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Abstract

We continue the study of the Hochschild structure of a smooth space that we began in
our previous paper, examining implications of the Hochschild–Kostant–Rosenberg theorem. The
main contributions of the present paper are:

• we introduce a generalization of the usual notions of Mukai vector and Mukai pairing on
differential forms that applies to arbitrary manifolds;
• we give a proof of the fact that the natural Chern character mapK0(X) → HH0(X)

becomes, after the HKR isomorphism, the usual oneK0(X)→⊕
Hi(X,�i

X); and
• we present a conjecture that relates the Hochschild and harmonic structures of a smooth
space, similar in spirit to the Tsygan formality conjecture.
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1. Introduction

1.1. In [5], we introduced the Hochschild structure(HH ∗(X),HH∗(X)) of a smooth
spaceX, which consists of:

• a graded ringHH ∗(X), the Hochschild cohomology ring, defined as

HHi(X) = HomDb
coh(X×X)(O�,O�[i]),

whereO� = �∗OX is the structure sheaf of the diagonal inX ×X;
• a graded leftHH ∗(X)-moduleHH∗(X), the Hochschild homology module, defined
as

HHi(X) = HomDb
coh(X×X)(�!OX[i],O�),

where�! is the left adjoint of�∗ defined by Grothendieck–Serre duality[5, 3.3];
• a non-degenerate pairing〈 · , · 〉 defined onHH∗(X), the generalized Mukai pairing
(for the definition see[5]).

1.2. Following ideas of Markarian [15] we also introduced the Chern character map

ch : K0(X)→ HH0(X)

by setting ch(F) for F ∈ Db
coh(X) to be the unique element ofHH0(X) such that

TrX×X(� ◦ ch(F)) = TrX(��
X→X(F)) = TrX(�2,∗(�∗1F⊗ �))

for every � ∈ HomDb
coh(X×X)(O�, S�).

Here Tr is the Serre duality trace[5, 2.3], SX = �X[dim X] is the dualizing object
of Db

coh(X) (also to be thought of as the functor− ⊗X SX), S� = �∗SX is the object
whose associated integral transform isSX, and ��

X→X is the natural transformation
1X ⇒ SX associated to� (2.2).
It is worth pointing out that� ◦ ch(F) is a morphism�!OX → S�, so using the

definition of �! = S−1X×X�∗SX it follows that � ◦ ch(F) is in fact a morphism

S−1X×XS�→ S�

and thus it makes sense to take its trace onX ×X. For more details see[5].
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1.3. The Hochschild structure satisfies the following properties[5]:

• to every integral functor� : Db
coh(X)→ Db

coh(Y ) there is a naturally associated map
of graded vector spaces�∗ : HH∗(X) → HH∗(Y ). This association is functorial,
commutes with ch, and if� is a left adjoint to�, then�∗ is a left adjoint to�∗
with respect to the Mukai pairings onX andY, respectively, i.e.,

〈v,�∗w〉Y = 〈�∗v,w〉X

for v ∈ HH∗(Y ), w ∈ HH∗(X);
• the Mukai pairing is a generalization of the Euler pairing onK0(X),

〈ch(E), ch(F)〉 = �(E,F) =
∑
i

(−1)i dim ExtiX(E,F)

for any E,F ∈ Db
coh(X);

• the Hochschild structure is invariant under derived equivalences given by Fourier–
Mukai transforms; in other words, if�X→Y : Db

coh(X)→ Db
coh(Y ) is a Fourier–Mukai

transform, then there are induced isomorphismsHH ∗(X)�HH ∗(Y ) (as graded
rings),HH∗(X)�HH∗(Y ) (as graded modules over the corresponding cohomology
rings) and this isomorphism is an isometry with respect to the generalized Mukai
pairings onX and onY, respectively.

1.4. The purpose of this paper is to study the similarities between the Hochschild
structure and theharmonic structure(HT ∗(X),H�∗(X)) of X, whose vector space
structure is defined as

HT i(X) =
⊕

p+q=i

Hp(X,

q∧
TX),

H�i (X) =
⊕

q−p=i

Hp(X,�q
X).

These vector spaces carry the same structures as(HH ∗(X),HH∗(X)), namelyHT ∗(X)

is a ring, with multiplication induced by the exterior product on polyvector fields;
H�∗(X) is a module overHT ∗(X), via contraction of polyvector fields with forms;
and in Section3 we shall define a pairing onH�∗(X) which is a modification of
the usual pairing of forms given by cup product and integration onX (This modified
inner product is a more concrete generalization of the Mukai product in [17].) The
generalized Mukai pairing can be thought of as themirror of the usual polarization of
the Hodge structure onX.
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1.5. In Section2, we explain how to associate to an integral transform� : Db
coh(X)→

Db
coh(Y ) a map of graded vector spaces

�∗ : H�∗(X)→ H�∗(Y )

and we prove in Section3 that this association satisfies the same adjointness prop-
erties as the similar association for Hochschild homology discussed above. The same
construction as in [5] gives us a construction of a generalized Mukai vector map

v : Db
coh(X × Y )→ H ∗(X × Y, Q)

for any pair of spacesX andY. WhenX is a point, we recover (a small modification
of) Mukai’s original definition,

v : Db
coh(pt× Y )→ H ∗(pt× Y, Q).

The formula we get is

v(E) = ch(E).Â1/2,

whereÂX is the ÂX class ofX (see below and Section2). Mukai’s original definition
used tdX instead ofÂX; the two are the same in the case considered by Mukai, namely
when c1(X) = 0.
The unexpected surprise here is the fact that the Mukai vector is not symmetric:v

is not the same if we replaceX×Y by Y ×X. In a sense, the Mukai vector associates
an element ofH ∗(X× Y, Q) to a functor Db

coh(X)→ Db
coh(Y ), and there is no reason

why this should be symmetric. The Mukai vectorv(E) of E ∈ Db
coh(X) is obtained by

considering the functor�E
pt→X : D(pt)→ D(X), �E−

pt→X = −⊗C E.
The modification of Mukai’s original definition that we alluded to above has to do

with the difference between tdX and ÂX: while the Todd class ofX is obtained from
the power series associated to

x

1− e−x
,

the ÂX class is obtained from

x

ex/2− e−x/2 .
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They are related by the formula

x

ex/2− e−x/2 =
x

1− e−x
· e−x/2

and thus

ÂX = tdX.ch(�X)1/2

for an appropriately defined square root (see Section2). The use of theÂ genus instead
of tdX in the definition of the Mukai vector ties in well with Kontsevich’s claim (5.1).

