, so we get

$$d' = \frac{2 \cdot 6 + 4 \cdot 3^3}{3\sqrt{10}} =$$

(b) The area of the rectangle it $A(t) = x(t)y(t) = x(t)^3$. Hence $A'(t) = 3x(t)^2x'(t) = 3 \cdot 3^2 \cdot 2 = 54$ (square inch per second).

(c) The slope m(t) of the tangent at P is m(t) = 2x(t), so its rate of change is m'(t) = 2x'(t) = 4.

(d) The angle $\angle QOP$ is $\alpha(t)$ in the drawing above. One has $\tan \alpha(t) = x(t)/y(t) = 1/x(t)$, so, if you differentiate this relation, you get

$$\frac{\alpha'(t)}{\cos^2 \alpha} = -\frac{x'(t)}{x(t)^2}$$

whence $\alpha'(t)=-\cos^2\alpha(t)x'(t)/x(t)^2.$ When x=3 and x'=2 this implies $\cos\alpha=3/\sqrt{10}$ and thus $\alpha'=-\frac{9}{10}\frac{2}{9}=-\frac{1}{5}.$

- **208** At x = 3.
- **209** At x = a/2.
- **210** At $x = a + 2a^3$.

211 At
$$x = a + \frac{1}{2}$$
.

215 False. If you try to solve f(x) = 0, then you get the equation $\frac{x^2+|x|}{x} = 0$. If $x \neq 0$ then this is the same as $x^2 + |x| = 0$, which has no solutions (both terms are positive when $x \neq 0$). If x = 0 then f(x) isn't even defined. So there is no solution to f(x) = 0.

This doesn't contradict the IVT, because the function isn't continuous, in fact it isn't even defined at x = 0, so the IVT doesn't have to apply.

223 Not necessarily true, and therefore false. Consider the example $f(x) = x^4$, and see the next problem.

224 An inflection point is a point on the graph of a function where the second derivative changes its sign. At such a point you must have f''(x) = 0, but by itself that it is no enough.

227 The first is possible, e.g. f(x) = x satisfies f'(x) > 0 and f''(x) = 0 for all x.

The second is impossible, since f'' is the derivative of f', so f'(x) = 0 for all x implies that f''(x) = 0 for all x.

228 y = 0 at x = -1, 0, 0. Only sign change at x = -1, not at x = 0.

x = 0 loc min; $x = -\frac{4}{3}$ loc max; x = -2/3 inflection point. No global max or min.

229 zero at x = 0, 4; sign change at x = 4; loc min at $x = \frac{8}{3}$; loc max at x = 0; inflection point at x = 4/3. No global max or min.

230 sign changes at x = 0, -3; global min at $x = -3/4^{1/3}$; no inflection poitns, the graph is convex.

231 mirror image of previous problem.

232 $x^4 + 2x^2 - 3 = (x^2 - 1)(x^2 + 3)$ so sign changes at $x = \pm 1$. Global min at x = 0; graph is convex, no inflection points.

233 Sign changes at $\pm 2, \pm 1$; **two** global minima, at $\pm \sqrt{5/2}$; one local max at x=0; two inflection points, at $x = \pm \sqrt{5/6}$.

234 Sign change at x = 0; function is always increasing so no stationary points; inflection point at x = 0.

235 sign change at $x = 0, \pm 2$; loc max at $x = 2/5^{1/4}$; loc min at $x = -2/5^{1/4}$. inflection point at x = 0.

236 Function not defined at x = -1. For x > -1 sign change at x = 0, no stationary points, no inflection points (graph is concave). Horizontal asymptote $\lim_{x\to\infty} f(x) = 1$.

For x<-1 no sign change , function is increasing and convex, horizontal asymptote with $\lim_{x\to -\infty} f(x)=1.$

237 global max (min) at x = 1 (x=-1), inflection points at $x = \pm \sqrt{3}$; horizontal asymptotes $\lim_{x\to\pm\infty} f(x) = 0$.

238 y = 0 at x = 0 but no sign changes anywhere; x = 0 is a global min; there's no local or global max; two inflection points at $x = \pm \frac{1}{3}\sqrt{3}$; horizontal asymptotes at height y = 1.

239 Not defined at x = -1. For x > -1 the graph is convex and has a minimum at $x = -1 + \sqrt{2}$; for x < -1 the graph is concave with a maximum at $x = -1 - \sqrt{2}$. No horizontal aymptotes.

240 Not def'd at x = 0. No sign changes (except at x = 0). For x > 0 convex with minimum at x = 1, for x < 0 concave with maximum at x = -1.

241 Not def'd at x = 0. Sign changes at $x = \pm 1$ and also at x = 0. No stationary points. Both branches (x > 0 and x < 0) are increasing. Non inflection points, no horizontal asymptotes.

