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Goals of this tutorial

Introduce mathematical models from molecular biology — reaction networks:

» Stochastic models — continuous time Markov chains with stochastic
mass action kinetics.

» Deterministic models — ODEs with deterministic mass action kinetics.

Introduce the field of chemical reaction network theory — 50%

Focus on deficiency of networks and deficiency zero results — 50%

Tomorrow will focus on results related to deficiency one models.



Reaction networks

Models usually begin with something called a reaction network.

A+B— 2B
B— A

or
E+S=ES=E+P
E=10

The network is a static object. We are not yet choosing a dynamics.



Reaction networks

» Biochemical/population networks can range from simple to very complex.

Example 1: § = A.

Example 2: A+ B — 2B
B— A

Example 3: Gene transcription & translation:

G — G+ M transcription Cartoon representation:

M — M + P translation gene (m) mRNA ()  Protein (13)
M—0 degradation I ~ J’

. p— . &,
P—0 degradation i

G+P=B Bindingunbindng °ff  on o e

'J. Paulsson, Physics of Life Reviews, 2, 2005 157 — 175.



Reaction networks

Example 4: EnvZ/OmpR signaling system

B D
KT I £, T 0
X XT — X, XD = (X1 = XT — X
T &ID] ) -
ky &, K, &,
X+Y ? XY — X+Y, X, +Y ? XY — X+Y,
ks k, & 2
XT+Y, ?.(_XTYP—‘) XT+Y XD+Y, ?JI_XDYP—B XD+Y

Fig. 2. The EnvZ-OmpR system. (A) A schematic diagram of an EnvZ-OmpR model in which ATP is the
cofactor in phospho-OmpR dephosphorylation. P; denotes phosphate ion. (B) The mass-action model
underlying (A). [T] denotes the ATP concentration, assumed fixed. Terminal nodes are colored pink,
and nonterminal nodes are colored blue. (€) A schematic diagram of an EnvZ-OmpR model in which
ADP is the cofactor in phospho-OmpR dephosphorylation. (D) The mass-action model underlying (C).
[D] denotes the ADP concentration, assumed fixed. 2

2Guy Shinar and Martin Feinberg, Structural Sources of Robustness in Biochemical Reaction
Networks, Science, 2010



Big picture

Goal of chemical reaction network theory:
discover how the dynamics of the mathematical model depend upon
properties of the reaction network.

Key point of research:
want results that are applicable to whole classes of reaction networks, not
studying a single model.



Short (incomplete) history of chemical reaction network theory

Dates back to at least work of Horn, Jackson, Feinberg in 1972:
» Detailed balancing is not necessary for many nice results.
» Developed idea of complex balancing.

1970s: development of deficiency theory to predict dynamics of deterministic
models based solely on easily checked network conditions (deficiency = 0
and weak reversibility).

2000s: many more people started to join this research area
1. Large focus on global attractor conjecture.

2. Focus on possibility of multiple equilibria or oscillations.

3. Beginning to be a focus on stochastic models (green fluorescent
proteins, laser traps, etc.)



Reaction Networks: {S,C, R}

Example:

» S ={A}.
> C ={0,A}.
» R={0— A A— 0}.



Reaction Networks: {S,C, R}

Example:

A+B— 2B
B— A

» S={A B}.
» C={A+B, 2B, B, A}.
» R={A+B—2B, B A}



Reaction Networks: {S,C, R}

Example:
A =2B
A+C = D
NS
B+ E

Species: S ={AB,C,D,E}.
Complexes: C = {A, 2B, A+ C, D, B+ E}.

Reactions:
R={A—2B,2B—~ A A+C— D, D— A+C, D — B+E, B+E — A+C}.



Reaction Networks: {S,C, R}

Definition
A chemical reaction network, {S,C, R}, consists of:

1. Species, S := {Si, ..., Sq}: constituent molecules undergoing a series
of chemical reactions.

2. Complexes, C: linear combinations of the species representing those
used, and produced, in each reaction.

3. Aset of reactions, R := {yx — y;}.

Denote reaction vectors
Ck = Yk — Vi



Dynamics — deterministic

Example:
A+ 2B (R1)

A (R2)

3 12

B

B

Let x(t) € RZ, give concentrations of molecules of A and B:
, —1 1

X =nxo| 3] +eeen| .

Deterministic mass-action kinetics says:
ry (X(t)) = K1XA(I)XB(I), and fz(X(t)) = IizXB(t).
o]

X;\(t) = *IﬁXA(l‘)XB(t) + HQXB(I')
Xé(t) = N1XA(t)XB(t) = IigXB(t).



