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Goals of this tutorial

Introduce mathematical models from molecular biology – reaction networks:

I Stochastic models – continuous time Markov chains with stochastic
mass action kinetics.

I Deterministic models – ODEs with deterministic mass action kinetics.

Introduce the field of chemical reaction network theory – 50%

Focus on deficiency of networks and deficiency zero results – 50%

Tomorrow will focus on results related to deficiency one models.



Reaction networks

Models usually begin with something called a reaction network.

A + B → 2B

B → A

or

E + S � ES � E + P

E � ∅

The network is a static object. We are not yet choosing a dynamics.



Reaction networks

I Biochemical/population networks can range from simple to very complex.

Example 1: ∅� A.

Example 2: A + B → 2B

B → A

Example 3: Gene transcription & translation:

G→ G + M transcription
M → M + P translation
M → ∅ degradation
P → ∅ degradation

G + P � B Binding/unbinding

Cartoon representation:

1

1J. Paulsson, Physics of Life Reviews, 2, 2005 157 – 175.



Reaction networks

Example 4: EnvZ/OmpR signaling system

2

2Guy Shinar and Martin Feinberg, Structural Sources of Robustness in Biochemical Reaction
Networks, Science, 2010



Big picture

Goal of chemical reaction network theory:
discover how the dynamics of the mathematical model depend upon
properties of the reaction network.

Key point of research:
want results that are applicable to whole classes of reaction networks, not
studying a single model.



Short (incomplete) history of chemical reaction network theory

Dates back to at least work of Horn, Jackson, Feinberg in 1972:
I Detailed balancing is not necessary for many nice results.
I Developed idea of complex balancing.

1970s: development of deficiency theory to predict dynamics of deterministic
models based solely on easily checked network conditions (deficiency = 0
and weak reversibility).

2000s: many more people started to join this research area

1. Large focus on global attractor conjecture.

2. Focus on possibility of multiple equilibria or oscillations.

3. Beginning to be a focus on stochastic models (green fluorescent
proteins, laser traps, etc.)



Reaction Networks: {S, C,R}

Example:

∅� A

I S = {A}.
I C = {∅,A}.
I R = {∅ → A, A→ ∅}.



Reaction Networks: {S, C,R}

Example:

A + B → 2B

B → A

I S = {A,B}.
I C = {A + B, 2B, B, A}.
I R = {A + B → 2B, B → A}.



Reaction Networks: {S, C,R}

Example:

Species: S = {A,B,C,D,E}.

Complexes: C = {A, 2B, A + C, D, B + E}.

Reactions:
R = {A→ 2B, 2B → A, A+C → D, D → A+C, D → B+E , B+E → A+C}.



Reaction Networks: {S, C,R}

Definition
A chemical reaction network, {S, C,R}, consists of:

1. Species, S := {S1, . . . ,Sd}: constituent molecules undergoing a series
of chemical reactions.

2. Complexes, C: linear combinations of the species representing those
used, and produced, in each reaction.

3. A set of reactions, R := {yk → y ′k}.

Denote reaction vectors
ζk = y ′k − yk .



Dynamics – deterministic

Example:

A + B
κ1→ 2B (R1)

B
κ2→ A (R2)

Let x(t) ∈ R2
≥0 give concentrations of molecules of A and B:

x ′(t) = r1(x(t))

[
−1
1

]
+ r2(x(t))

[
1
−1

]
.

Deterministic mass-action kinetics says:

r1(x(t)) = κ1xA(t)xB(t), and r2(x(t)) = κ2xB(t).

so

x ′A(t) = −κ1xA(t)xB(t) + κ2xB(t)

x ′B(t) = κ1xA(t)xB(t)− κ2xB(t).



Dynamics – deterministic

Consider a general system with S = {X1, . . . ,Xd}, and k th reaction

yk → y ′k

• The rate of k th reaction is rk : Rd
≥0 → R.

• As before:
x ′(t) =

∑
k

rk (x(t))(y ′k − yk ),

or

x(t) = x(0) +
∑

k

(∫ t

0
rk (x(s))ds

)
(y ′k − yk ).



Deterministic mass-action kinetics

Consider reaction
yk → y ′k

Then rate is

rk (x) = κk xyk = κk

d∏
i=1

xyki
i .

