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Abstract

We continue the study of the Hochschild structure of a smooth space that we began in
our previous paper, examining implications of the Hochschild—Kostant—Rosenberg theorem. The
main contributions of the present paper are:

e we introduce a generalization of the usual notions of Mukai vector and Mukai pairing on
differential forms that applies to arbitrary manifolds;

e we give a proof of the fact that the natural Chern character kigpX) — HHo(X)
becomes, after the HKR isomorphism, the usual éigX) — EBH’KX, Q’X); and

e We present a conjecture that relates the Hochschild and harmonic structures of a smooth
space, similar in spirit to the Tsygan formality conjecture.
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1. Introduction

1.1. In [5], we introduced the Hochschild structu¢®& H*(X), H H,(X)) of a smooth
spaceX, which consists of:

e a graded ringH H*(X), the Hochschild cohomology ring, defined as
HHZ(X) = Hongoh(XxX)((pA’ @A[l]),

where 04 = 4,0y is the structure sheaf of the diagonal fhx X;
e a graded leftH H*(X)-module H H,(X), the Hochschild homology module, defined
as

HH;(X) = HomD[C’Oh(XxX)(A!@X[i]’ @A)a

where 4, is the left adjoint of4* defined by Grothendieck—Serre dual[fy, 3.3];
e a non-degenerate pairing, -) defined onH H,(X), the generalized Mukai pairing
(for the definition sed5]).

1.2. Following ideas of Markarian [15] we also introduced the Chern character map
ch: Ko(X) - HHy(X)
by setting cliz) for 7 ¢ D’éoh(X) to be the unique element af Hp(X) such that
Trxxx (o Ch(F)) = Trx (P, (F)) = Trx(m2(n} 7 ® )

for every u e Hongoh(Xxx)(@A, SA).

Here Tr is the Serre duality trad®, 2.3], Sy = wx[dim X] is the dualizing object
of D‘goh(X) (also to be thought of as the functer ®x Sx), Sy = 4,Sx is the object
whose associated integral transform g, and @4 __ , is the natural transformation
1x = Sx associated tqu (2.2).

It is worth pointing out thatu o ch(%#) is a morphism4,0x — S4, so using the
definition of 4, = S;iXA*Sx it follows that 1o ch(#) is in fact a morphism

Syt Sq— Sy

and thus it makes sense to take its traceXosw X. For more details sefb].
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1.3. The Hochschild structure satisfies the following properfis

e to every integral functo : D2, (X) — D%, (Y) there is a naturally associated map
of graded vector space®, : HH,(X) — HH,(Y). This association is functorial,
commutes with ch, and it is a left adjoint to®, then ¥, is a left adjoint to®,
with respect to the Mukai pairings oX andY, respectively, i.e.,

(v, Pyw)y = (Vyv, w)x

forve HH,(Y), w € HH.(X);
e the Mukai pairing is a generalization of the Euler pairing Kg(X),

(ch(@), ch(F)) = y(&, F) = > (=1 dim Exty (8. 7)

1

for any &, 7 € D% (X);

e the Hochschild structure is invariant under derived equivalences given by Fourier—
Mukai transforms; in other words, #x_.y : D%,,(X) — D% ,(Y) is a Fourie—Mukai
transform, then there are induced isomorphiski$/*(X)~HH*(Y) (as graded
rings), HH,(X)~ HH,(Y) (as graded modules over the corresponding cohomology
rings) and this isomorphism is an isometry with respect to the generalized Mukai
pairings onX and onY, respectively.

1.4. The purpose of this paper is to study the similarities between the Hochschild
structure and theénarmonic structure(HT*(X), HQ.(X)) of X, whose vector space
structure is defined as

q
HT'(X) = @ H' X, N\ Tx),

p+q=i

HQ(X) = P HP(X.Q%).
q—p=i

These vector spaces carry the same structuré&/ a5*(X), H H, (X)), namelyH T*(X)

is a ring, with multiplication induced by the exterior product on polyvector fields;
HQ,(X) is a module overHT*(X), via contraction of polyvector fields with forms;
and in Section3 we shall define a pairing o/ Q.(X) which is a modification of
the usual pairing of forms given by cup product and integrationXofThis modified
inner product is a more concrete generalization of the Mukai product in [17].) The
generalized Mukai pairing can be thought of as thieror of the usual polarization of
the Hodge structure oK.
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1.5. In Section2, we explain how to associate to an integral transfd@rmbD?_(X) —
D2.(Y) a map of graded vector spaces

D, HQu(X) - HQ,.(Y)

and we prove in Sectio® that this association satisfies the same adjointness prop-
erties as the similar association for Hochschild homology discussed above. The same
construction as in [5] gives us a construction of a generalized Mukai vector map

v:DE (X x¥Y) - H*(X x Y, Q)

for any pair of spaceX andY. When X is a point, we recover (a small modification
of) Mukai’s original definition,

v:DE (Pt x Y) — H*(ptx ¥, Q).
The formula we get is
V(&) = ch(&).AY?,

where Ay is the Ay class ofX (see below and Sectio?). Mukai's original definition
used tdk instead ofA x; the two are the same in the case considered by Mukai, namely
when¢1(X) = 0.

The unexpected surprise here is the fact that the Mukai vector is not symmetric:
is not the same if we replack x Y by Y x X. In a sense, the Mukai vector associates
an element off*(X x ¥, Q) to afunctor D%, (X) — D& (Y), and there is no reason
why this should be symmetric. The Mukai vectoié) of & € D’goh(X) is obtained by

considering the functo®?, ,  : D(pt) — D(X). @ﬁlt;x =—Qcé.
The modification of Mukai’s original definition that we alluded to above has to do
with the difference between {dand Ax: while the Todd class oK is obtained from

the power series associated to

1—e’

the Ay class is obtained from

X
eX/2 — o—x/2°
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They are related by the formula

X _ X ) e_x/z
eX/2 — o—x/2 1—e X

and thus
AAX = tdx.Ch(wx)l/z

for an appropriately defined square root (see Se@joiThe use of thel genus instead
of tdy in the definition of the Mukai vector ties in well with Kontsevich’s claim (5.1).