242 Zero at x = 0, -1 sign only changes at -1; loc min at $x = -\frac{1}{3}$; loc max at x = -1. Inflection point at x = -2/3.

243 Changes sign at $x = -1 \pm \sqrt{2}$ and x = 0; loc min at $(-2 + \sqrt{7})/3$, loc max at $(-2 - \sqrt{7})/3$; inflection point at $x = -\frac{2}{3}$.

244 Factor $y = x^4 - x^3 - x = x(x^3 - x^2 - 1)$. One zero is obvious, namely at x = 0. For the other(s) you must solve $x^3 - x^2 - 1 = 0$ which is beyond what's expected in this course.

The derivative is $y' = 4x^3 - 3x^2 - 1$. A cubic function whose coefficients add up to 0 so x = 1 is a root, and you can factor $y' = 4x^3 - 3x^2 - 1 = (x-1)(4x^2 + x + 1)$ from which you see that x = 1 is the only root. So: one stationary point at x = 1, which is a global minimum The second derivative is $y'' = 12x^2 - 6x$; there are two inflection points, at $x = \frac{1}{2}$ and at x = 0.

245 Again one obvious solution to y = 0, namely x = 0. The other require solving a cubic equation. The derivative is $y' = 4x^3 - 6x^2 + 2$ which is also cubic,

The derivative is $y' = 4x^3 - 6x^2 + 2$ which is also cubic, but the coefficients add up to 0, so x = 1 is a root. You can then factor $y' = 4x^3 - 6x^2 + 2 = (x-1)(4x^2 - 2x - 2)$. There are three stationary points: local minima at x = 1, $x = -\frac{1}{4} - \frac{1}{2}\sqrt{3}$, local max at $x = -\frac{1}{4} + \frac{1}{2}\sqrt{3}$. one of the two loc min is a global minimum.

246 Global min at x = 0, no other stationary points; function is convex, no inflection points. No horizontal asymptotes.

247 The graph is the upper half of the unit circle.

248 Always positive, so no sign changes; global minimum at x = 0, no other stationary points; two inflection points at $\pm\sqrt{2}$. No horizontal asymptotes since $\lim_{x\to\pm\infty} \sqrt[4]{1+x^2} = \infty$ (DNE).

249 Always positive hence no sign changes; global max at x = 0, no other stationary points; two inflection points at $x = \pm \frac{4}{\sqrt{3/5}}$; second derivative also vanishes at x = 0 but this is not an inflection point.

251 Zeroes at $x = 3\pi/4$, $7\pi/4$. Absolute max at $x = \pi/4$, abs min at $x = 5\pi/4$. Inflection points and zeroes coincide. Note that $\sin x + \cos x = \sqrt{2} \sin(x + \frac{\pi}{4})$.

252 Zeroes at $x = 0, \pi, 3\pi/2$ but no sign change at $3\pi/2$. Global max at $x = \pi/2$, local max at $x = 3\pi/2$, global min at $x = 7\pi/6, 11\pi/6$.

269 If the length of one side is x and the other y, then the perimeter is 2x + 2y = 1, so $y = \frac{1}{2} - x$. Thus the area enclosed is $A(x) = x(\frac{1}{2} - x)$, and we're only interested in values of x between 0 and $\frac{1}{2}$.

The maximal area occurs when $x = \frac{1}{4}$ (and it is A(1/4) = 1/16.) The minimal area occurs when either x = 0 or x = 1/2. In either case the "rectangle" is a line segment of length $\frac{1}{2}$ and width 0, or the other way around. So the minimal area is 0.

270 If the sides are x and y, then the area is xy = 100, so y = 1/x. Therefore the height plus twice the width is f(x) = x + 2y = x + 2/x. This is extremal when f'(x) = 0, i.e. when $f'(x) = 1 - 2/x^2 = 0$. This happens for $x = \sqrt{2}$.

271 Perimeter is $2R + R\theta = 1$ (given), so if you choose the angle to be θ then the radius is $R = 1/(2 + \theta)$. The area is then $A(\theta) = \theta R^2 = \theta/(2 + \theta)^2$, which is maximal when $\theta = 2$ (radians). The smallest area arises when you choose $\theta = 0$. Choosing $\theta \ge 2\pi$ doesn't make sense (why? Draw the corresponding wedge!)

You could also say that for any given radius R>0 "perimeter = 1" implies that one has $\theta=(1/R)-2$. Hence the area will be $A(R)=\theta R^2=R^2 \left((1/R)-2\right)\right)=R-2R^2$. Thus the area is maximal when $R=\frac{1}{4}$, and hence $\theta=2$ radians. Again we note that this answer is reasonable because values of $\theta>2\pi$ don't make sense, but $\theta=2$ does.