Example: If S1 → anything, then rk (x) = κk x1.

Example: If S1 + S2 → anything, then rk (x) = κk x1x2.

Example: If 2S2 → anything, then rk (x) = κk x2
2 .

Example: If 3S1 + 2S2 + S3 → anything, then rk (x) = κk x3
1 x2

2 x3.

Yields:
ẋ =

∑
k

κk xyk (y ′k − yk )



Dynamics – deterministic

Example:



Dynamics: discrete – stochastic

Example:

∅
α

�
β

A (R1/R2)

Let X (t) represent # molecules of A at time t ≥ 0.

Suppose rate of reactions are:

λ1(X (t)) = α

λ2(X (t)) = βX (t).

This means

P(reaction ∅ → A happens in next ∆t) = α∆t + o(∆t)

P(reaction A→ ∅ happens in next ∆t) = βX (t)∆t + o(∆t).

This describes a model with exponential holding times.

There are multiple ways to specify this model.



Dynamics: discrete – stochastic

Example:

∅
α

�
β

A (R1/R2)

Let X (t) represent # molecules of A at time t ≥ 0.

X (t) = X (0) + R1(t)− R2(t).

For stochastic (Markov) models can take

R1(t) = Y1 (αt)

R2(t) = Y2

(
β

∫ t

0
XA(s)ds

)
where Y1,Y2 are independent unit-rate Poisson processes.

X (t) = X (0) + Y1 (αt)− Y2

(
β

∫ t

0
XA(s)ds

)
.



Dynamics: discrete – stochastic
Example:

A + B
κ1→ 2B (R1)

B
κ2→ A (R2)

Let X (t) ∈ Z2
≥0 give counts of # molecules of A and B:

X (t) = X (0) + R1(t)
([

0
2

]
−
[

1
1

])
+ R2(t)

([
1
0

]
−
[

0
1

])

= X (0) + R1(t)
[
−1
1

]
+ R2(t)

[
1
−1

]
.

For Markov models can take

R1(t) = Y1

(
κ1

∫ t

0
XA(s)XB(s)ds

)
R2(t) = Y2

(
κ2

∫ t

0
XB(s)ds

)
where Y1,Y2 are independent unit-rate Poisson processes

X(t) = X(0) + Y1

(
κ1

∫ t

0
XA(s)XB(s)ds

)[
−1
1

]
+ Y2

(
κ2

∫ t

0
XB(s)ds

)[
1
−1

]



Dynamics: discrete – stochastic

Consider a general system with S = {X1, . . . ,Xd}, and k th reaction

yk → y ′k

• The rate (or intensity or propensity) of k th reaction is λk : Zd
≥0 → R.

• As before:
X (t) = X (0) +

∑
k

Rk (t)(y ′k − yk ),

with

X (t) = X (0) +
∑

k

Yk

(∫ t

0
λk (X (s))ds

)
(y ′k − yk ),

Yk are independent, unit-rate Poisson processes.



Stochastic mass-action kinetics

The standard intensity function chosen is stochastic mass-action kinetics:

λk (x) = κk

d∏
i=1

xi !

(xi − yik )!
1{xi≥yik}.

Example: If S1 → anything, then λk (x) = κk x1.

Example: If S1 + S2 → anything, then λk (x) = κk x1x2.

Example: If 2S2 → anything, then λk (x) = κk x2(x2 − 1) ≈ κ2x2
2 if x2 � 1.

I Idea: rate is proportional to number of distinct subsets of the molecules
present that can form the inputs for the reaction.



Dynamics: discrete – stochastic
Could just say that for x ∈ Zd

≥0,

x →



x + y ′1 − y1, with rate λ1(x)

x + y ′2 − y2, with rate λ2(x)

...
x + y ′K − yK , with rate λK (x)

where y ′k − yk ∈ Zd .

Example

A
1
�
2

B

A + B 3→ C.

If X (t) = [10, 8, 4]T , then rates are

λA→B(X (t)) = 10, λB→A(X (t)) = 16, λA+B→C(X (t)) = 240.



Dynamics: discrete – stochastic

Model is a continuous time Markov chain with infinitesimal generator

Af (x) =
∑

k

λk (x)(f (x + ζk )− f (x)).

where ζk = y ′k − yk .