1.6. The connection between the Hochschild and harmonic structures is provided by
the Hochschild–Kostant–Rosenberg (HKR) isomorphism, which in modern language
can be written as a specific quasi-isomorphism

I : �∗O�
∼−→
⊕

i

�i
X[i],

where�∗ is the left derived functor of the usual pull-back functor, and the right-hand
side of the quasi-isomorphism is the complex which has�i

X in the−ith position, and
all differentials are zero. The isomorphismI induces isomorphisms of graded vector
spaces (Corollary4.2)

IHKR : HH ∗(X)
∼←− HT ∗(X),

IHKR : HH∗(X)
∼−→ H�∗(X).

Theorem 4.5. The composition

K0(X)
ch✲ HH0(X)

IHKR✲
⊕

i

H i(X,�i
X)

agrees with the usual Chern character map.

This result was originally stated without proof and in an incomplete form in a preprint
by Markarian[15].
As part of our proof of this theorem we prove the following result, which provides

an interesting interpretation of the Atiyah class in view of the HKR isomorphism:
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Proposition 4.4. The exponential of the universal Atiyah class is precisely the map

O�
	−→ �∗�∗O�

�∗I−→
⊕

i

�∗�i
X[i],

where	 is the unit of the adjunction�∗ � �∗.

1.7. While the HKR isomorphism is well-behaved with respect to the Chern character
(in fact one can take Theorem4.5 as a definition of the differential forms-valued Chern
character), it was argued by Kontsevich [12] and Shoikhet [18] thatIHKR, IHKR do
not respect the Hochschild and harmonic structures. Specifically,IHKR is not a ring
isomorphism. However, Kontsevich argued that as a consequence of his proof of the
formality conjecture, modifyingIHKR by Â

−1/2
X does in fact yield a ring isomorphism.

More precisely, denote byIK the isomorphism

IK : HH ∗(X)
(IHKR)−1✲ HT ∗(X)

�Â−1/2X✲ HT ∗(X),

where the second map is given by the contraction of a polyvector field withÂ
−1/2
X .

Then IK is a ring isomorphism[12, Claim 8.4].

1.8. A similar phenomenon can be seen on the level of homology theories: the Mukai
product that we define in (3.7) doesnot satisfy

〈ch(E), ch(F)〉 = �(E,F)

as would have been expected from the similar property of Hochschild homology. The
correct statement (already known to Mukai in the case of K3 surfaces) is that

〈v(E), v(F)〉 = �(E,F),

where

v(E) = ch(E).Â1/2.

These observations lead to the following conjecture:

Conjecture 5.2. The maps

IK : HH ∗(X)→ HT ∗(X), IK : HH∗(X)→ H�∗(X),
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whereIK is the composition

IK : HH ∗(X)
(IHKR)−1✲ HT ∗(X)

�Â1/2
X✲ HT ∗(X),

and IK is given by

IK : HH∗(X)
IHKR✲ H�∗(X)

∧Â1/2
X✲ H�∗(X),

induce an isomorphism between the Hochschild and the harmonic structures of X.
Concretely, IK is a ring isomorphism, IK is an isometry with respect to the generalized
Mukai product, and the two isomorphisms are compatible with the module structures
on H�∗(X) andHH∗(X), respectively.

It is worthwhile observing that bothIK and IK arise from the same modification of
the HKR isomorphismI (5.3). Similar conjectures (without involving the Mukai pairing)
have been stated by Tsygan and are usually referred to as Tsygan formality[20].

1.9. The main reason these results are interesting is because it has been conjectured
by Kontsevich [13] that, in the case of a Calabi–Yau manifold,HH ∗(X) should be
closely related to the ordinary cohomology ringH ∗(X̂, C) of themirror X̌ of X. In a
future paper we shall expand this idea further, introducing a product structure on the
Hochschild homology of a Calabi–Yau orbifold and arguing that its properties make it
a good candidate for the mirror of Chen–Ruan’s [6] orbifold cohomology theory.
Another application of the results in this paper, also to appear in the future, is a

conceptual explanation of the results of the computations of Fantechi and Göttsche [7],
which show that the orbifold cohomology of a symmetric product of abelian or K3
surfaces agrees with the cohomology of the Hilbert scheme of points on the surface.
This explanation is a combination of the main result of Bridgeland et al. [3] with
ideas of Verbitsky [21] and with the derived category invariance of the Hochschild
structure.

1.10. The paper is structured as follows: after an introductory section in which we
discuss integral transforms and natural transformations between them and we define
the Mukai vector, we turn in Section 3 to a definition of the Mukai pairing on forms
and to proofs of its basic functoriality and adjointness properties. Section 4 is devoted
to a discussion of the HKR isomorphism and of the compatibility between the Chern
character defined in (1.2) and the usual one. We conclude with a discussion of the
main conjecture and of possible ways of proving it in Section 5.

Conventions
All the spaces involved are smooth algebraic varieties proper overC (or any alge-

braically closed field of characteristic zero), or compact complex manifolds. We shall
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always omit the symbolsL andR in front of push-forward, pull-back and tensor func-
tors, but we shall consider them as derived except where explicitly stated otherwise.
We shall writeF⊗ � whereF is a sheaf and� is a morphism and mean by this the
morphism 1F ⊗ �. We shall use either∧ or . for the usual product in cohomology.
Serre duality notations and conventions are presented in detail in Section2.

2. Preliminaries

In this section, we provide a brief introduction to integral functors on the level
of derived categories and rational cohomology. The concepts and results are mostly
straightforward generalizations of Mukai’s original results [16,17]. The new material is
in the definition of the directed Mukai vector (2.1).
We also include in this section several results on traces and duality theory that will

be needed later on.

2.1. Let X andY be complex manifolds, and letE be an object inDb
coh(X×Y ). If �X

and�Y are the projections fromX× Y to X andY, respectively, we define the integral
transform with kernelE to be the functor

�E
X→Y : Db

coh(X)→ Db
coh(Y ) �E

X→Y ( · ) = �Y,∗(�∗X( · )⊗ E).

Likewise, if � is any element of the ringH ∗(X × Y, Q), we define the map


�
X→Y : H ∗(X, Q)→ H ∗(Y, Q) 
�

X→Y ( · ) = �Y,∗(�∗X( · ).�)

and call it the integral transform (in cohomology) associated to�.
Note that none of these concepts is symmetric inX andY: the objectE defines both

a functor fromX to Y and one fromY to X, and we clearly distinguish between the
two.

