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Abstract

Let h ⊂ g be an inclusion of Lie algebras with quotient h-module
n. There is a natural degree filtration on the h-module U(g)/U(g)h
whose associated graded h-module is isomorphic to S(n). We give a
necessary and sufficient condition for the existence of a splitting of
this filtration. In turn such a splitting yields an isomorphism between
the h-modules U(g)/U(g)h and S(n). For the diagonal embedding
h ⊂ h ⊕ h the condition is automatically satisfied and we recover the
classical Poincaré-Birkhoff-Witt theorem.

The main theorem and its proof are direct translations of results in
algebraic geometry, obtained using an ad hoc dictionary. This suggests
the existence of a unified framework allowing the simultaneous study
of Lie algebras and of algebraic varieties, and a closely related work in
this direction is on the way.

1. Introduction

1.1. The aim

Let h ↪→ g be an inclusion of Lie algebras. Denote by n the quotient g/h. The
quotient U(g)/U(g)h of U(g) by the left ideal generated by h is naturally an
h-representation. The main purpose of this paper is to answer the following
question (the PBW problem):

When is U(g)/U(g)h isomorphic to S(n) as h-representations?

A more precise way of stating the above question is the following. It is
easy to see that U(g)/U(g)h admits a natural filtration by h-modules whose
associated graded h-module is S(n). We ask for a necessary and sufficient
condition for this filtration to split.

This question is important in deformation quantization, as the space of
h-invariants (U(g)/U(g)h)h can be given a natural structure of algebra by
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identifying it with the space of invariant differential operators on a homoge-
neous space [5]. An open conjecture of Duflo is concerned with understand-
ing the center of this algebra in terms of the Poisson center of S(n)h, which
is thought of as the algebra of functions on a Poisson manifold obtained via
reduction through the moment map g∨ → h∨. In order for this conjecture
to make sense one needs to be in a situation where the PBW isomorphism
holds. Traditionally this is achieved by assuming that the inclusion h ↪→ g
splits as a map of h-modules. We will see that this condition is unnecessarily
restrictive: there are many pairs of Lie algebras for which there is a PBW
isomorphism (and hence it makes sense to study the Duflo problem), but
for which the inclusion h ↪→ g does not split.

1.2. An analogous problem in algebraic geometry

Kontsevich and Kapranov [3] had the insight that we can view the shifted
tangent tangent sheaf TY [−1] of a smooth algebraic variety Y as a Lie algebra
object in the derived category D(Y) of coherent sheaves on Y, with bracket
given by the Atiyah class of the tangent sheaf. Moreover, the Atiyah class
of any object in D(Y) gives it the structure of module over this Lie algebra
object (see for example [4]). Loosely speaking D(Y) can be regarded as the
category of representations of the shifted tangent sheaf. The role of the
trivial representation is played by the structure sheaf OY .

An embedding i : X ↪→ Y of smooth algebraic varieties can be thought of
as giving rise to an inclusion of Lie algebra objects in D(X)

h = TX[−1] ↪→ i∗TY [−1] = g.

If E is an object in D(Y) then the Atiyah class of the restriction i∗E of E to
X is precisely the composite of the above inclusion of Lie algebras with the
restriction to X of the Atiyah class of E. In other words the functor

i∗ : D(Y)→ D(X)

can be interpreted as the restriction functor

Res : g-Mod→ h-Mod.

(We think of all our functors between derived categories as being implicitly
derived, so we write i∗ instead of Li∗, etc.)

We now see a dictionary emerging between the worlds of Lie theory and
of algebraic geometry. We can use this dictionary to translate naively the
PBW question into a problem in algebraic geometry. The following concepts
are matched by this dictionary:

2



Lie theory Algebraic geometry

Lie algebras h, g varieties X, Y, h = TX[−1], g = TY [−1]
inclusion h ↪→ g closed embedding i : X ↪→ Y

h-Mod, g-Mod D(X), D(Y)
1h ∈ h-Mod OX ∈ D(X)
Res : g-Mod→ h-Mod i∗ : D(Y)→ D(X)
Ind : h-Mod→ g-Mod i! : D(X)→ D(Y)

The last line is motivated by the fact that the induction functor Ind is the
left adjoint of the restriction functor, hence in the right column we take the
left adjoint i! of the pull-back functor, which exists for a closed embedding
i of smooth varieties.

