

Math 171--Fall 1997 Angenent

Derivation of the addition formulas for Sine and Cosine

How to make this drawing: First draw the circle, then angles α and β . Then draw AB so that OBA is a right triangle. Next, draw BD parallel to the *x*-axis and AE parallel to the *y*-axis.

Assume the circle has radius 1, and that its center is the origin.

Then $sin(\alpha + \beta) = AE = AC + CE$.

Computation of AC:

OAB is a right triangle, with OA=1. Hence AB = $1 \times \sin \beta = \sin \beta$. The angles α and $\angle OFE$ are complementary, so $\angle OFE=90-\alpha$. The angles $\angle OFE$ and $\angle AFB$ are equal, so $\angle AFB=90-\alpha$. The angles $\angle AFB$ and $\angle BAF$ are also complementary, so $\angle BAF=90-\angle AFB=90-(90-\alpha) = \alpha$. Now we know one angle and one side of the right triangle ABC, namely, $\angle BAF= \alpha$, and AB = sin β . Therefore we get <u>AC=cos $\alpha \sin \beta$ </u>. Computation of CE.

EC equals OD. OBD is a right triangle. The hypothenuse of OBD is OB, which is also the adjacent side of the right triangle OBA. Hence OB = $\cos \beta$. The angle $\angle OBD$ equals the angle α since BD is parallel to the x-axis. Now we know one angle and one side of the right triangle OBD, namely, $\angle OBD = \alpha$, and OB = $\cos \beta$. Therefore we get $EC = OD = OB \sin (\angle OBD)$ $= \cos \beta \sin \alpha$.

Add the results of these two computations together, and you get

 $\sin(\alpha+\beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$

As an exercise, try getting the formula for $\cos (\alpha + \beta)$ in the same way. Hint: $\cos (\alpha + \beta) = OE = CD = BD-BC$; now use the same two right triangles ABC and OBD.