2.2. The association between objects ofDb
coh(X× Y ) and integral transforms is func-

torial: given a morphism� : E → F between objects ofDb
coh(X × Y ), there is an

obvious natural transformation

��
X→Y : �E

X→Y ⇒ �F
X→Y ,

given by

��
X→Y ( · ) = �Y,∗(�∗X( · )⊗ �).
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2.3. There is a natural map between the derived category and the cohomology ring,
namely the exponential Chern character, ch: Db

coh(X)→ H ∗(X, Q). It commutes with
pull-backs, and transforms tensor products into cup products. In an ideal world, it
would also commute with push-forwards, and then the diagram

Db
coh(X)

�E
X→Y✲ Db

coh(Y )

H ∗(X, Q)

ch
❄ 
ch(E)

X→Y✲ H ∗(Y, Q)

ch
❄

would commute. However, the Grothendieck–Riemann–Roch formula tells us that we
need to correct the commutation of push-forward and ch by the Todd classes of the
spaces involved; more precisely, if� : X → Y is a locally complete intersection
morphism, then

�∗(ch( · ).tdX) = ch(�∗( · )).tdY .

Our purpose is to define a Mukai vectorv such that replacing ch byv the above
diagram becomes commutative.

2.4. It is easy to see that there exists a unique formal series expansion√
1+ c1+ c2+ . . . in the symbolsc1, c2, . . . , such that

√
1 = 1,

√
�� = √� · √�

and

(
√

�)2 = �

for every spaceX and any�, � ∈ H even(X, Q) with constant term 1. Its first three terms
are

√
1+ c1+ c2+ . . . = 1+ 1

2c1+ 1
8(4c2− c21)+ 1

16(8c3− 4c1c2+ c31)+ . . . .

A similar definition enables us to define a unique fourth-order root,

4
√
1+ c1+ c2+ . . . = 1+ 1

4c1+ 1
32 (8c2− 3c21)+ . . . .
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For any smooth spaceX let ÂX ∈ H ∗(X, C) be the characteristic class associated to
TX, the tangent bundle ofX, via the power series of

x

ex/2− e−x/2 .

It is related to the usual Todd class ofX by the formula

ÂX = tdX.
√
ch(�X)

where�X is the canonical line bundle ofX.

2.5. Recall from[5] that the Chern character of an objectE ∈ Db
coh(X) was obtained

by thinking ofE as giving a functor�E
pt→X : Db

coh(pt)→ Db
coh(X). This directed point

of view explains the asymmetry in the following definition:

Definition 2.1. The directedMukai vector of an elementE ∈ Db
coh(X × Y ) is defined

by

v(E, X→ Y ) = ch(E).
√
tdX×Y .

4

√
ch(�Y )

ch(�X)
.

Whenever the direction is obvious, we shall omit theX → Y and just writev(E)

instead. (We abuse notation slightly, and write�X for �∗X�X, etc.)
Taking the first space to be a point we obtain the definition of the Mukai vector of

an objectE ∈ Db
coh(X) = Db

coh(pt×X):

v(E) = ch(E).

√
ÂX.

2.6. A straightforward calculation shows that the diagram

Db
coh(X)

�E
X→Y✲ Db

coh(Y )

H ∗(X, Q)

v
❄ 
v(E)

X→Y✲ H ∗(Y, Q)

v
❄
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commutes. (This is a direct analogue of[5, Theorem 7.1].) We shall denote the map

v(E)

X→Y by �∗, where� = �E
X→Y .

2.7. Given complex manifoldsX, Y,Z, and elementsE ∈ Db
coh(X × Y ) and F ∈

Db
coh(Y × Z), defineF ◦ E ∈ Db

coh(X × Z) by

F ◦ E = �XZ,∗(�∗XYE⊗ �∗YZF),

where �XY ,�YZ,�XZ are the projections fromX × Y × Z to X × Y , Y × Z and
X × Z, respectively. Similarly, if� ∈ H ∗(X × Y, Q), � ∈ H ∗(Y × Z, Q), consider
� ◦ � ∈ H ∗(X × Z, Q) given by

� ◦ � = �XZ,∗(�∗XY�.�∗YZ�).

The reason behind the notation is the fact that

�F
Y→Z ◦ �E

X→Y = �F◦E
X→Z

and


�
Y→Z ◦ 
�

X→Y = 
�◦�
X→Z.

(The second result is standard; for a proof of the first one see[1, 1.4].) Furthermore,
it is a straightforward calculation to check that

v(F ◦ E, X→ Z) = v(F, Y → Z) ◦ v(E, X→ Y )

[4, 3.1.10]. It follows that if� : Db
coh(X)→ Db

coh(Y ) and� : Db
coh(Y )→ Db

coh(Z) are
integral transforms, then we have

(� ◦�)∗ = �∗ ◦�∗

(compare also to[5, Theorem 6.3]). Since it can be easily checked that Id∗ = Id, it
follows that if � is an equivalence of derived categories, then�∗ is an isomorphism
H ∗(X, Q)→ H ∗(Y, Q).
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2.8. The map�∗ does not respect the usual grading on the cohomology rings of
X and Y, nor does it respect Hodge decompositions. However, it does respect the
decomposition ofH ∗(X) by columnsof the Hodge diamond: for everyi, �∗ maps
H�i (X) to H�i (Y ),

�∗ = 
v(E)
X→Y : H�i (X) =

⊕
q−p=i

Hp,q(X)→ H�i (Y ) =
⊕

q−p=i

Hp,q(Y ),

becausev(E) consists only of classes of typeHp,p(X× Y ), and pushing-forward toY
maps a class of type(p, q) to a class of type(p − dim X, q − dim X).
This statement is the harmonic structure analogue of the fact that the push-forward

on Hochschild homology preserves the grading.

3. The Mukai pairing on cohomology

In Section2, we defined a grated vector space map�∗ : H ∗(X, Q) → H ∗(Y, Q)

associated to an integral transform� : Db
coh(X)→ Db

coh(Y ). In the case of K3 surfaces,
Mukai proved that when� is an equivalence,�∗ is an isometry with respect to a
modified version of the usual pairing on the total cohomology rings ofX andY. He
did this by showing the more powerful result that maps on cohomology associated to
adjoint functors are themselves adjoint with respect to this modified pairing. In this
section, we generalize this result to arbitrary complex manifolds (not necessarily of
dimension 2 or with trivial canonical class), by defining a suitable generalization of
Mukai’s pairing.

3.1. The reason behind�∗ being an isometry for the Mukai product is the fact that
an equivalence� : Db

coh(X)→ Db
coh(Y ) must satisfy

�X(F,G) =
∑
i

(−1)i dim RHomi (F,G)

=
∑
i

(−1)i dim RHomi (�F,�G)

= �Y (�F,�G).

Thus, if we define a pairing on the algebraic part ofH ∗(X, Q) by

〈v(F), v(G)〉 = �X(F,G)
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for all F,G ∈ Db
coh(X), then �∗ is an isometry between the algebraic subrings of

H ∗(X, Q) andH ∗(Y, Q) (becausev commutes with�).