1.6. The connection between the Hochschild and harmonic structures is provided by
the Hochschild—Kostant—-Rosenberg (HKR) isomorphism, which in modern language
can be written as a specific quasi-isomorphism

1470, — @ Qi

1

where A4* is the left derived functor of the usual pull-back functor, and the right-hand
side of the quasi-isomorphism is the complex which Bjsin the —ith position, and

all differentials are zero. The isomorphisminduces isomorphisms of graded vector
spaces (Corollary.2)

IHKR . HH*(X) <~ HT*(X),

Ihkr : HH.(X) — HQ.(X).

Theorem 4.5. The composition

Ko(X) = HHo(x) 1% (D 1 (x, Qi)

l
agrees with the usual Chern character map.

This result was originally stated without proof and in an incomplete form in a preprint
by Markarian[15].

As part of our proof of this theorem we prove the following result, which provides
an interesting interpretation of the Atiyah class in view of the HKR isomorphism;
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Proposition 4.4. The exponential of the universal Atiyah class is precisely the map

Os 2> 4,870, 25 P A2,
i
wherey is the unit of the adjunctiont* - 4,.

1.7. While the HKR isomorphism is well-behaved with respect to the Chern character
(in fact one can take Theorem5 as a definition of the differential forms-valued Chern
character), it was argued by Kontsevich [12] and Shoikhet [18] R, I4kr do

not respect the Hochschild and harmonic structures. Specifidalf§} is not a ring
isomorphism. However, Kontsevich argued that as a consequence of his proof of the

formality conjecture, modifying HKR by A;(l/z does in fact yield a ring isomorphism.
More precisely, denote byX the isomorphism

HKRy—1 §-1/2
5 v X)) 2 BT (x) 22X HTH(X),

where the second map is given by the contraction of a polyvector field )&/ﬁHz.
Then IX is a ring isomorphisnf12, Claim 8.4].

1.8. A similar phenomenon can be seen on the level of homology theories: the Mukai
product that we define in (3.7) doe®t satisfy

(ch(&), ch(F)) = 1(&, 7)

as would have been expected from the similar property of Hochschild homology. The
correct statement (already known to Mukai in the case of K3 surfaces) is that

(W(&), v(F)) = (&, F),
where
v(&) = ch(&).AY2.

These observations lead to the following conjecture:

Conjecture 5.2. The maps

IX HH*(X) —> HT*(X), Ix:HH.(X)—> HQ.(X),
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where IX is the composition

HKRy—1 A2
15 a0 0 BT x) 225 HTHX),

and I is given by

~1/2
Ix : HH.(X) 2% gQ,(x) 225 HQ,(X),

induce an isomorphism between the Hochschild and the harmonic structures of X.
Concretely X is a ring isomorphismix is an isometry with respect to the generalized
Mukai product and the two isomorphisms are compatible with the module structures
on HQ,(X) and H H,(X), respectively.

It is worthwhile observing that bottiX and Ik arise from the same modification of
the HKR isomorphism (5.3). Similar conjectures (without involving the Mukai pairing)
have been stated by Tsygan and are usually referred to as Tsygan forj2@]ity

1.9. The main reason these results are interesting is because it has been conjectured
by Kontsevich [13] that, in the case of a Calabi—Yau manifdtlZ*(X) should be
closely related to the ordinary cohomology rifj(X, C) of the mirror X of X. In a
future paper we shall expand this idea further, introducing a product structure on the
Hochschild homology of a Calabi—Yau orbifold and arguing that its properties make it
a good candidate for the mirror of Chen—Ruan’s [6] orbifold cohomology theory.

Another application of the results in this paper, also to appear in the future, is a
conceptual explanation of the results of the computations of Fantechi and Géttsche [7],
which show that the orbifold cohomology of a symmetric product of abelian or K3
surfaces agrees with the cohomology of the Hilbert scheme of points on the surface.
This explanation is a combination of the main result of Bridgeland et al. [3] with
ideas of Verbitsky [21] and with the derived category invariance of the Hochschild
structure.

1.10. The paper is structured as follows: after an introductory section in which we
discuss integral transforms and natural transformations between them and we define
the Mukai vector, we turn in Section 3 to a definition of the Mukai pairing on forms
and to proofs of its basic functoriality and adjointness properties. Section 4 is devoted
to a discussion of the HKR isomorphism and of the compatibility between the Chern
character defined in (1.2) and the usual one. We conclude with a discussion of the
main conjecture and of possible ways of proving it in Section 5.

Conventions
All the spaces involved are smooth algebraic varieties proper Gvéor any alge-
braically closed field of characteristic zero), or compact complex manifolds. We shall
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always omit the symbolg andR in front of push-forward, pull-back and tensor func-
tors, but we shall consider them as derived except where explicitly stated otherwise.
We shall write# @ i where # is a sheaf angt is a morphism and mean by this the
morphism 1r ® u. We shall use eithen or . for the usual product in cohomology.
Serre duality notations and conventions are presented in detail in S&ction

2. Preliminaries

In this section, we provide a brief introduction to integral functors on the level
of derived categories and rational cohomology. The concepts and results are mostly
straightforward generalizations of Mukai’s original results [16,17]. The new material is
in the definition of the directed Mukai vector (2.1).