In representation-theoretic language the h-representation U(g)/U(g)h
arises as

U(g)/U(g)h = Res Ind 1h ∈ h-Mod.

Using the dictionary the latter corresponds to the object i∗i!OX of the de-
rived category D(X). Any object E of D(X) admits a natural filtration by
successive truncations τ≥kE whose k-th “quotient” is the cohomology sheaf
H k(E)[−k]. An easy local calculation shows that for E = i∗i!OX we have

H k(i∗i!OX) = ∧kN

where N is the normal bundle of X in Y. Thus the associated graded object
of i∗i!OX is precisely

gr(i∗i!OX) =
⊕
k

∧kN[−k] = S(N[−1]).

Since N[−1] = TY [−1]|X/TX[−1] corresponds via the dictionary to n = g/h,
this is the precise analogue of the statement that U(g)/U(g)h admits a
filtration whose associated graded is

gr (U(g)/U(g)h) = S(n).

The PBW question translates into the following question about a closed
embedding i : X ↪→ Y

When is i∗i!OX isomorphic to S(N[−1]) in D(X)?

Just like in the usual PBW problem, this question is better phrased by asking
when the above filtration on i∗i!OX splits. This question was addressed and
solved recently by D. Arinkin and the second author in [1], where they prove
the following result.
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Theorem 1.2. The following are equivalent:

1. the truncation filtration on i∗i!OX splits, and therefore

i∗i!OX ∼= S(N[−1]);

2. the class
α ∈ Ext1X(N[−1]⊗2, N[−1])

obtained by composing the class of the normal bundle exact sequence with
the Atiyah class of the normal bundle N, is trivial;

3. the vector bundle N[−1] admits an extension to the first infinitesimal
neighborhood X(1) of X into Y.

It is worth noting that there are many cases where the short exact sequence

0→ TX → TY |X → N→ 0

does not split but the obstruction α is nonetheless trivial. For example this
is the case when X is any non-linear hypersurface in Y = Pn.

1.3. The result

Our main result is the following translation of the above theorem.

Theorem 1.3. The following are equivalent:

1. the natural filtration on U(g)/U(g)h splits, and therefore

U(g)/U(g)h ∼= S(n)

2. the class α ∈ Ext1h(n
⊗2, n), obtained by composing the class of

0 −→ h −→ g −→ n −→ 0

with the h-action, is trivial;
3. there exists a Lie algebra h(1) containing h as a subalgebra with the

property that α is trivial if and only if n admits an extension to h(1).

Observe that in the algebro-geometric context X(1) is singular even though X
and Y are smooth. It turns out that the correct notion of tangent space for
X(1) is that of the tangent complex, see [2]. Thus h(1) should be constructed
by analogy to this tangent complex LX(1) . Insight from Koszul duality tells us
that h(1) should be a very natural quotient of the free Lie algebra generated
by g. We will give its precise definition below, while the explanation for this
definition will appear elsewhere.
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The paper has two parts. The first part is concerned with defining the
obstruction class α, the Lie algebra h(1), and proving Theorem 1.3. Almost
all the results hold in arbitrary characteristic, except the final splitting ar-
gument for which we need to assume we work over a field of characteristic
zero. We give a simple example of a pair of Lie algebras for which the class
α is non-trivial in a very short and last section.

Acknowledgements. The authors would like to thank M. Duflo and C.
Rossi who commented on early versions of the result and provided the en-
couragement to write this paper. The second and third authors were par-
tially supported by the National Science Foundation under Grant No. DMS-
0901224.

2. A condition for the PBW isomorphism

Let h ↪→ g be an inclusion of Lie algebras and denote by n the quotient h-
module g/h. In this section we present a proof of Theorem 1.3 after defining
the obstruction class α and the Lie algebra h(1) that appear in its statement.