272 (a) The intensity at x is a function of x. Let's call it I(x). Then at x the distance to the big light is x, and the distance to the smaller light is 1000 - x. Therefore

$$I(x) = \frac{1000}{x^2} + \frac{125}{(1000 - x)^2}$$

(b) Find the minimum of I(x) for 0 < x < 1000.

 $I'(x) = -2000x^{-3} + 250(1000 - x)^{-3}.$

I'(x) = 0 has one solution, namely, $x = \frac{1000}{3}$. By looking at the signs of I'(x) you see that I(x) must have a minimum. If you don't like looking at signs, you could instead look at the second derivative

$$I''(x) = 6000x^{-4} + 750(1000 - x)^{-4}$$

which is always positive.

273
$$r = \sqrt{50/3\pi}$$
, $h = 100/(3\pi r) = 100/\sqrt{150\pi}$.

284 $dy/dx = e^x - 2e^{-2x}$. Local min at $x = \frac{1}{3} \ln 2$. $d^2y/dx^2 = e^x + 4e^{-2x} > 0$ always, so the function is convex.

 $\lim_{x\to\pm\infty}y=\infty$, no asymptotes.

285 $dy/dx = 3e^{3x} - 4e^x$. Local min at $x = \frac{1}{2} \ln \frac{4}{3}$. $d^2y/dx^2 = 9e^{3x} - 4e^x$ changes sign when $e^{2x} = \frac{4}{9}$, i.e. at $x = \frac{1}{2} \ln \frac{4}{9} = \ln \frac{2}{3} = \ln 2 - \ln 3$. Inflection point at $x = \ln 2 - \ln 3$.

 $\lim_{x \to -\infty} f(x) = 0$ so negative x axis is a horizontal asymptote.

 $\lim_{x\to\infty} f(x) = \infty...$ no asymptote there.

331 Choosing left endpoints for the c's gives you

$$f(0)\frac{1}{3} + f(\frac{1}{3})\frac{2}{3} + f(1)\frac{1}{2} + f(\frac{3}{2})\frac{1}{2} = \cdots$$

Choosing right endpoints gives
$$f(\frac{1}{3})\frac{1}{3} + f(1)\frac{2}{3} + f(\frac{3}{2})\frac{1}{2} + f(2)\frac{1}{2} = \cdots$$

332 The Riemann-sum is the total area of the rectangles, so to get the smallest Riemann-sum you must make the rectangles as small as possible. You can't change their

widths, but you can change their heights by changing the c_i . To get the smallest area we make the heights as small as possible. Since f appears to be decreasing, the heights $f(c_i)$ will be smallest when c_i is as large as possible. So we choose the intermediate points c_i all the way to the right of the interval $x_{i-1} \le c_i \le x_i$, i.e. $c_1 = x_1, c_2 = x_2, c_3 = x_3, c_4 = x_4, c_5 = x_5, c_6 = b$, To get the *largest* Riemann-sums you choose $c_1 = a$, $c_2 = x_1, \ldots, c_6 = x_5$.

373 (a) The first derivative of erf(x) is, by definition

$$\mathrm{erf}'(x) = \frac{2}{\sqrt{\pi}} e^{-x^2},$$

so you get the second derivative by differentiating this:

$$\operatorname{erf}''(x) = \frac{-4x}{\sqrt{\pi}}e^{-x^2}$$

This is negative when x > 0, and positive when x < 0so the graph of erf(x) has an inflection point at x = 0. (b) Wikipedia is not wrong. Let's figure out what sign erf(-1) has (for instance). By definition you have

$$\operatorname{erf}(-1) = \frac{2}{\sqrt{\pi}} \int_0^{-1} e^{-t^2} dt$$

Note that in this integral the upper bound (-1) is less than the lower bound (0). To fix that we switch the upper and lower integration bounds, which introduces a minus sign:

$$\operatorname{erf}(-1) = -\frac{2}{\sqrt{\pi}} \int_{-1}^{0} e^{-t^2} dt.$$

The integral we have here is positive because it's an integral of a positive function from a smaller number to a larger number, i.e. it is of the form $\int_a^b f(x)dx$ with $f(x) \ge 0$ and with a < b.

With the minus sign that makes erf(-1) negative.

487 The answer is $\pi/6$.

To get this using the integral you use formula (??) with $f(x) = \sqrt{1 - x^2}$. You get $f'(x) = -x/\sqrt{1 - x^2}$, so

$$\sqrt{1+f'(x)^2} = rac{1}{\sqrt{1-x^2}}.$$

The integral of that is $\arcsin x(+C)$, so the answer is $\arcsin \frac{1}{2} - \arcsin 0 = \pi/6$.