We also include in this section several results on traces and duality theory that will
be needed later on.

2.1. Let X andY be complex manifolds, and lét be an object irDﬁoh(X xY). If ny
andy are the projections fronX x Y to X andY, respectively, we define the integral
transform with kernelf to be the functor

D%y 1 Dgon(X) = DEon(¥Y) - @5y () = mya(my(-) ® 6).
Likewise, if u is any element of the rind7*(X x Y, Q), we define the map
Py H'(X.Q) = H*Y, Q) ¢y y(-) = nys(my(-).0

and call it the integral transform (in cohomology) associateg..to

Note that none of these concepts is symmetriXiandY: the objecté defines both
a functor fromX to Y and one fromY to X, and we clearly distinguish between the
two.

2.2. The association between objects mﬁoh(X x Y) and integral transforms is func-

torial: given a morphismu : & — % between objects och’oh(X x Y), there is an
obvious natural transformation

T T
Py .y Pxy = Px_y,
given by

Dy () =y (i () ® w.
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2.3. There is a natural map between the derived category and the cohomology ring,
namely the exponential Chern character,: ﬂﬁoh(X) — H*(X, Q). It commutes with
pull-backs, and transforms tensor products into cup products. In an ideal world, it
would also commute with push-forwards, and then the diagram

b DYy b
Deon(X) —— Dcon(¥)

ch chl
ch(&)

H*(X, Q) 2= H*(Y, Q)

would commute. However, the Grothendieck—Riemann—Roch formula tells us that we
need to correct the commutation of push-forward and ch by the Todd classes of the
spaces involved; more precisely, if : X — Y is a locally complete intersection
morphism, then

. (Ch(-).tdy) = ch(m,(-)).tdy.

Our purpose is to define a Mukai vector such that replacing ch by the above
diagram becomes commutative.

24. It is easy to see that there exists a unique formal series expansion

V1+c1+c2+...1In the symbolscy, o, ..., such that

Vi=1,
VI = i
and
W?=p

for every space&X and anyu, v € H®*(X, Q) with constant term 1. Its first three terms
are

Viterteor+...=1+ i+ 3l —cd) + &Bes —dcrcra + ) + ... .

A similar definition enables us to define a unique fourth-order root,

Viteiter+...=1+2c1+ 3582 -3 +....
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For any smooth spac¥ let Ay € H*(X, C) be the characteristic class associated to

Tx, the tangent bundle oX, via the power series of

X
eX/2 — o—x/2°

It is related to the usual Todd class ¥fby the formula

Ax = tdx.\/ Ch(a)x)

where wy is the canonical line bundle of.

2.5. Recall from[5] that the Chern character of an obje€te D2, (X) was obtained
by thinking of & as giving a functp@ﬁt_)X : D’c’gh(pt) - _Dﬁoh(X). This directed point
of view explains the asymmetry in the following definition:

Definition 2.1. The directed Mukai vector of an elemen e D2, (X x Y) is defined
by

V(& X — Y) = ch(@) /tdyry. %

Whenever the direction is obvious, we shall omit thie— Y and just writev(&)
instead. (We abuse notation slightly, and writg for 73wy, etc.)

Taking the first space to be a point we obtain the definition of the Mukai vector of

an objecté € DZ(X) = D%y, (pt x X):

V(&) = ch(&).\/ Ax.

2.6. A straightforward calculation shows that the diagram

b D5y b
DCOh(X) Dcoh(Y)

v v l
v(8)

H*(X,Q) =X H*(¥,Q)
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commutes. (This is a direct analogue [6f Theorem 7.1].) We shall denote the map

‘va(i)y by @, whered = &§__,.

2.7. Given complex manifoldsX, Y, Z, and elementsf’ € D’c’oh(X x Y) and & €
Db (Y x Z), defineZ o & € D? (X x Z) by

coh coh
F o6 =nxz(Tyyé @y, F),

where nxy, nyz, nxz are the projections fronX x ¥ x Z to X x Y, Y x Z and
X x Z, respectively. Similarly, ifu € H*(X x Y,Q), v € H*(Y x Z,Q), consider
voue H* (X x Z,Q) given by

Vo u=mxz «(Tyyl.7y V).
The reason behind the notation is the fact that

F & _ T o8
Dy_,70P% .y =Py,

and

M nw ol
Py—z°Px .y =Px_ 7

(The second result is standard; for a proof of the first one[$gé.4].) Furthermore,
it is a straightforward calculation to check that

WF o, X—>2)=v(F,Y —> Z)ov(6, X = Y)

[4, 3.1.10]. It follows that if¥ : D, (X) — D%,,(Y) and @ : D%, (Y) — D%, (Z) are
integral transforms, then we have

(@o¥), =d,0 ¥,

(compare also td5, Theorem 6.3]). Since it can be easily checked that=dld, it
follows that if @ is an equivalence of derived categories, thenis an isomorphism
H*(X,Q) — H*(Y, Q).



A. Cdldararu/Advances in Mathematics 194 (2005) 34-66 45

2.8. The map®, does not respect the usual grading on the cohomology rings of
X and Y, nor does it respect Hodge decompositions. However, it does respect the
decomposition ofH*(X) by columnsof the Hodge diamond: for every @, maps
HQ;(X) to HQ;(Y),

0, =0y HQU(X) = @ HP(X) > HQ; ()= @@ HP(Y),
q—p=i q—p=i

becausev(&) consists only of classes of typ@??(X x Y), and pushing-forward t&
maps a class of typép, ¢) to a class of typep — dim X, g — dim X).

This statement is the harmonic structure analogue of the fact that the push-forward
on Hochschild homology preserves the grading.