The proof is motivated by Theorem 1.2 which is the analogous result in
the setting of algebraic geometry. In fact we found it remarkable that the
two proofs are almost identical after the appropriate translation between
the two languages.

Unless otherwise stated we always consider modules over a Lie algebra
as being acted on on the left. However, as the universal enveloping algebra
admits an antipode, this left module structure induces a natural right mod-
ule structure on any module. We will implicitly use this fact when forming
tensor products over the universal enveloping algebra.

2.1. The extension class α. We begin with the definition of the extension
class α that appears in the statement of Theorem 1.3. Consider the short
exact sequence of h-modules

0→ h→ g→ n→ 0. (1)

Let E be an h-module. Tensoring (1) with E yields the sequence

0→ h⊗ E→ g⊗ E→ n⊗ E→ 0 (2)

which remains exact because the tensor product of representations is the
tensor product of vector spaces endowed with the h-module structure given
by the Leibniz rule. The extension class of (2) is a map n⊗ E→ h⊗ E[1] in
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the derived category of h-representations, which can be post-composed with
the action map h⊗ E→ E to give the map

αE : n⊗ E→ E[1].

Equivalently, we can define αE as the class in Ext1h(n ⊗ E, E) corresponding
to the bottom extension in the diagram below:

0 −−−−→ h⊗ E −−−−→ g⊗ E −−−−→ n⊗ E −−−−→ 0y y ∥∥∥
0 −−−−→ E −−−−→ Q −−−−→ n⊗ E −−−−→ 0.

(3)

Here the h-module Q is obtained by push-out in the first square of the above
diagram. Explicitly, it is given by

Q = E⊕ (g⊗ E)/〈(h(x), 0) − (0, h⊗ x)〉

where for h ∈ h and x ∈ E we have denoted by h(x) the action of h on x
and h⊗ x is viewed as an element of g⊗ E via the inclusion of h into g.

We will be particularly interested in the class αn of the h-module n. This
special class will be denoted simply by α.

2.2. The first infinitesimal neighborhood algebra h(1). Consider the
Lie algebra h(1) defined by

h(1) := L(g)/〈[h, g] − [h, g]g | h ∈ h, g ∈ g〉

where L(g) denotes the free Lie algebra generated by the vector space g.
More precisely h(1) is the quotient of L(g) in which the bracket between
elements of h and g has been identified with the original one in g. Note that
to define the Lie algebra h(1) we do not need g to be a Lie algebra. The
precise weaker condition for which this construction makes sense is given in
Lemma 2.3 below.

There are obvious maps of Lie algebras

h ↪→ h(1) and h(1) → g

which factor the original inclusion h ↪→ g. Given an h-representation E we
can ask whether E extends to a representation of h(1). In other words we
ask if on the vector space E we can find an h(1)-module structure whose
restriction to h via the map h → h(1) is the original one. The following
lemma shows that this is the case if and only if αE = 0. We state the lemma
in a slightly greater generality.
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2.3. Lemma. Let h be a Lie algebra and let g be an h-module that contains
h as an h-submodule. An h-module E is the restriction of an h(1)-module if
and only if its class αE is trivial.

Proof. We begin with the if part. Assume that the class αE is trivial. This
implies that the sequence (3) splits in the category of h-modules. Thus we
get a map j : Q→ E of h-modules that splits the canonical map E→ Q. Pre-
composing j with the middle vertical map in (3) yields a map of h-modules

ρ : g⊗ E→ E.

This map does not define a representation of g on E, but it certainly defines
a representation of L(g) by the universal property of L(g). The fact that ρ
respects the h structure translates into the fact that 〈[h, g] − [h, g]g〉 is in
the kernel of this representation. Thus ρ gives an h(1)-module structure on
E which lifts the original h-module structure because the first square in (3)
commutes.

For the only if part assume we have an h(1)-module structure on E that
lifts the h structure. Again denote this action by ρ. We can use the explicit
description of Q above to define a splitting

(x, g⊗ y) 7→ (x+ ρ(g)(y)).