3.2. There are two problems with this definition: one is whether the above pairing is
well defined, another if we can extend it to a pairing on the whole cohomology ring
of X. For K3 surfaces we have

�X(F,G) = �X(F∨ ⊗ G)

=
∫

X

ch(F∨).ch(G).tdX

=
∫

X

ch(F∨).
√
tdX.ch(G).

√
tdX

=
∫

X

v(F∨).v(G)

=
∫

X

v(F)∨.v(G),

whereF∨ = RHom(F,OX), and for a vector

v = (v0, v2, v4) ∈ H 0(X, Q)⊕H 2(X, Q)⊕H 4(X, Q)

v∨ is defined to equal(v0,−v2, v4). Thus the pairing is well defined in the K3 case
(it only depends on the Mukai vectors ofF andG, and not onF andG themselves).
Note that for a K3 surface we havec1(�X) = 0, therefore theÂ class agrees with the
Todd class and thus

v(F) = ch(F).
√
tdX.

3.3. Our goal is to definev∨ for any X and anyv ∈ H even(X, Q) (and eventually for
any v ∈ H ∗(X, Q)), such that we have the equality

�X(F,G) =
∫

X

v(F)∨ · v(G).

The definition of · ∨ will arise from the conceptual description of the Hirzebruch–
Riemann–Roch formula given in[5].
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Recall that in [loc.cit.] we obtained the Riemann–Roch formula by using the adjunc-
tion

�F
pt→X � �F∨

X→pt,

through the equalities

〈ch(F), ch(G)〉 = 〈(�F
pt→X)∗1, (�G

pt→X)∗1〉
= 〈1, (�F∨

X→pt)∗(�G
pt→X)∗1〉

= 〈1, (�F∨◦G
pt→pt )∗1〉 = �X(F,G).

This clearly suggests that we should define

v(F)∨ = v(F,pt→ X)∨ = v(F∨, X→ pt),

because then we will get

�X(F,G) = v(F∨ ◦ G,pt→ pt) = v(F∨, X→ pt) ◦ v(G,pt→ X)

=
∫

X

v(F)∨.v(G).

3.4. More generally, we are led to requiring· ∨ to satisfy

v(E, X→ Y )∨ = v(E∗, Y → X)

where

E∗ = E∨ ⊗ �∗X�X[dim X]

is the object onY ×X which gives the adjunction[2, Lemma 4.5]

�E
X→Y � �E∗

Y→X.

Consider the involution

� : H even(X, Q)→ H even(X, Q)
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given by

�(v0, v2, . . . , v2n) = (v0,−v2, v4, . . . , (−1)nv2n).

It is easy to check that� satisfies�(vw) = �(v)�(w), and it is well known that
ch(E∨) = �(ch(E)). Thus

�(v(E, X→ Y )) = �(ch(E)).�(
√
tdX×Y ).�

(
4

√
ch(�Y )

ch(�X)

)

= ch(E∨).
√
td(T ∨X×Y ).

4

√
ch(�X)

ch(�Y )

= ch(E∨).
√
tdX×Y .

√
ch(�X×Y ).

4

√
ch(�X)

ch(�Y )

= (−1)dim Xch(E∨ ⊗ �X[dimX]).
√
tdX×Y .

4

√
ch(�Y )

ch(�X)

= (−1)dim Xv(E∗, X→ Y )

= (−1)dim Xv(E∗, Y → X).

√
ch(�Y )

ch(�X)
,

where the third equality is an immediate consequence of the formula[8, I.5.2]

td(T ∨X) = td(TX).exp(−c1(TX)) = td(TX).ch(�X)

(We have abused notation slightly, and we wrote�X for �∗X�X, etc.)

3.5. The above calculation motivates the following definition:

Definition 3.1. For e ∈ H ∗(X × Y, Q) set

e∨ = (−1)dim X�(e).

√
ch(�X)

ch(�Y )
.

In particular, for a single spaceX (considered as pt×X) and v ∈ H ∗(X, Q) let

v∨ = �(v).
1√

ch(�X)
.
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The calculations in (3.3) now show that we have

�X(F,G) =
∫

X

v(F)∨.v(G).

3.6. To obtain a full generalization of the Mukai product we need to extend· ∨ to
all of H ∗(X, Q). A natural extension of the involution� is the map� : H ∗(X, C)→
H ∗(X, C) given by

�(v0, v1, v2, . . . , v2n) = (v0, iv1,−v2, . . . , i
2nv2n),

where i = √−1. Its main properties are

(1) �(vw) = �(v).�(w);
(2) �(

√
v) = √�(v) for any v with leading term equal to 1;

(3) �(�(v)) = v for any v ∈ H even(X, C);
(4) �(ch(L)) = ch(L−1) = ch(L)−1 for any line bundleL;
(5) �(f ∗(v)) = f ∗(�(v));
(6) f∗(�(v)) = (−1)dimC X−dimC Y �(f∗v),

where f : X → Y is any proper morphism of complex manifolds. The proof of all
these properties is immediate.
Thus, defining

· ∨ : H ∗(X × Y, C)→ H ∗(X × Y, C)

by

e∨ = (−1)dim X�(e).

√
ch(�X)

ch(�Y )

extends in a natural way the operator· ∨ previously defined.

3.7. We can now tackle the generalized Mukai product:

Definition 3.2. Let X be a complex manifold, and letv,w ∈ H ∗(X, C). Define the
product 〈v,w〉 by the formula

〈v,w〉 =
∫

X

v∨.w,

where v∨ is defined above. This product will be called thegeneralized Mukai
product.
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3.8. It is interesting to compare this definition with a similar one that appears in Hodge
theory. Define the Weyl operator,�̄, by �̄(v) = ip−qv for v ∈ Hp,q(X). The pairing

〈v,w〉 =
∫

X

�̄(v).w

is the standard one that appears in the definition of a polarized Hodge structure. Observe
that the analogy between the Mukai pairing as a mirror to the usual Poincaré pairing
holds, if we take this in the sense of matching polarizations: the map� is formally the
mirror of �̄ (if we mirror the Hodge diamond,� gets transformed intō�). We do not
have a good understanding of the 1/

√
ch(�X) term that appears in the definition of

the Mukai pairing.

Proposition 3.3. Let X and Y be complex manifolds, and� : Db
coh(X)→ Db

coh(Y ) and
� : Db

coh(Y )→ Db
coh(X) be adjoint integral transforms(� is a left adjoint to�). Then

�∗ is a left adjoint to�∗ with respect to the generalized Mukai product; in other
words, we have

〈v,�∗w〉Y = 〈�∗v,w〉X

for all v ∈ H ∗(Y, C), w ∈ H ∗(X, C).