3. The Mukai pairing on cohomology

In Section2, we defined a grated vector space mhp: H*(X,Q) — H*(Y,Q)
associated to an integral transforn: D2, (X) — D2, (Y). In the case of K3 surfaces,
Mukai proved that whend is an equivalence@, is an isometry with respect to a
modified version of the usual pairing on the total cohomology ringXandY. He
did this by showing the more powerful result that maps on cohomology associated to
adjoint functors are themselves adjoint with respect to this modified pairing. In this
section, we generalize this result to arbitrary complex manifolds (not necessarily of
dimension 2 or with trivial canonical class), by defining a suitable generalization of
Mukai’s pairing.

3.1. The reason behin@, being an isometry for the Mukai product is the fact that
an equivalencep : D2, (X) — D%,,(Y) must satisfy

x(F.%) =Y _ (=1 dim RHom (7, %)

= Z(—l)i dim RHom (0.7 , %)
= 1y (DT, D).

Thus, if we define a pairing on the algebraic partfdf(X, Q) by

W(F), v( D) = 1x(F.9)
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for all #,% € D%, (X), then &, is an isometry between the algebraic subrings of
H*(X,Q) and H*(Y, Q) (becausewv commutes with®).

3.2. There are two problems with this definition: one is whether the above pairing is
well defined, another if we can extend it to a pairing on the whole cohomology ring
of X. For K3 surfaces we have

x(F.9) = ;x(F' ®9)

= / ch(Z").ch(9).tdyx
X

= / ch(Z").4/tdy.ch(¥).\/tdx
X

= / v(ZF).v(9)
X

= / v(F) " v(9),
X

where # ¥ = RHom(#, (x), and for a vector
v = (v0.v2.va) € H*(X, Q) ® H*(X, Q) ® H*(X, Q)

v¥ is defined to equalvg, —v2, v4). Thus the pairing is well defined in the K3 case
(it only depends on the Mukai vectors gf and%, and not onZ and % themselves).
Note that for a K3 surface we have(wy) = 0, therefore theA class agrees with the
Todd class and thus

v(7) =ch(¥).y/tdy.

3.3. Our goal is to defina” for any X and anyv € H®*(X, Q) (and eventually for
any v € H*(X, Q)), such that we have the equality

(T G) = / ) @),

The definition of -v will arise from the conceptual description of the Hirzebruch—
Riemann—Roch formula given ifb].
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Recall that in [loc.cit.] we obtained the Riemann—Roch formula by using the adjunc-
tion

T TV
@pt—>X 1 QX—)pt’
through the equalities

9

(Ch(Z), ch(®)) = (B, x)L, (Pp, x)x1)

= (L (D7 p) (D5 )41
= (L (7 5D:1) = 1x(F. D).
This clearly suggests that we should define
v(ZF) =v(Z,pt—> X)) =v(ZF, X — pt),
because then we will get

Ix(F,9) = v(F oY, pt— pt) =v(F', X — pt) ov(¥, pt —> X)

= / v(F) v(9).
X

3.4. More generally, we are led to requiring’ to satisfy
(&, X = V) =v(Y = X)
where
E* = 6" @ mywx[dim X]
is the object onY x X which gives the adjunctiof2, Lemma 4.5]
¥y 107
Consider the involution

7 H¥*X, Q) — H®*"(X, Q)
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given by
T(vo, V2, . .., V2,) = (VO, —V2, V4, ..., (=1)"v2y,).

It is easy to check that satisfiest(vw) = t(v)t(w), and it is well known that
ch(&Y) = 7(ch(&)). Thus

- ch(wy)
T, X = Y)) = T(Ch(@ﬁ))-f(\/thxY)‘T( Ch(wx))

h
ch(é™). Jtd(Ty ). 7%

) 5 ch(wx)
= ch(&").idx ey Vehtx ). | o
_ (—1)dim N GRS a)X[dimx])-\/m' %

= (=DIM Xy X — Y)

ch(wy)

_ (_ dim X 0%
= (—DIM X%, Y — X). oD

where the third equality is an immediate consequence of the forfBulb5.2]
td(Ty) = td(Tx). exp(—c1(Tx)) = td(Tx).ch(wy)

(We have abused notation slightly, and we wraig for 75wy, etc.)
3.5. The above calculation motivates the following definition:
Definition 3.1. Fore € H*(X x Y, Q) set

e’ = (=1)IMXz(e). /%.

In particular, for a single spac¥ (considered as pt X) andv € H*(X, Q) let
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The calculations in (3.3) now show that we have

(T %) = /chgf)v.v(%.

3.6. To obtain a full generalization of the Mukai product we need to extendo
all of H*(X, Q). A natural extension of the involution is the mapt : H*(X,C) —
H*(X, C) given by

. .2n
(v, V1, V2, ..., V2,) = (Vo, iv1, —V2, ..., Vo),

wherei = 4/—1. Its main properties are

(1) t(ow) = t(v).1(w);

(2) ©(v/v) = /7(v) for any v with leading term equal to 1;
(3) t(z(v)) = v for any v € H®®(X, C);

(4) t(ch(¥)) = ch(#™ 1) = ch()~! for any line bundle;
() 1(f* () = f*x);

(6) filt(v)) = (=1)dime X=dime Yo(f,y),

where f : X — Y is any proper morphism of complex manifolds. The proof of all
these properties is immediate.
Thus, defining

VO HY(X xY,C) = H*(X x Y,C)

e’ = (=1)9m Xr(e). /%

extends in a natural way the operatof previously defined.

by

3.7. We can now tackle the generalized Mukai product:

Definition 3.2. Let X be a complex manifold, and lat, w € H*(X, C). Define the
product (v, w) by the formula
(v, w) :/ vVw,
X

where v¥ is defined above. This product will be called tlgeneralized Mukai
product
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3.8. It is interesting to compare this definition with a similar one that appears in Hodge
theory. Define the Weyl operatot, by 7(v) = i?~9v for v € H?*9(X). The pairing

(v, w) =/ T(v).w
X

is the standard one that appears in the definition of a polarized Hodge structure. Observe
that the analogy between the Mukai pairing as a mirror to the usual Poincaré pairing
holds, if we take this in the sense of matching polarizations: the miapformally the

mirror of T (if we mirror the Hodge diamond; gets transformed int@). We do not

have a good understanding of thé.Ach(wy) term that appears in the definition of

the Mukai pairing.