Kolmogorov’s forward equation (chemical master equation)

p′t (x) =
∑

k

λk (x − ζk )pt (x − ζk )1{x−ζk∈Zd
≥0}
− pt (x)

∑
k

λk (x), ∀x ∈ Zd
≥0

Stationary distribution π satisfies

0 =
∑

k

λk (x − ζk )π(x − ζk )− π(x)
∑

k

λk (x), ∀x ∈ Zd
≥0



Example: population growth
Example

B
1/3→ 2B

with X (0) = 10.
Stochastic equation:

X(t) = 10 + Y
(∫ t

0

1
3

X(s)ds
)

.

Forward equation (master equation): For x ∈ {10, 11, . . . }
d
dt

pt (x) =
1
3

(x − 1)pt (x − 1)1{x−1≥10} −
1
3

x · pt (x)

i.e.
d
dt

pt (10) = −
1
3
· 10 · pt (10)

d
dt

pt (11) =
1
3
· 10 · pt (10) −

1
3
· 11 · pt (11)

d
dt

pt (12) =
1
3
· 11 · pt (11) −

1
3
· 12 · pt (12)

...



Example: population growth

I Below is a plot of the solution of the deterministic system versus three
different realizations of the stochastic system.
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Example: population growth - evolution of distribution
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Connection
Suppose V is a (large) scaling parameter and

I Xi = O(V ), and X V (t) def
= V−1 · X (t),

I λk (X (t)) = O(V )

Then,

X V (t) ≈ 1
V

X0 +
∑

k

1
V

Yk

(
V
∫ t

0
κk X V (s)yk ds

)
(y ′k − yk )

LLN for Yk says

1
V

Yk (Vu) ≈ u

(
lim

V→∞
sup
u≤U

∣∣∣V−1Yk (Vu)− u
∣∣∣ = 0, a.s.

)

so a good approximation is solution to

x(t) = x(0) +
∑

k

∫ t

0
κk x(s)yk ds · (y ′k − yk ),

where
uv = uv1

1 · · · u
vd
d ,

is standard mass-action kinetics. See Tom Kurtz’s works....



LLN: Example

I Stochastic models:

A + B
2/V→ 2B (R1)

B 1→ A (R2)

with X (0) = [3V ,V ] so that [AV ,BV ] = X/V satisfies

AV (0) = 3, BV (0) = 1.

I ODE model of

A + B 2→ 2B

B 1→ A,

with x(0) = [3, 1].



LLN: Example, A + B → 2B B → A
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LLN: Example, A + B → 2B B → A
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LLN: Example, A + B → 2B B → A

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
V=100

 

 

A
B

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
V=1000

 

 

A
B



What now?

So now you know what these models are.

Big question: Can we relate network structure to dynamics?



Deficiency zero theorem of Horn, Jackson, Feinberg

Theorem (Series of papers from 1972-1995)
Let {S, C,R} be a chemical reaction network with deterministic mass-action
kinetics. Suppose:

1. the network is weakly reversible, and

2. has a deficiency of zero.

Then, for any choice of rate constants κk , within each positive stoichiometric
compatibility class there is precisely one equilibrium value c to the associated
ODE system: ∑

k

κk cyk (y ′k − yk ) = 0,

and that equilibrium value is locally (globally?) asymptotically stable relative
to its compatibility class.

Actually have stronger result: for each η ∈ C,∑
k :yk =η

κk cyk =
∑

k :y′k =η

κk cyk . (1)

c is said to be a complex balanced equilibrium



Deficiency Zero Theorem - stochastic

Theorem (A., Craciun, Kurtz, 2010)
Let {S, C,R} be a stochastically modeled reaction network with rate
constants κk . Suppose:

1. the network is weakly reversible, and

2. has a deficiency of zero.

Then, for any irreducible communicating equivalence class, Γ, the stochastic
system has a product form stationary distribution

π(x) =
1
ZΓ

d∏
i=1

e−ci
cxi

i

xi !
, x ∈ Γ, (2)

where ZΓ is a normalizing constant and c is a complexed-balanced
equilibrium of the corresponding ODE.

David F. Anderson, Gheorghe Craciun, and Thomas G. Kurtz, Product-form stationary distributions

for deficiency zero chemical reaction networks, Bulletin of Mathematical Biology, Vol. 72, No. 8,

1947 - 1970, 2010.