Remark 3.4. When v andw are Mukai vectors of elements inDb
coh(Y ) andDb

coh(X),
the result is a trivial consequence of the discussion in (3.1). The actual content is that
the result holds for allv,w.

Corollary 3.5. Under the hypotheses of Proposition3.3, assume furthermore that� is
an equivalence of categories. Then�∗ : H ∗(X, C) → H ∗(Y, C) is an isometry with
respect to the generalized Mukai product.

Proof. See the proof of [5, Corollary 7.5].�

Proof of Proposition 3.3. Assume� = �E
X→Y , and letE∗ = E∨ ⊗ �∗Y�Y [dim Y ], so

that � = �E∗
Y→X. Define e = v(E, X → Y ) and e∗ = v(E∗, Y → X). A computation

entirely similar to the one in (3.4) yields

e∗ = (−1)dim Y �(e)
�∗Y
√
ch(�Y )

�∗X
√
ch(�X)
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and thus

�(e∗) = (−1)dim Y e.
�∗X
√
ch(�X)

�∗Y
√
ch(�Y )

.

We then have

〈�∗v,w〉 = 〈
e∗
Y→X(v),w〉 =

∫
X


e∗
Y→X(v)∨w =

∫
X

�(
e∗
Y→X(v)).

1√
ch(�X)

w

=
∫

X

�(�X,∗(�∗Y ve∗)). 1√
ch(�X)

w

= (−1)dim Y

∫
X

�X,∗(�(�∗Y v).�(e∗)). 1√
ch(�X)

w

= (−1)dim Y

∫
X×Y

�(�∗Y v).�(e∗). 1

�∗X
√
ch(�X)

.�∗Xw

= (−1)dim Y

∫
X×Y

�(�∗Y v).(−1)dim Y .e.
�∗X
√
ch(�X)

�∗Y
√
ch(�Y )

.
1

�∗X
√
ch(�X)

.�∗Xw

=
∫

X×Y

�∗Y (�(v)).
1

�∗Y
√
ch(�Y )

.e.�∗Xw

=
∫

Y

�(v).
1√

ch(�Y )
.�Y,∗(e.�∗Xw)

=
∫

Y

v∨.
e
X→Y (w) = 〈v,
e

X→Y (w)〉

= 〈v,�∗w〉. �

4. The Hochschild–Kostant–Rosenberg theorem and the Chern character

In this section, we study the relationship between the Hochschild and harmonic
structures. We provide a discussion of the connection between the usual Chern character
and the one introduced in[5].

4.1. The starting point of our analysis is the following theorem:

Theorem 4.1 (Hochschild–Kostant–Rosenberg [9], Kontsevich [12], Swan [19] and
Yekutieli [22]). Let X be a smooth, quasi-projective variety, and let � : X → X × X
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be the diagonal embedding. Then there exists a quasi-isomorphism

I : �∗O�
∼−→
⊕

i

�i
X[i],

where the right-hand side denotes the complex whose−i-th term is�i
X, and all dif-

ferentials are zero.

Proof. (This is nothing but a brief recounting of the results in[22], and the reader
should consult [loc.cit.] for more details.) Recall that ifR is a commutativeC-algebra
there exists a standard resolution ofR as anRe = R ⊗C R-module. Fori�0 let

Bi (R) = R⊗(i+2),

where the tensor product is taken overC. It is anRe-module by multiplication in the
first and last factor. The bar resolution is defined to be the complex ofRe-modules

· · · → Bi (R)→ · · · → B1(R)→ B0(R)→ 0,

with differential

d(a0⊗ a1⊗ · · · ⊗ ai)

= a0a1⊗ a2⊗ · · · ⊗ ai − a0⊗ a1a2⊗ · · · ⊗ ai + · · ·
+(−1)i−1a0⊗ a1⊗ · · · ⊗ ai−1ai.

It is an exact complex, except at the last step where the cohomology isR. Thus it is
a resolution ofR in Re-Mod [14, 1.1.12].
If X were affine,X = SpecR, we could use the above resolution to compute�∗O�:

indeed,O� is nothing butR viewed as anRe = OX×X-module, and the modulesBi

are Re-flat. The complex obtained by tensoring the bar resolution overRe with R is
called the Hochschild chain complex:

· · · → Ci (R)→ · · · → C1(R)→ C0(R)→ 0,

where

Ci (R) = Bi (R)⊗Re R,

and the differential is obtained from the differential ofB·(R).
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Problems arise when one tries to sheafify the bar resolution to obtain a complex of
sheaves on a scheme: the resulting sheaves are ill-behaved (in particular, not quasi-
coherent). As a replacement, Yekutieli proposed to use the complete bar resolution,
which he defined in[22]. For i�0, let Xi be the formal completion of the scheme
Xi = X × · · · ×X along the small diagonal. Define

B̂i (X) = O
Xi+2,

which is a sheaf of abelian groups on the topological spaceX. Yekutieli argued that
one can formally complete and sheafify the original bar resolution to get the complete
bar resolution

· · · → B̂i (X)→ · · · → B̂1(X)→ B̂0(X)→ 0,

where the maps are locally obtained from the maps of the original bar resolution,
by noting that these are continuous for the topologies with respect to which we are
completing. The complete bar resolution is an exact resolution ofO� by sheaves of
flat OX×X-modules (see remark following Proposition 1.4 and proof of Proposition 1.5
in [22]). Over an affine open setU = SpecR of X, 
(U, B̂i (X)) is the completion
B̂i (R) of Bi (R) at the idealIi which is the kernel of the multiplication mapBi (R) =
R⊗i → R.
One can take the complete bar resolution as a flat resolution ofO� on X ×X, and

use it to compute�∗O�. This is the same as tensoring the complete bar resolution over
OX×X with O�. The resulting complex is called the complex of complete Hochschild
chains ofX (see [22, Definition 1.3] for details),

· · · → Ĉi (X)→ · · · → Ĉ1(X)→ Ĉ0(X)→ 0,

where

Ĉi (X) = B̂i (X)⊗OX×X
O�.

Over an affine open setU = SpecR, 
(U, Ĉi (X)) is the completion̂Ci (R) of Ci (R)

at Ii (as aBi (R)-module).
Over any affine openU = SpecR define

Ii : Ci (R)→ �i
R/k

by setting

Ii((1⊗ a1⊗ · · · ⊗ ai ⊗ 1)⊗Re 1) = 1

i! da1 ∧ da2 ∧ · · · ∧ dai.