Proposition 3.3. Let X and Y be complex manifojdend @ : D2, (X) — D%,,(Y¥) and
¥ : Db (Y) — D (X) be adjoint integral transform$¥ is a left adjoint to®). Then
Y. is a left adjoint to @, with respect to the generalized Mukai produat other
words we have

<v7 ¢*w>y = (g’*va w)X

for all ve H*(Y,C), w € H*(X, C).

Remark 3.4. Whenv andw are Mukai vectors of elements B4, (Y) and D%, (X),
the result is a trivial consequence of the discussion in (3.1). The actual content is that
the result holds for alb, w.

Corollary 3.5. Under the hypotheses of Propositi@B, assume furthermore thab is
an equivalence of categories. Th@n. : H*(X,C) — H*(Y,C) is an isometry with
respect to the generalized Mukai product

Proof. See the proof of [5, Corollary 7.5].0J

Proof of Proposition 3.3. Assume® = qﬁiﬁy, and let* = &Y ® njwy[dim Y], so
that ¥ = @¢_ .. Definee = v(&, X — Y) ande* = v(6*, Y — X). A computation
entirely similar to the one in (3.4) yields

e* = (—1)dim Y‘c(e)—nf chier)
Ty Ch(a)x)
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and thus

(_1)d|m Ye.ﬂ:*X M Ch(CUX)

e = i /Ch(wy)

We then have

¥ e* v e* 1
(Pyv,w) = ((P§’_>X(U)s w) = /X Py_ x()'w = /X T(@y—»{(”))m w

k * 1
= /‘Xr(nx,*(nyve )).—m w

| 1
_ (_1)d|mY/X nx’*(r(n’{/l}).r(e*)ymw

. 1
dim Y
= (=19m /XXY r(n’;v).r(e*).—n*x Ch(wx).n}‘(w

. my/Ch(wy) 1 N

. . .TCX
my«/Ch(wy) my/ch(wx)

XxY

*
.6‘.7'CXU)

. 1
B /Xxy nY(T(v)).ﬂT/\/Ch((DY)

1
= /y T(U).W.TCY)*(E.TC;LU)

= /Y vv.g0§(_>y(w) = (v, @%—)Y(w»

= (v, P, w). O

4. The Hochschild—Kostant—Rosenberg theorem and the Chern character
In this section, we study the relationship between the Hochschild and harmonic

structures. We provide a discussion of the connection between the usual Chern character
and the one introduced ifb].

4.1. The starting point of our analysis is the following theorem:

Theorem 4.1 (Hochschild—Kostant—Rosenberg [9], Kontsevich [12], Swan [19] and
Yekutieli [22]) Let X be a smoothquasi-projective varietyand let4 : X — X x X
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be the diagonal embedding. Then there exists a quasi-isomorphism

1470, — @ Qlil.

1

where the right-hand side denotes the complex whes¢h term is Q%,, and all dif-
ferentials are zero

Proof. (This is nothing but a brief recounting of the results[#2], and the reader
should consult [loc.cit.] for more details.) Recall thatRfis a commutativeC-algebra
there exists a standard resolution®fas anR¢ = R ®c R-module. Fori >0 let

B;(R) = R®(2,

where the tensor product is taken o@r It is an R¢-module by multiplication in the
first and last factor. The bar resolution is defined to be the compleR¢ahodules

i > Bi(R) —> - —> B1(R) > HBo(R) — 0,
with differential

dag®a1® - ®a;)
=apa1 Qa2 ® - Ra; —agR@Rar1a2 R ---Qa; + ---
+-D e ®a1® - ®ai1a;.
It is an exact complex, except at the last step where the cohomoloBy Tus it is
a resolution ofR in R¢-9)iod [14, 1.1.12].
If X were affine,X = SpecR, we could use the above resolution to compute’ 4:
indeed, @4 is nothing butR viewed as ankR¢ = (Oxxx-module, and the module%;

are R¢-flat. The complex obtained by tensoring the bar resolution &/ ewith R is
called the Hochschild chain complex:

o> C;(R) > -+ — E1(R) — o(R) — 0,
where
(gi(R) ZQ,'(R) QRe Rs

and the differential is obtained from the differential @f(R).
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Problems arise when one tries to sheafify the bar resolution to obtain a complex of
sheaves on a scheme: the resulting sheaves are ill-behaved (in particular, not quasi-
coherent). As a replacement, Yekutieli proposed to use the complete bar resolution,
which he defined in22]. For i >0, let X' be the formal completion of the scheme
X' = X x --- x X along the small diagonal. Define

Bi(X) = Ogisa,

which is a sheaf of abelian groups on the topological spac¥ekutieli argued that
one can formally complete and sheafify the original bar resolution to get the complete
bar resolution

s = Bi(X) > - = FB1(X) > Bo(X) — O,

where the maps are locally obtained from the maps of the original bar resolution,
by noting that these are continuous for the topologies with respect to which we are
completing. The complete bar resolution is an exact resolutiod pfby sheaves of
flat Ox x x-modules (see remark following Proposition 1.4 and proof of Proposition 1.5
in [22]). Over an affine open s&f = SpecR of X, I'(U, %4;(X)) is the completion
A;(R) of %;(R) at the ideall; which is the kernel of the multiplication maf; (R) =
R® — R.