This map is obviously a splitting and it respects the h-module structure
because 〈[h, g] − [h, g]g〉 is in the kernel of the representation ρ.

2.4. Preparations for the relative PBW. Some notation is in order.
Denote the Lie algebra inclusion h ↪→ g by i and denote the maps h→ h(1)

and h(1) → g by j and k respectively so that i = k ◦ j. Denote by i∗ the
restriction functor from g-modules to h-modules and by i! the induction
functor in the reverse direction. Thus we have i! a i∗. We also have similar
functors for the maps j and k. Finally, we denote the 1-dimensional trivial
representation of a Lie algebra g by 1g.

We want to understand the object

i∗i!(1h) = U(g)⊗U(h) 1h = U(g)/U(g)h.

We begin by understanding the easier object j∗j!(1h). It can be realized as
the following quotient of the tensor algebra T (g) on g:

j∗j!(1h) = U(h(1))⊗U(h) 1h = T (g)/〈J+ h〉.

Here J is the two sided ideal generated by [h, g] − [h, g]g for h ∈ h, g ∈ g,
and h denotes the left ideal generated by h.
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Elements of T k(g) will be said to have degree k. For a general (possibly
inhomogeneous) element of T (g) we shall define its degree to be the maximal
degree of a monomial that appears in it. The elements of T (g) of degree ≤ d
form the d-th piece of an increasing filtration on T (g) which we call the
degree filtration.

The ideal 〈J + h〉 respects this filtration, and hence j∗j!(1h) inherits a
natural increasing filtration F0 ⊂ F1 ⊂ F2 · · · ⊂ Fk · · · whose k-th piece Fk

consists of those elements of j∗j!1h that have a lift to T (g) of degree ≤ k. It
is easy to see that the terms of this filtration are all h-submodules of j∗j!1h.

2.5. Lemma. The associated graded h-module gr(F·) of the above filtra-
tion is precisely T (n). In other words the successive quotients Fk/Fk−1 are
isomorphic, as h-modules, to n⊗k.

Proof. Define a map σ : Fk → n⊗k as follows. For x ∈ Fk, pick a lift of it x̄ in
T (g) of degree ≤ k. (Such a lift exists by the assumption that x ∈ Fk.) Let
x̄k be the homogeneous degree k part of x̄ (which may be zero). We define
σ(x) to be the image of x̄d under the natural projection π : T k(g)→ T k(n).

We have to show that this map is well-defined. To do this let y and y ′

be two lifts of x to T (g), both of degree k or less. We want to show that
π(yk) = π(y ′k). The difference y− y ′ is in J+h, i.e., it is a sum of terms of
the form

a⊗ h1 + b⊗ (h2 ⊗ g− g⊗ h2 − [h2, g])⊗ c

for a, b, and c in T (g). Moreover, these terms can all be taken to have
degree ≤ k since the degree of y − y ′ is ≤ k. With the exception of terms
of the form b ⊗ [h2, g] ⊗ c all the other terms are mapped to zero by the
projection π. On the other hand deg b + deg c can not exceed k − 2, so
deg(b⊗ [h2, g]⊗c) < k, hence the part of degree k of such terms is also zero.
Thus σ is well-defined.

The subspace Fk−1 is clearly in the kernel of σ so we get a map Fk/Fk−1 →
n⊗k which we shall denote by σ as well. It is obvious that this map is
surjective. To check it is also injective let x ∈ Fk be such that σ(x) = 0. Let
x̄ be a lift of x to T (g) whose degree is minimal among all possible such lifts.
We want to show that x̄ has degree ≤ k− 1, and hence x is in Fk−1.

Since σ(x) = 0, the homogeneous degree k part x̄k of x̄ is in the two-sided
ideal generated by h. If x̄k is non-zero we can use relations in J+h to reduce
the maximal tensor degree of elements in the two sided ideal 〈h〉. In other
words we can still reduce the degree of x̄, contradicting the assumption on
the minimality of the degree of x̄. Hence x̄k = 0, so x ∈ Fk−1, so the map
Fk/Fk−1 → n⊗k is injective.
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2.6. It is easy to see that the inclusion F0 ↪→ Fk always splits for any k > 0.
We shall denote the reduced filtration by F̃1 ⊂ · · · F̃k · · · .