54 A. Căldăraru /Advances in Mathematics 194 (2005) 34–66

These maps are continuous with respect to the topology that is used for completing
[22, Lemma 4.1], so they can be completed and sheafified to maps

Ii : Ĉi (X)→ �i
X.

They also commute with the zero differentials of the complex⊕i �i
X, so they assemble

to a morphism of complexes

I : �∗O�→
⊕

i

�i
X[i]

which can be seen to be a quasi-isomorphism in characteristic 0 [12, Theorem 4.6.1.1,
22, Proposition 4.4]. In the affine case this is essentially the Hochschild–Kostant–
Rosenberg theorem[9]. �

Corollary 4.2. The Hochschild–Kostant–Rosenberg isomorphism I induces isomor-
phisms of graded vector spaces

IHKR : HH ∗(X)
∼←− HT ∗(X),

IHKR : HH∗(X)
∼−→ H�∗(X).

Proof.

HHk(X) = HomX×X(O�,O�[k])�HomX(�∗O�,OX[k])

� HomX

(⊕
i

�i
X[i],OX[k]

)
=
⊕

i

H k−i (X,

i∧
TX) = HT k(X)

and

HHk(X) = HomX×X(�!OX[k],O�)�HomX(OX[k],�∗O�)

� HomX

(
OX[k],

⊕
i

�i
X[i]

)
=
⊕

i

H i−k(X,�i
X) = H�k(X). �
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4.2. We are now interested in understanding how the above isomorphisms relate the
Chern characterK0(X) → HH0(X) defined in the introduction to the usual Chern
character.
Let �⊗i

� and�i
� denote the push-forwards by� of �⊗i

X and�i
X, respectively (Here

the tensor product is taken overOX.) Let

� : �⊗i
X → �i

X

be the natural projection map. By an abuse of notation, we shall also denote by� the
push-forward

�∗� : �⊗i
� → �i

�.

Definition 4.3. Define the universal Atiyah class to be the class

�1 ∈ Ext1X×X(O�,�1
�),

of the extension

0→ �1
�→ O�(2) → O�→ 0,

whereO�(2) is the second infinitesimal neighborhood of the diagonal inX × X. Fur-
thermore, define�i for i�0 by the formula

�i = � ◦ (�∗2�⊗(i−1)
X ⊗ �1) ◦ (�∗2�⊗(i−2)

X ⊗ �1) ◦ · · · ◦ �1 : O�→ �i
�[i].

The exponential Atiyah class exp(�) is defined by the formula below, wheren = dimX

exp(�) = 1+ �1+ 1

2! �2+ · · · +
1

n! �n : O�→
⊕

i

�∗�i
X[i].

This definition requires a short explanation. Recall that given an objectE ∈ Db
coh(X),

the Atiyah class ofE is the class

�1(E) ∈ Ext1X(E,E⊗ �1
X)

of the extension onX

0→ E⊗ �1
X → J 1(E)→ E→ 0
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where J 1(E) is the first jet bundle ofE [11, 1.1]. A natural way to construct this
extension is to consider the natural transformation��1

X→X associated to the universal
Atiyah class

�1 : O�→ �1
�[1]

between the identity functor and the “tensor by�1
X[1]” functor. The value��1

X→X(E)

of this natural transformation onE is precisely the Atiyah class�1(E) of E (see, for
example,[10, 10.1.5]). Theith component of the Chern character ofE is then obtained
as

chi (E) = 1

i! TrE(�i (E))

where

�i (E) = � ◦ (�⊗(i−1)
X ⊗ �1(E)) ◦ (�⊗(i−2)

X ⊗ �1(E)) ◦ · · · ◦ �1(E) : E→ E⊗ �i
X[i].

(See[10, 10.1.6] for details.) Our definition of�i : O�→ �∗�i
X[i] has been tailored to

mimic this definition:�i (E) will be precisely the value onE of the natural transforma-
tion associated to the morphism�i . Therefore, if we consider the natural transformation
�exp(�)

X→X associated to exp(�), its value

�exp(�)(E) : E→
⊕

i

E⊗ �i
X[i]

on E will satisfy

chorig(E) = TrE(�
exp(�)(E)),

where chorig(E) is the usual Chern character ofE.

Proposition 4.4. The exponentialexp(�) of the universal Atiyah class is precisely the
map

O�
	−→ �∗�∗O�

�∗I−→
⊕

i

�∗�i
X[i],

where	 is the unit of the adjunction�∗ � �∗.

Proof. We divide the proof of this proposition into several steps, to make it more
manageable. We will use the notations used in the proof of Theorem 4.1.
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Step1: Consider the exact sequence

0→ �1
�→ O�(2) → O�→ 0

which defines the universal Atiyah class�1. Tensoring it by the locally free sheaf
�∗2�

⊗i
X yields the exact sequence

0→ �⊗(i+1)
� → O�(2) ⊗ �∗2�

⊗i
X → �⊗i

� → 0.

Stringing together these exact sequences for successive values ofi we construct the
exact sequence

0→ �⊗i
� → O�(2) ⊗ �∗2�

⊗(i−1)
X → O�(2) ⊗ �∗2�

⊗(i−2)
X → · · · → O�(2) → O�→ 0,

whose extension class is precisely

(�∗2�
⊗(i−1)
X ⊗ �1) ◦ (�∗2�⊗(i−2)

X ⊗ �1) ◦ · · · ◦ �1 : O�→ �⊗i
� [i].

Step2: We claim that there exists a map
· of exact sequences

· · · ✲ B̂i (X) ✲ B̂i−1(X) ✲ · · · ✲ B̂0(X) ✲ O� ✲ 0

0 ✲ �⊗i
�


′i❄
✲ O�(2) ⊗ �∗2�

⊗(i−1)
X


i−1❄
✲ · · · ✲ O�(2)


0
❄

✲ O�







✲ 0,

where the top row is the (augmented) completed bar resolution defined in the proof of
Theorem 4.1, and the bottom row is the one defined in Step 1. It is sufficient to define
the maps in a local patchU = SpecR. Let I = I2 = ker(R ⊗ R → R) be the ideal
defining the diagonal inU ×U , and identify�1

R/C with I/I2 via the differential map

R→ �1
R/C = I/I2, r �→ dr = r ⊗ 1− 1⊗ r + I2.

Consider the maps


i : Bi (R) = R⊗(i+2)→ (R ⊗ R)/I2⊗R �⊗Ri
R
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defined by


i (a0⊗ a1⊗ · · · ⊗ ai+1) = (a0⊗ ai+1+ I2)⊗R da1⊗R da2⊗R · · · ⊗R dai

(we write �R on the right because we use�∗2). The same argument as the one in the
proof of [22, Lemma 4.1] shows that these maps are continuous with respect to the
adic topology used to completeBi (R) = R⊗(i+2), thus the maps
i descend to maps


i : B̂i (R)→ (R ⊗ R)/I2⊗R �⊗Ri
R ,

which then sheafify to give the desired maps


i : B̂i (X)→ O�(2) ⊗ �∗2�
⊗i
X .