One can take the complete bar resolution as a flat resolutiah,o6n X x X, and
use it to computed* (4. This is the same as tensoring the complete bar resolution over
Ox«x with (4. The resulting complex is called the complex of complete Hochschild
chains ofX (see [22, Definition 1.3] for details),

-~~—>%i(X)—> ~~~—>%1(X)—>(20(X)—>0,
where
@i(X) = Bi(X) R0y, x O 1.

Over an affine open sdif = Specr, I'(U, @i (X)) is the completiorf?,-(R) of €;(R)
at I; (as a%;(R)-module).
Over any affine ope/ = SpecR define

Ii - 6i(R) — Q )y

by setting

1
({(1®a1® - ®a; ®1) Qe l)=;da1/\da2/\~'/\dai.
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These maps are continuous with respect to the topology that is used for completing
[22, Lemma 4.1], so they can be completed and sheafified to maps

I %(X) > Q.

They also commute with the zero differentials of the compex?.,, so they assemble
to a morphism of complexes

I:4%0,4 — @Qi){[i]

1

which can be seen to be a quasi-isomorphism in characteristic 0 [12, Theorem 4.6.1.1,
22, Proposition 4.4]. In the affine case this is essentially the Hochschild—Kostant—
Rosenberg theorer®]. [

Corollary 4.2. The Hochschild—Kostant—Rosenberg isomorphism | induces isomor-
phisms of graded vector spaces

IHKR - HH*(X) <~ HT*(X),

Ihkr : HH(X) — HQ.(X).

Proof.

HH"(X) = Homy,x (04, O4[k]) =Homyx (4*C 4, Ox[k])

Homy (EB Qlil, @x[k]> =P v x. \ v) = HTH(X)

12

and

HH(X) = Homy,x(4:0x[k], 0 4) =Homy (Ox[k], 40 4)

12

Homy (Gx[k], D Qéf[i]) =P H X Q) =HAX). O

i
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4.2. We are now interested in understanding how the above isomorphisms relate the
Chern characteikog(X) — HHp(X) defined in the introduction to the usual Chern
character. . . .

Let Q?’ and ', d_enote the push-forwards by of Q%’ and @'y, respectively (Here
the tensor product is taken ovéry.) Let

. QB i
e: Q' — QY

be the natural projection map. By an abuse of notation, we shall also denat¢hby
push-forward

Ae: Q% — Q.

Definition 4.3. Define the universal Atiyah class to be the class
o1 € Exty, (04, Q),
of the extension
0— Qi — (D“AQ) —- 04— 0,

where € 2 is the second infinitesimal neighborhood of the diagonaKix X. Fur-
thermore, definey; for i >0 by the formula

o = &0 (n;Q;‘;’(i_l) ® 1) o (7‘5;9?0_2) ®auy)o---oa1: 0y — .QlA[l]

The exponential Atiyah class ekp is defined by the formula below, where= dimX

1 1 .
exqa)=l+al+5a2+’”+aan:(941%@A*le[l].

1

This definition requires a short explanation. Recall that given an oner,D’goh(X),
the Atiyah class of¢ is the class

(&) € Exty (&£, & ® Q%)
of the extension orX

O—>§®Q§—>J1((§)—>é"—>0
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where J1(&) is the first jet bundle of¢ [11, 1.1]. A natural way to construct this

extension is to consider the natural transformatibfi , , associated to the universal
Atiyah class

o1 : 04 — Qi‘[l]

between the identity functor and the “tensor ﬁﬁ([l]” functor. The valueqﬁg‘(1 x (&)

—

of this natural transformation o# is precisely the Atiyah classi(&) of & (see, for
example[10, 10.1.5]). Theith component of the Chern character&fis then obtained
as

chi(&) = l._];Tré”(“i (6))
where
2(€) =20 (R ®01(6)) 0 Q2T @ u1(€)) 0+ 001 (6) : € — & @ Qylil.
(See[10, 10.1.6] for details.) Our definition af; : 04 — A*Q’g[i] has been tailored to

mimic this definition:e; (&) will be precisely the value o@ of the natural transforma-

tion associated to the morphism. Therefore, if we consider the natural transformation

diixffi() associated to exp), its value

PP (8) - 6 — P & ® il

1

on & will satisfy
Chorig(6) = Trg (@™ (£)),
where chyig(&) is the usual Chern character &t

Proposition 4.4. The exponentiabxp(e) of the universal Atiyah class is precisely the
map

Os 5 44704 25 P 42101,
i
wherey is the unit of the adjunctiont* - 4.

Proof. We divide the proof of this proposition into several steps, to make it more
manageable. We will use the notations used in the proof of Theorem 4.1.
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Stepl: Consider the exact sequence
0— QZ—)@A(2>—>@A—>O

which defines the universal Atiyah clasg. Tensoring it by the locally free sheaf
Q%" yields the exact sequence

0— Q5" & 0,0 @MY — 0% — 0.