Stoichiometric compatibility classes

1. Note that for either model:

x(t)− x(0) =
∑

k

(∫ t

0
rk (x(s)) ds

)
(y ′k − yk ) ∈ spank{y

′
k − yk}

X (t)− X (0) =
∑

k

Yk

(∫ t

0
λk (X (s))ds

)
(y ′k − yk ) ∈ spank{y

′
k − yk}.

Definition.
S = span{y ′k − yk}k

is the stoichiometric subspace of the network. Let dim(S) = s.

We see that solutions are bound to translations:

x(0) + S,

which are the stoichiometric compatibility classes.



Compatibility classes

Example: Reaction network

A + B � 2B

B � A
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Compatibility classes

Reaction network

A→ B

2B → 2A
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Compatibility classes

Reaction network

2A � A + B , B � C,

• S ⊂ R3 is the plane spanned by (−1, 1, 0)T and (0,−1, 1)T .

For T > 0, the non-negative stoichiometric compatibility classes are
two-dimensional triangles

{
(xa, xb, xc) ∈ R3

≥0 | xa + xb + xc = T
}



Connectivity

Definition
The connected components of the reaction network are called the linkage
classes.

C
1

C
2

C
3

C
4

C
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C
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C
7

C
8

Example

A + B α→ 2B (Linkage Class 1)

B β→ A (Linkage Class 2)

Has two linkage classes.



Connectivity

Definition
A chemical reaction network, {S, C,R}, is said to be weakly reversible if each
linkage class is strongly connected.

A network is called reversible if yk → y ′k ∈ R =⇒ y ′k → yk ∈ R.
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Connectivity

The following is not weakly reversible:

A + B α→ 2B (Linkage Class 1)

B β→ A (Linkage Class 2)



Deficiency: in multiple ways!
Attempt 1:

deficiency of {S, C,R} = δ = n − `− s,

where

1. n = # of complexes.

2. ` = # of linkage classes.

3. s = dimension of span of reaction vectors.

So it is easy to check!

Example

A + B � 2B (R1)

B � A (R2)

n = 4, ` = 2, s = 1 =⇒ δ = 1. But,

A + B � C (R1)

B � A (R2)

n = 4, ` = 2, s = 2 =⇒ δ = 0.



Deficiency

Example:

n = 5

` = 2

s = 3

=⇒ δ = 5− 2− 3 = 0.



Deficiency: in multiple ways!

deficiency of {S, C,R} = δ = n − `− s,

Now you are probably thinking: Fiiiiine, but that was utterly useless to me. I
have no idea what it means!

Attempt 2: a measure of nonlinearity (Technical but *very* useful)

We define
f (x)

def
=
∑

k

κk xyk (y ′k − yk ),

and will now find other functions, Y , Aκ, and Ψ for which

f (x) = Y ◦ Aκ ◦Ψ(x).

Key point: Y and Aκ are matrices!



The hunt for linearity: f = Y ◦ Aκ ◦Ψ

Example

A + B
κ1
�
κ2

2B
κ3
�
κ4

2A,

then

Aκ =

 −κ1 κ2 0
κ1 −(κ2 + κ3) κ4

0 κ3 −κ4

 ,
Note: Simply consider linear model:

C1

κ1
�
κ2

C2

κ3
�
κ4

C3,

then
d
dt

C(t) = AκC(t).



The hunt for linearity: f = Y ◦ Aκ ◦Ψ

Example

A + B
κ1
�
κ2

2B
κ3
�
κ4

2A

then

Y =

[
1 0 2
1 2 0

]



The hunt for linearity: f = Y ◦ Aκ ◦Ψ

Example

A + B
κ1
�
κ2

2B
κ3
�
κ4

2A gives Ψ(x) =


xAxB

x2
B

x2
A


Thus,

ẋ(t) =

[
1 0 2
1 2 0

] −κ1 κ2 0
κ1 −(κ2 + κ3) κ4

0 κ3 −κ4




xAxB

x2
B

x2
A





Deficiency: attempt 2

f (x) = Y ◦ Aκ ◦Ψ(x).

The deficiency of the model is

δ = dim(ker Y ∩ imageAκ).