By the above lemma we have F̃1 ∼= n and F̃2/F̃1 ∼= n⊗2. These h-modules
fit into the short exact sequence

0→ n→ F̃2 → n⊗2 → 0. (4)

The next lemma shows that the extension class of this sequence is precisely
the class α := αn ∈ Ext1h(n⊗ n, n) defined in (2.1).

2.7. Lemma. The short exact sequences (3) and (4) are isomorphic and
hence both define the same obstruction class α.

Proof. We construct a map between

Q := n⊕ (g⊗ n)/〈(h(x), 0) − (0, h⊗ x)〉

and F̃2 which makes all the obvious squares commute. The required map has
two components: one from n and the other from g⊗n. The first component
is the natural inclusion map n = F̃1 ⊂ F̃2. The second one is given by

g⊗ x 7→ [g⊗ x̄]

where we first choose a lift x̄ of x ∈ n to g and then take the class of
g⊗ x ∈ T 2g in F̃2. It is easy to see that this does not depend on the choice
of lifting and that the resulting map factors through Q. A quick diagram
chasing shows that all squares commute.

2.8. Corollary. The following two statements are equivalent:

(a) The filtration F0 ⊂ · · · ⊂ Fk ⊂ · · · splits.

(b) The extension class α is trivial.

Proof. The implication (a)⇒(b) is trivial in view of Lemma 2.7. Now assume
that α = 0. Then the first and second inclusions are split (the first one is
always split, and the second one splits by Lemma 2.7).

We have a short exact sequence for any k ≥ 2

0→ Fk−1/Fk−2 → Fk/Fk−2 → Fk/Fk−1 → 0. (5)

In view of Lemma 2.5 this is the same as

0→ n⊗(k−1) → Fk/Fk−2 → n⊗k → 0.
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We will argue that the class of this extension is always

ρ ◦ (α⊗ idn⊗(k−1))

where
ρ : h⊗ n⊗(k−1) → n⊗(k−1)

is the action of h on the h-module n⊗(k−1). The assumption that α = 0

implies then that the extension (5) splits for all k ≥ 2, and thus the filtration
F· is itself split.

To obtain the class ρ◦(α⊗ idn⊗(n−1)) we tensor the short exact sequence 1
with n⊗(k−1) and post-compose with ρ. This is illustrated by the following
commutative diagram:

0 −−−−→ h⊗ n⊗(k−1) −−−−→ g⊗ n⊗(k−1) −−−−→ n⊗ n⊗(k−1) −−−−→ 0y y ∥∥∥
0 −−−−→ n⊗(k−1) −−−−→ Qk −−−−→ n⊗ n⊗(k−1) −−−−→ 0.

The module Qk is the push-out

n⊗(k−1) ⊕ (g⊗ n⊗(k−1))/〈(h(x), 0) − (0, h⊗ x)〉.

We construct a map Qk → Fk/Fk−2 given by two components, one on n⊗(k−1)

and the other on g ⊗ n⊗(k−1). By Lemma 2.7 we identify n⊗(k−1) with the
space Fk−1/Fk−2. For the first component we take the natural inclusion map

n⊗(k−1) ∼= Fk−1/Fk−2 ↪→ Fk/Fk−2.

On the other component, we define the map

(g⊗ [x]) 7→ [g⊗ x]

where again we first lift [x] to an element x ∈ Tg and then take the class of
g⊗ x. This map factor through Qk as

ρ(h)([x]) = [h⊗ x]

in T (g)/〈J + h〉. Moreover, chasing the diagrams yields the following com-
mutative diagram:

0 −−−−→ n⊗(k−1) −−−−→ Qk −−−−→ n⊗ n⊗(k−1) −−−−→ 0y y ∥∥∥
0 −−−−→ F⊗(k−1)/Fk−2 −−−−→ Fk/Fk−2 −−−−→ Fk/F⊗(k−1) −−−−→ 0.