Stringing together these exact sequences for successive valuewefconstruct the
exact sequence

0 Q% - 0,0 ®n§§2§(ifl) - 0,0 ® REQ?FZ) - > 0,0—>04—0,
whose extension class is precisely
(n’EQ?(i_l) ® o) o (nzﬂg(i_z) ®ar)o---ouy: Oy — Q?i [i].
Step2: We claim that there exists a map of exact sequences

— Bi(X) Bi-1(X) > Bo(X) —> Oy — 0

o U

0—— Q% — 0,0emd ™Y — ... 0,0 0y 0,

where the top row is the (augmented) completed bar resolution defined in the proof of
Theorem 4.1, and the bottom row is the one defined in Step 1. It is sufficient to define
the maps in a local patcly = SpecR. Let I = I = ker(R ® R — R) be the ideal
defining the diagonal iV x U, and identiny}e/C with 1/1? via the differential map

R— Qyc=1/I°, r>dr=r®l-—1®r+]I°
Consider the maps

¢ : Bi(R) = R®2 — (R@ R)/1” @k QZ"
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defined by
Qi(aa®a1® - ®ajy1) = (ap® a1+ 1%) Qg dar ®g dar Qg - - - Qg da;

(we write Qr on the right because we usg). The same argument as the one in the
proof of [22, Lemma 4.1] shows that these maps are continuous with respect to the
adic topology used to complet®; (R) = R®(*+2| thus the maps,; descend to maps

0 Bi(R) > (R® R)/I> @r QG
which then sheafify to give the desired maps
Q; : ,@\,(X) — @A(z) ®TE§Q§[.

The mape; is the composition
Bi(X) L5 0 0 @m0 — 04 @ 1309 = 0%,

Step3: We now need to check the commutativity of the squares in the above diagram.
Note that since everything is local, we can assume we are in an openlpatc8pecRr,
U x U = SpecR ® R. The ideall in R ® R is generated by expressions of the form
r®1—1®r for r € R. Then a relevant square in the above diagram (before completing)
is

RORQR®R by

R®RQR
P2 léﬂl
h/
(R@R)/I*®@r 1/1?®@r /1> =+ (R® R)/I* @ I /17,
where(R®R)/I? is considered a righi®-module by multiplication in the second factor,

and /12 is considered af-module by multiplication in either factor (the two module
structures are the same). The maps in this diagram are:

hl®hRc®1D)=bhbxc®1-10bhc®1+10bRc,
the Hochschild differential
W((A®14 1% ®k db®g de) =db®g de = (b ®1—18 b+ I?) @ dc,
P1a®b®c)=(a®c+1° Qg db,
P,(1®b@c®1) = (1®1+1%) @ db®g dc.
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By direct computation we have

P1(M(1®hRc®1) = h®c®1-10bc®1+10bRQc)
= (b®1+ 1% @rdc— (1® 1+ I?) ®g d(bc)

+(l®c+ 1% @k db

which, usingd(bc) = bdc + c¢db, equals

=bR1+1)Qrdc—1@b+ 1% ®g dc— (1@ c+ 1% ®g db
+(A®c+ 1% @ db

=(b®1-1®b+ 1% Qf dc

= h((1®1) ®rdb g dc)

= h(p,(1®b®c®1)).

Similar computations ensure the commutativity of the other squares.

Step4: Observe that there exists a natural myapom the bar resolutior#. (X) to the
bar complex®.(X) = #.(X) Qxxx O 4, simply given by 19 u whereu : Oxxx — 04
is the natural projection. This map is immediately seen to be precisely the; wfit
the adjunctiond™ 4 4,.

It is now obvious that multiplying by Ai! the composite map

Bi(X) 2> Q% 5 0,
yields precisely the map

Zx) 5 @00 24
wheren; is theith component ofy, locally (before completion) given by

a®a1®- - Qai+1+> apai+1® a1 -+ - a;

and 4.1I; is theith component of the HKR isomorphism.
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Now, chopping off at the last step the two exact sequences we have studied above
we get the diagram

C— Bi(X) Bi_1(X) . — Bo(X) — 0

o} le ?o

0—— Q% —+ O™ — ... — 0 —0

i
‘QA

&

i
',

which can be thought of as a map from the top complex (which repregesjtso
Q' [i]. In fact what we have is a factoring

O 4 Iﬂ)p Q?i N .QlA
of the map
Eopio@ = (l')A*Il oy,

where . is the map of complexes appearing at the top of the above diagram. However,

note that both the source and the targetgofare naturally isomorphic (ingoh(X X

X)) to 04, and theng. can be viewed as the identity map, — @,. Under these
identifications we conclude

i—];sop,- = Al on.
But the construction ofp; is such that it is represented by thstep extension
0— Q% — 0,00m8" ™ — ... — 0,0 — Oy — 0,
whose class we argued is
WO Y @on) o (O @u1) o0y O — Q.
Therefore

pi = (n’ﬁQ?(i_l) ® oq) o (nEQ%(i_z) Qou)o---oay:0,4— Q?i [i],



A. Caldararu/Advances in Mathematics 194 (2005) 34-66 61
and hence

1 1
.—OCi:.—SOpi:A*I[O]’].
i! i!

We conclude that

A

1

1
exp(oc):@ '—'ociz@d*lionzzl*lor]. O
i

Theorem 4.5. The composition

Ko(X) = HHo(X) % @B H' (X, @)

1

is the usual Chern character map

Proof. Let # € Ko(X), and let
ch(#) € HHy(X) = Homy« x (4104, O 4)
be the Chern character defined in (1.2). Let
ch(7) e Homy (Ox, A*O 4)

be the element that corresponds to(#h under the adjunctiom, 4 4*. If i/ is any
element of Hony (4*0 4, Sx) and

p= A on

is the corresponding element of Hgmy (¢4, S4) under the adjunctiom™ 4 4, the
construction of4, is such that

Trx (i o (7)) = Trxxx (o ch(F)).