The map
′i is the composition

B̂i (X)

i−→ O�(2) ⊗ �∗2�

⊗i
X → O� ⊗ �∗2�

⊗i
X = �⊗i

� .

Step3: We now need to check the commutativity of the squares in the above diagram.
Note that since everything is local, we can assume we are in an open patchU = SpecR,
U × U = SpecR ⊗ R. The idealI in R ⊗ R is generated by expressions of the form
r⊗1−1⊗r for r ∈ R. Then a relevant square in the above diagram (before completing)
is

R ⊗ R ⊗ R ⊗ R
h1 ✲ R ⊗ R ⊗ R

(R ⊗ R)/I2⊗R I/I2⊗R I/I2


2❄
h′1✲ (R ⊗ R)/I2⊗R I/I2,


1❄

where(R⊗R)/I2 is considered a rightR-module by multiplication in the second factor,
and I/I2 is considered anR-module by multiplication in either factor (the two module
structures are the same). The maps in this diagram are:

h1(1⊗ b ⊗ c ⊗ 1) = b ⊗ c ⊗ 1− 1⊗ bc ⊗ 1+ 1⊗ b ⊗ c,

the Hochschild differential

h′1((1⊗ 1+ I2)⊗R db ⊗R dc) = db ⊗R dc = (b ⊗ 1− 1⊗ b + I2)⊗R dc,


1(a ⊗ b ⊗ c) = (a ⊗ c + I2)⊗R db,


2(1⊗ b ⊗ c ⊗ 1) = (1⊗ 1+ I2)⊗R db ⊗R dc.
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By direct computation we have


1(h1(1⊗ b ⊗ c ⊗ 1)) = 
1(b ⊗ c ⊗ 1− 1⊗ bc ⊗ 1+ 1⊗ b ⊗ c)

= (b ⊗ 1+ I2)⊗R dc − (1⊗ 1+ I2)⊗R d(bc)

+(1⊗ c + I2)⊗R db

which, usingd(bc) = b dc + c db, equals

= (b ⊗ 1+ I2)⊗R dc − (1⊗ b + I2)⊗R dc − (1⊗ c + I2)⊗R db

+(1⊗ c + I2)⊗R db

= (b ⊗ 1− 1⊗ b + I2)⊗R dc

= h′1((1⊗ 1)⊗R db ⊗R dc)

= h′1(
2(1⊗ b ⊗ c ⊗ 1)).

Similar computations ensure the commutativity of the other squares.
Step4: Observe that there exists a natural map	 from the bar resolution̂B·(X) to the

bar complex̂C·(X) = B̂·(X)⊗X×X O�, simply given by 1⊗� where� : OX×X → O�
is the natural projection. This map is immediately seen to be precisely the unit	 of
the adjunction�∗ � �∗.
It is now obvious that multiplying by 1/i! the composite map

B̂i (X)

′i−→ �⊗i

�
�−→ �i

�

yields precisely the map

B̂i (X)
	i−→ Ĉi (X)

�∗Ii−→ �i
�,

where	i is the ith component of	, locally (before completion) given by

a0⊗ a1⊗ · · · ⊗ ai+1 �→ a0ai+1⊗ a1⊗ · · · ⊗ ai

and�∗Ii is the ith component of the HKR isomorphism.
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Now, chopping off at the last step the two exact sequences we have studied above
we get the diagram

· · · ✲ B̂i (X) ✲ B̂i−1(X) ✲ · · · ✲ B̂0(X) ✲ 0

0 ✲ �⊗i
�


′i❄
✲ O�(2) ⊗ �∗2�

⊗(i−1)
X


i−1❄
✲ · · · ✲ O�(2)


0
❄

✲ 0

�⊗i
�

pi❄

�i
�,

�
❄

which can be thought of as a map from the top complex (which representsO�) to
�i

�[i]. In fact what we have is a factoring

O�
pi◦
·−→ �⊗i

�
�−→ �i

�

of the map

� ◦ pi ◦ 
· = (i!)�∗Ii ◦ 	,

where
· is the map of complexes appearing at the top of the above diagram. However,
note that both the source and the target of
· are naturally isomorphic (inDb

coh(X ×
X)) to O�, and then
· can be viewed as the identity mapO� → O�. Under these
identifications we conclude

1

i! � ◦ pi = �∗Ii ◦ 	.

But the construction ofpi is such that it is represented by thei-step extension

0 ✲ �⊗i
�

✲ O�(2) ⊗ �∗2�
⊗(i−1)
X

✲ · · · ✲ O�(2) ✲ O� ✲ 0,

whose class we argued is

(�∗2�
⊗(i−1)
X ⊗ �1) ◦ (�∗2�⊗(i−2)

X ⊗ �1) ◦ · · · ◦ �1 : O�→ �⊗i
� [i].

Therefore

pi = (�∗2�
⊗(i−1)
X ⊗ �1) ◦ (�∗2�⊗(i−2)

X ⊗ �1) ◦ · · · ◦ �1 : O�→ �⊗i
� [i],
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and hence

1

i! �i = 1

i! � ◦ pi = �∗Ii ◦ 	.

We conclude that

exp(�) =
⊕

i

1

i! �i =
⊕

i

�∗Ii ◦ 	 = �∗I ◦ 	. �

Theorem 4.5. The composition

K0(X)
ch✲ HH0(X)

IHKR✲
⊕

i

H i(X,�i
X)

is the usual Chern character map.

Proof. Let F ∈ K0(X), and let

ch(F) ∈ HH0(X) = HomX×X(�!O�,O�)

be the Chern character defined in (1.2). Let

ch′(F) ∈ HomX(OX,�∗O�)

be the element that corresponds to ch(F) under the adjunction�! � �∗. If �′ is any
element of HomX(�∗O�, SX) and

� = �∗�′ ◦ 	

is the corresponding element of HomX×X(O�, S�) under the adjunction�∗ � �∗, the
construction of�! is such that

TrX(�′ ◦ ch′(F)) = TrX×X(� ◦ ch(F)).