(6)

Thus the splitting follows and the lemma is proved.
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2.9. The relative PBW isomorphism. We now concentrate our attention
on the h-representation

i∗i!(1h) = U(g)/U(g)h.

This module can be realized as the quotient T (g)/(I + 〈h〉) where I is the
two-sided ideal generated by

{g1 ⊗ g2 − g2 ⊗ g1 − [g1, g2] | g1, g2 ∈ g}

and 〈h〉 is the right ideal generated by h. The ideal I + 〈h〉 is compatible
with the degree filtration on T (g) which descends to a filtration

R0 ⊂ R1 ⊂ · · · ⊂ Rk ⊂ · · ·

by h-submodules of i∗i!(1h). The corresponding successive quotients will be
denoted by Gk := Rk/R⊗(k−1).

Consider the map

j∗j!(1h)→ j∗k∗k!j!(1h) = i
∗i!(1h)

constructed using the unit map of the adjunction k! a k∗. This map pre-
serves the filtrations and descends to maps between associated graded h-
modules

τ : T (n) = gr(j∗j!(1h))→ gr(i∗i!(1h)).

It is easy to see that τ is surjective.

2.10. Lemma. The kernel of the map τ is generated by the commutators
x⊗ y− y⊗ x for x, y ∈ n.

Proof. The idea is to use the standard PBW theorem. Consider the in-
creasing filtration E0 ⊂ · · · ⊂ Ek ⊂ · · · on the universal enveloping algebra
U(g). The standard PBW theorem asserts that the kernel of the canonical
quotient map g⊗k → Ek/Ek−1 is generated by the commutators of elements
in g, thus yielding an isomorphism between the k-th symmetric tensors on
g and Ek/Ek−1.

As all these filtration are compatible (they all arise from the degree
filtration on T (g)) we have a commutative diagram

0 −−−−→ I1 −−−−→ g⊗k −−−−→ Ek/Ek−1 −−−−→ 0y y y
0 −−−−→ I2 −−−−→ n⊗k −−−−→ Gk −−−−→ 0
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where I1 is the degree k part of the commutator ideal in T (g) by the PBW
theorem and I2 is the kernel of the quotient map n⊗k → Gk.

We want to show that I2 is the k-th commutator in n. It suffices to show
that the map I1 → I2 is surjective. By the snake lemma this is equivalent
to showing that the map from the kernel of g⊗k → n⊗k to the kernel of
Ek/Ek−1 → Gk is surjective.

For that we have the following commutative diagram:

0 −−−−→ Ek−1 −−−−→ Ek −−−−→ Ek/Ek−1 −−−−→ 0y y y
0 −−−−→ Rk−1 −−−−→ Rk −−−−→ Gk −−−−→ 0.

Again by the snake lemma we conclude that the right ideal generated by h
in U(g) surjects onto the kernel of the map Ek/Ek−1 → Gk. But the kernel
of the map g⊗k → n⊗k is the two-sided ideal in T (g) generated by h which
certainly surjects onto the right sided one. Thus the lemma is proved.

To state an if and only if condition for the relative PBW isomorphism, we
need the following lemma concerning the obstruction class α.

2.11. Lemma. The obstruction class α ∈ Ext1(n ⊗ n, n) factors through
S2(n).

Proof. The lemma is an easy corollary of Lemma 2.7 and Lemma 2.10.
Indeed, by Lemma 2.7, we can consider the following commutative diagram:

0 −−−−→ n −−−−→ F̃2 −−−−→ n⊗ n −−−−→ 0y y y
0 −−−−→ n −−−−→ R̃2 −−−−→ G2 −−−−→ 0

where the vertical maps are all defined via the adjunction j∗j!(1h)→ i∗i!(1h).
By Lemma 2.10 G2 = S2n and the last vertical map is the canonical quotient
from the tensor product to the symmetric product. It is easy to see that
the second square in the above diagram is cartesian. Thus the lemma is
proved.