(Heren: 04 — 4,4*0 4 is the unit of the adjunction.)
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On the other hand, the definition of €A) is such that for anyu,
Trxxx (o ch(F)) = Trx(mz« (M} 7 ® W),
and ch#) is the unique element i Hyo(X) with this property. We then have
Trx(W o ch(F)) = Trxxx (o ch(F)) = Trx(nz (7} F ® 1))
= Trx(m2.«(M1.7 @ (Al 0 1))
= Try (7'52,*(7'5?_97 ® A*,u/) o 7752,>i<(7":>:|k_3/7 ®n)
= Trx(F @ i o @'(F))
= Trx (i o Trz (@"(F))),

where the last equality if5, Lemma 2.4]. Since the trace induces a non-degenerate
pairing and the above equalities hold for aml it follows that

ch (7)) = Trz (P1(F)).
Applying the isomorphisni to both sides we conclude that
Inkr(ch(F)) = T o ch(F)) = [ o Trz (P(F)) = Trz (%P (F)) = chorig(F),

where the third equality is Propositioh4. [

5. The main conjecture

In this section we discuss the main conjecture and ways to approach its proof.

5.1. It was argued by Kontsevich [12] and Shoikhet [18] that the isomorphisms arising
from the Hochschild—Kostant—Rosenberg mtut respect the natural structures that exist

on the Hochschild and harmonic structures, respectively. However, as a consequence
of Kontsevich’s famous proof of the formality conjecture, he was able to prove that
correcting theHKR isomorphism by a factor oﬁ;(l/z e H*(X,C) yields a ring
isomorphism:

Claim 5.1 (Kontsevich [12, Claim 8.4] Let /X be the composite isomorphism

HKR)—1 AY?
15X mH 0 0 BT ) 22 HTRX).

Then X is a ring isomorphism
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5.2. Observe that the way thé"KR isomorphism was defined,X can be defined
with the same definition, but using a modified Hochschild—Kostant—Rosenberg
isomorphism

I': 4704 — P Qlil.

i

given by
I A* oA—»@Q [l]—»@g [i].

Here, by AAY2 we have denoted the morphisms
ofj) A @ Qi+ .

where

Ai/z 0x — @ Qg([i]
i
is the map that corresponds to

A% e EB H'(X, Q) = Homy (Ox. €D QliD.

5.3. The moral of Kontsevich’s result is thadtis the “wrong” isomorphism to use,
and the correct one ig’. With this replacement/ykr gets replaced by

Ix - HH.(X) ™% HO,(x) 245 HQ (X).

Not surprisingly, this matches well with the definition of the Mukai vector: if we use
| and take Theorerd.5 as our definition of differential forms-valued Chern character,
we get back the classic definition of the Chern character; replacimg I’ replaces
this classic Chern character with the Mukai vector

W(F) = ch(F) - AY?,

which we saw in Section2 and 3 is better behaved from a functorial point of view.
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5.4. These observations, combined with the fact that all the properties of the Hochschild
and the harmonic structures appear to match, lead us to state the following
conjecture:

Conjecture 5.2. The maps(/X, Ix) form an isomorphism between the Hochschild and
the harmonic structures of a compact smooth space X

Observe that this conjecture includes, as a particular case, Kontsevich’'s Thedrem

Remark 5.3. This conjecture can be broadly classified to be a result of the same type
as Tsygan'’s formality conjectuf@0]. In general, such results describe various structures
(product, pairing, Lie bracket, etc.) that are matched by a specific isomorphism between
the Hochschild side and the harmonic side.

5.5. We conclude with a remark on a possible approach to proving Conjecture 5.2. For
simplicity we restrict our attention to a discussion of the isomorphism on cohomology

(where we know the conjecture is true by Kontsevich’s result). Consider the sequence
of morphisms

Homiy (P Qi li1. D Qi liD) L Homy, (4% 4, 4% 0 )

. AN

Hormiy (@D Qi li1, Ox) —— Hom (40 4, Ox) —=20 Hom, (04, € )

JHKR

HT*(X) HH*(X).

The maps labeletlare isomorphisms induced lbythe arrowA,(—)o# is the adjunction
isomorphism. The mayp is the projection of a matrix in Hol(@D Q% [i1, D Q% lil)
onto its last column Hof(p Q"X[i], Ox). (The convention that we use is that mor-
phisms of small degree appear at thattom or right of column vectors/matrices.)
Observe that all the vector spaces in the diagram have ring structures, but only the
top two and rightmost two have the ring structure given by the Yoneda product. Also,
note that the arrows between these rings are obviously ring homomorphisms.
We are interested in the map

e : Homy, (P @ li1. Ox) — Homd (D Qi li1. €D @ LiD)
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which takes a column vector to a matrix, by the formula

Uy Vo V1 V2 -+ Uy
Vpo1 0 wovy- w1
Un—2 | & 0 Ovwvo---vy—2
) 0 0 0-- v

(For simplicity, at this point assume that we are only dealing vidimogeneougle-
ments in Honj (P Q[i], Ox).) It is easy to check that what we think of as “multi-
plication” in Hom, (6D Q}[i], Ox) is the product

v v = ple(v) oe()).

There is another map” which takes a column vector and fills it up to a square
matrix ¢'(v). It is the map obtained by starting with Homﬁf(@ Qg([i], Ox) and

following the arrows around the diagram to g€tv) e Hom, (@ Qlil, @ Qlil).
The fact thatp o ¢’ is the identity means that the last columnefv) is preciselyv.

To prove that/HKR is a ring isomorphism, it would suffice to show that =
e. Unfortunately, Kontsevich’s argument shows that this is not the case. The same
argument, however, shows that if we repeat the above analysislwéplaced by!’
(and I1MKR replaced by/X) we do get a ring homomorphism. This leads us to state
the following conjecture:

Conjecture 5.4. Replacing | byl’ in the above analysis yields= ¢'.

A proof of this conjecture, apart from providing a different proof of Kontsevich’s
result, would likely generalize to a proof of Conjectlse2.
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