You are probably thinking: Oh my, that did not help at all..... in fact, I think it
made things significantly worse.

My response: think about fixed points to ODE model:

f (x̄) = Y ◦ Aκ ◦Ψ(x̄) = 0

with x̄ ∈ Rd
>0. This can happen in one of two ways:

(i) Aκ(Ψ(x̄)) ∈ ker Y or (ii) Ψ(x̄) ∈ ker Aκ.

The second is a very nice condition: complexed balanced equilibrium



Deficiency

Example:

We know there is a c̄ satisfying,

κA→2B c̄A = κ2B→Ac̄2
B

κA+C→D c̄Ac̄C = κD→A+C c̄D + κB+E→A+C c̄B c̄E

κD→A+C c̄D + κD→B+E c̄D = κA+C→D c̄Ac̄C

κB+E→A+C c̄B c̄E = κD→B+E c̄D

Generalizes detailed balancing.



Deficiency zero theorem of Horn, Jackson, Feinberg

Theorem (The Deficiency Zero Theorem - Deterministic)
Let {S, C,R} be

1. weakly reversible, and

2. have a deficiency zero

Then, for any choice of rate constants κk , within the interior of each positive
stoichiometric compatibility class there is precisely one equilibrium value c to
the associated ODE system:∑

k

κk cyk (y ′k − yk ) = 0,

and that equilibrium value is locally (globally?) asymptotically stable relative
to its compatibility class.

Actually have stronger result: for each η ∈ C,∑
k :yk =η

κk cyk =
∑

k :y′k =η

κk cyk . (3)

c is said to be a complex balanced equilibrium



Deficiency Zero Theorem - stochastic

Theorem (A., Craciun, Kurtz, 2010)
Let {S, C,R} be a chemical reaction network with rate constants κk .
Suppose the associated ODE has a complexed balanced equilibrium c (or

1. the network is weakly reversible, and

2. has a deficiency of zero.

)
Then, for any irreducible communicating equivalence class, Γ, the stochastic
system has a product form stationary distribution

π(x) =
1
ZΓ

d∏
i=1

e−ci
cxi

i

xi !
, x ∈ Γ, (4)

where ZΓ is a normalizing constant.

David F. Anderson, Gheorghe Craciun, and Thomas G. Kurtz, Product-form stationary distributions

for deficiency zero chemical reaction networks, Bulletin of Mathematical Biology, Vol. 72, No. 8,

1947 - 1970, 2010.



Proof of stochastic version

Let c be a complexed balanced equilibrium for the deterministically modeled
system and for x ∈ Zd

≥0 let

π(x) =
d∏

i=1

cxi
i

xi !
e−ci and λk (x) = κk

d∏
i=1

xi !

(xi − yki )!
1{xi≥yki}.

Plug π(x) and λk (x) into∑
k

π(x − y ′k + yk )λk (x − y ′k + yk ) = π(x)
∑

k

λk (x).

Simplify (with some tricks) – ask offline if you want to see tricks.



Examples – (M/M/∞ queue)

∅
α

�
β

A

Ode model:
ẋ = α− βx =⇒ c =

α

β
.

State space of stochastic model is

{0, 1, 2, . . . }

so

π(x) = e−
α
β ·

(α
β

)x

x!
.



Examples

A
α

�
β

2A

ODE model:
ẋ = αx − βx2 =⇒ c =

α

β
.

State space of stochastic model is

{1, 2, . . . }

So, for x ∈ {1, 2, . . . }

π(x) =
1

e
α
β − 1

·
(α
β

)x

x!



Enzyme kinetics

Consider the possible enzyme kinetics given by

E + S � ES � E + P , E � ∅ � S

Easy to check that state space is

Γ = Z4
≥0

so in distributional equilibrium

I the specie numbers are independent and

I have Poisson distributions.



Enzyme kinetics

Consider the slightly different enzyme kinetics given by

E + S � ES � E + P , E � ∅

I We see S + ES + P = N.

I In distributional equilibrium:

I E has Poisson distribution,

I S, ES, P have a multinomial distribution, and

I E is independent from S, ES, and P.



Higher deficiency

What about the situation of δ ≥ 1? Tomorrow.



That is the story so far. Thanks!

Collaborators: Gheorghe Craciun and Tom Kurtz
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