We can summarize our main result in the following theorem which is what
we mean by an if and only if condition for the relative PBW theorem.

2.12. Theorem. Let k be a field and let h ↪→ g be an inclusion of Lie
algebras over k. Consider the two filtrations R0 ⊂ R1 ⊂ · · · ⊂ Rk ⊂ · · · and
F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ · · · defined above. We have:
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(a) gr(F·) = T (n);

(b) gr(R·) = S(n).

Moreover, if the field k has characteristic zero, then the following are equiv-
alent:

(a) The extension class α is trivial.

(b) The filtration F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ · · · splits;

(c) The filtration R0 ⊂ R1 ⊂ · · · ⊂ Rk ⊂ · · · splits.

In fact, if the extension class α is trivial, we have the following explicit
splitting of the filtration R· that resembles the standard PBW isomorphism:

I : S(n)→ T (n) ∼= j∗j!(1h)→ i∗i!(1h) ∼= U(g)/U(g)h.

Here the first arrow is given by

x1x2 · · · xk 7→ 1

k!

∑
σ∈Sk

xσ(1) ⊗ xσ(2) ⊗ · · · ⊗ xσ(k).

Proof. With Lemmas 2.5, 2.7, 2.10, 2.11, we have proved most of the the-
orem. The only thing left is to show that when the field has characteristic
zero the map I constructed above gives an explicit splitting of the filtration
R. The diagram below commutes

Sk(n)
symmetrization−−−−−−−−−−−−→ T k(n) = Fk/Fk−1

splitting of F−−−−−−−−−−→ Fk/Fk−2y y
Sk(n) = Rk/Rk−1 ←−−−− Rk/Rk−2.

Moreover, the composition of the symmetrization map Sk(n)→ T k(n) with
the projection map T k(n) → Sk(n) is the identity. Therefore the com-
position of the top map with the rightmost vertical one is a splitting of
the bottom map Rk/Rk−2 → Rk/Rk−1. We conclude that all the maps
Rk/Rk−2 → Rk/Rk−1 are split, hence the entire filtration R· splits.
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3. An example of a non trivial class

We now give an example of an inclusion of Lie algebras h ↪→ g for which the
obstruction class is non trivial. Let g = sl2; recall that it is generated by e,
h and f, satisfying the relations

[e, f] = h , [h, e] = 2e , [h, f] = −2f .

Now let h be the Lie subalgebra generated by e and h. Then n = g/h is the
one dimensional h-module generated as a vector space by f, with module
structure defined by

e · f = 0 and h · f = −2f .

3.1. Proposition. The obstruction class α is non-trivial.

Proof. First observe that the Chevalley-Eilenberg 1-cocycle

c ∈ C1
(
h,Hom(n, h)

)
given by

c(e)(f) = e · f− [e, f] = −h, c(h)(f) = h · f− [h, f] = 0

is a representative of the exact sequence

0→ h→ g→ n→ 0 .

Therefore the 1-cocycle a ∈ C1
(
h,Hom(n⊗2, n)

)
given by

a(e)(f, f) = −h · f = 2f, a(h)(f, f) = 0

is a representative of the obstruction class α.
Finally, observe that since e acts trivially on n, then it acts trivially on

Hom(n⊗2, n). Consequently, for any b ∈ Hom(n⊗2, n) we have d(b)(e) = 0,
so that a 6= d(b). Thus α 6= 0.
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arXiv:0711.3553

Damien Calaque Andrei Căldăraru, Junwu Tu
Université Lyon 1 Mathematics Department
Institut Camille Jordan (CNRS UMR5208) University of Wisconsin–Madison
43 blvd du 11 novembre 1918 480 Lincoln Drive
F-69622 Villeurbanne-Cedex Madison, WI 53706
France USA
calaque@math.univ-lyon1.fr andreic@math.wisc.edu

tu@math.wisc.edu

15


	Introduction
	The aim
	An analogous problem in algebraic geometry
	The result

	A condition for the PBW isomorphism
	An example of a non trivial class