(Here 	 : O�→ �∗�∗O� is the unit of the adjunction.)
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On the other hand, the definition of ch(F) is such that for any�,

TrX×X(� ◦ ch(F)) = TrX(�2,∗(�∗1F⊗ �)),

and ch(F) is the unique element inHH0(X) with this property. We then have

TrX(�′ ◦ ch′(F)) = TrX×X(� ◦ ch(F)) = TrX(�2,∗(�∗1F⊗ �))

= TrX(�2,∗(�∗1F⊗ (�∗�′ ◦ 	)))

= TrX(�2,∗(�∗1F⊗ �∗�′) ◦ �2,∗(�∗1F⊗ 	))

= TrX(F⊗ �′ ◦ �	(F))

= TrX(�′ ◦ TrF(�	(F))),

where the last equality is[5, Lemma 2.4]. Since the trace induces a non-degenerate
pairing and the above equalities hold for any�′, it follows that

ch′(F) = TrF(�	(F)).

Applying the isomorphismI to both sides we conclude that

IHKR(ch(F)) = I ◦ ch′(F)) = I ◦ TrF(�	(F)) = TrF(�exp(�)(F)) = chorig(F),

where the third equality is Proposition4.4. �

5. The main conjecture

In this section we discuss the main conjecture and ways to approach its proof.

5.1. It was argued by Kontsevich [12] and Shoikhet [18] that the isomorphisms arising
from the Hochschild–Kostant–Rosenberg donot respect the natural structures that exist
on the Hochschild and harmonic structures, respectively. However, as a consequence
of Kontsevich’s famous proof of the formality conjecture, he was able to prove that
correcting theIHKR isomorphism by a factor ofÂ−1/2X ∈ H ∗(X, C) yields a ring
isomorphism:

Claim 5.1 (Kontsevich [12, Claim 8.4]). Let IK be the composite isomorphism

IK : HH ∗(X)
(IHKR)−1✲ HT ∗(X)

�Â−1/2X✲ HT ∗(X).

ThenIK is a ring isomorphism.
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5.2. Observe that the way theIHKR isomorphism was defined,IK can be defined
with the same definition, but using a modified Hochschild–Kostant–Rosenberg
isomorphism

I ′ : �∗O�
∼−→
⊕

i

�i
X[i],

given by

I ′ : �∗O�
I✲
⊕

i

�i
X[i] ∧Â

1/2
✲

⊕
i

�i
X[i].

Here, by∧Â1/2 we have denoted the morphisms

�j
X[j ]

�j
X[j ]∧ÂX✲

⊕
i

�i+j
X [i + j ],

where

Â
1/2
X : OX →

⊕
i

�i
X[i]

is the map that corresponds to

Â
1/2
X ∈

⊕
i

H i(X,�i
X) = HomX(OX,

⊕
i

�i
X[i]).

5.3. The moral of Kontsevich’s result is thatI is the “wrong” isomorphism to use,
and the correct one isI ′. With this replacement,IHKR gets replaced by

IK : HH∗(X)
IHKR✲ H�∗(X)

∧Â1/2
✲ H�∗(X).

Not surprisingly, this matches well with the definition of the Mukai vector: if we use
I and take Theorem4.5 as our definition of differential forms-valued Chern character,
we get back the classic definition of the Chern character; replacingI by I ′ replaces
this classic Chern character with the Mukai vector

v(F) = ch(F) · Â1/2,

which we saw in Sections2 and 3 is better behaved from a functorial point of view.
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5.4. These observations, combined with the fact that all the properties of the Hochschild
and the harmonic structures appear to match, lead us to state the following
conjecture:

Conjecture 5.2. The maps(IK, IK) form an isomorphism between the Hochschild and
the harmonic structures of a compact smooth space X.

Observe that this conjecture includes, as a particular case, Kontsevich’s Theorem5.1.

Remark 5.3. This conjecture can be broadly classified to be a result of the same type
as Tsygan’s formality conjecture[20]. In general, such results describe various structures
(product, pairing, Lie bracket, etc.) that are matched by a specific isomorphism between
the Hochschild side and the harmonic side.

5.5. We conclude with a remark on a possible approach to proving Conjecture 5.2. For
simplicity we restrict our attention to a discussion of the isomorphism on cohomology
(where we know the conjecture is true by Kontsevich’s result). Consider the sequence
of morphisms

Hom∗X(
⊕

�i
X[i],

⊕
�i

X[i]) I✲ Hom∗X(�∗O�,�∗O�)
❦◗
◗
◗
◗

�∗

Hom∗X(
⊕

�i
X[i],OX)

p ❄
I✲ Hom∗X(�∗O�,OX)

−◦	
❄

�∗(−)◦	✲ Hom∗X×X(O�,O�)

HT ∗(X)






IHKR ✲ HH ∗(X).







The maps labeledI are isomorphisms induced byI; the arrow�∗(−)◦	 is the adjunction
isomorphism. The mapp is the projection of a matrix in Hom∗X(

⊕
�i

X[i],
⊕

�i
X[i])

onto its last column Hom∗X(
⊕

�i
X[i],OX). (The convention that we use is that mor-

phisms of small degree appear at thebottomor right of column vectors/matrices.)
Observe that all the vector spaces in the diagram have ring structures, but only the

top two and rightmost two have the ring structure given by the Yoneda product. Also,
note that the arrows between these rings are obviously ring homomorphisms.
We are interested in the map

e : Homj
X(
⊕

�i
X[i],OX)→ Homj

X(
⊕

�i
X[i],

⊕
�i

X[i])
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which takes a column vector to a matrix, by the formula
vn

vn−1
vn−2

...

v0


e�→


v0 v1 v2 · · · vn

0 v0 v1 · · · vn−1
0 0 v0 · · · vn−2

...

0 0 0 · · · v0

 .

(For simplicity, at this point assume that we are only dealing withhomogeneousele-
ments in Hom∗X(

⊕
�i

X[i],OX).) It is easy to check that what we think of as “multi-
plication” in Hom∗X(

⊕
�i

X[i],OX) is the product

v ∗ v′ = p(e(v) ◦ e(v′)).

There is another mape′ which takes a column vector and fills it up to a square
matrix e′(v). It is the map obtained by starting withv ∈ Homj

X(
⊕

�i
X[i],OX) and

following the arrows around the diagram to gete′(v) ∈ Homj
X(
⊕

�i
X[i],

⊕
�i

X[i]).
The fact thatp ◦ e′ is the identity means that the last column ofe′(v) is preciselyv.
To prove thatIHKR is a ring isomorphism, it would suffice to show thate′ =

e. Unfortunately, Kontsevich’s argument shows that this is not the case. The same
argument, however, shows that if we repeat the above analysis withI replaced byI ′
(and IHKR replaced byIK ) we do get a ring homomorphism. This leads us to state
the following conjecture:

Conjecture 5.4. Replacing I byI ′ in the above analysis yieldse = e′.

A proof of this conjecture, apart from providing a different proof of Kontsevich’s
result, would likely generalize to a proof of Conjecture5.2.
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