Dynamics — deterministic

Consider a general system with S = {Xj, ..., X4}, and kth reaction

Yk = Yk

e The rate of kth reaction is r : ]Rgo —R.

e As before:

Z (X () (Y — Yi),

or

x(t) = x(0) +Z (/ ))dS) (Y = ¥&)-



Deterministic mass-action kinetics

Consider reaction
Yk = Yk

Then rate is ’

1e(X) = reX* = kg Hx/y"".
i=1
Example: If Sy — anything, then ri(x) = rkx1.
Example: If Sy + S; — anything, then r(x) = rkiX1 Xo.
Example: If 2S; — anything, then ri(x) = kxx2.

Example: If 3S; + 25, 4+ S; — anything, then ri(x) = kX3 X2 X3.

Yields:
X = mex™ (Vi = Vi)
k



Dynamics — deterministic

Example:

ch/dt
dep/dt
dec /dt
dep/dt
deg /dt

L T T

A =>2B
A+C =

N /

B+ E

—(ka—2B)ca + (MB—»A)C% — (katc—p)cacc + (kp—at+c)ep + (kB+E—A+C)CBCE
2(ka—2B)ca — 2(k2p—a)ch + (kp—B+E)cD — (KB+E—A+C)CBCE
—(kat+c—p)cacc + (kp—a+c)ep + (KB+E—A+C)CBCE

(ka+c—Dp)cacc — (kp—a+c)ep — (Kkp—B+E)CD

(kp—B+E)CD — (KB+E—A+C)CBCE .



Dynamics: discrete — stochastic

Example:

0= A (R1/R2)
B

Let X(t) represent # molecules of A attime ¢ > 0.
Suppose rate of reactions are:
AM(X(1) =«
Ao(X(1)) = BX(1).
This means

P(reaction ) — A happens in next At) = aAt + o(At)
P(reaction A — () happens in next At) = SX(t)At + o(At).

This describes a model with exponential holding times.

There are multiple ways to specify this model.



Dynamics: discrete — stochastic
Example:

0= A
B

Let X(t) represent # molecules of A attime t > 0.

X(t) = X(0) + Ri(t) — Ra(1).
For stochastic (Markov) models can take

Ri(t) = Y (at)

Ro(t) = Yo (5 /0 t XA(s)ds)

where Y1, Y» are independent unit-rate Poisson processes.

X(t) = X(0) + Y1 (at) ( /XA ds).

(R1/R2)



Dynamics: discrete — stochastic
Example:

A+ B 2B (R1)
B3 A (R2)

Let X(t) € ZZZO give counts of # molecules of A and B:

wwsmo([2]-[1]) mo((3]-[2])

xm+am[f]+mm{$}.

X(1)

For Markov models can take
t
%MZWCW/&Q&@“)
0
t
Ro(t) = Y2 (Iiz/ XB(S)dS>
0

where Y, Y» are independent unit-rate Poisson processes

X(t) = X(0) + Y; (m /OIXA(S)XB(s)ds> [ B ]+ Ys <n2 /OtXB(s)ds> { ° }



Dynamics: discrete — stochastic

Consider a general system with S = {Xj, ..., X4}, and kth reaction

Y = Yk

e The rate (or intensity or propensity) of kth reaction is A\, : Z‘éo — R.

e As before:
X(t) = X(0) + > Re(t)(vk — y),

with
0)+ZYk (/ Ak(X(s))a )(Yk*}/k)

Y are independent, unit-rate Poisson processes.



Stochastic mass-action kinetics

The standard intensity function chosen is stochastic mass-action kinetics:
d Xl
M(X) =k L —
k( ) kE (Xi _}/Ik)l {X/Z}’(k}

Example: If S; — anything, then A\¢(x) = rXs.
Example: If Sy + Sz — anything, then \¢(x) = riX1 Xe.

Example: If 2S; — anything, then \¢(x) = rikXxe(Xxe — 1) ~ kaX3 if X2 > 1.

» |dea: rate is proportional to number of distinct subsets of the molecules
present that can form the inputs for the reaction.



Dynamics: discrete — stochastic
Could just say that for x € Z%,,

X+Yyi —yi, withrate \(x)

X+ Yy — Yo,  withrate \o(x)

X+ Yk — Yk, with rate Mg (x)

where y, — yx € Z°.

Example

A=B

o=

A+B3C.
If X(t) = [10,8,4]", then rates are
Aass(X(1) =10, Ag_a(X(1)) = 16,

Assosc(X(1)) = 240.



Dynamics: discrete — stochastic

Model is a continuous time Markov chain with infinitesimal generator
AF(x) = M(X)(F(x + G) — £(x)).
k
where ¢k = yi — Y-

Kolmogorov’s forward equation (chemical master equation)

PH(X) =D k(X — G)pe(x — ¢)1 x—ceezd y — Pr(X) D> M(x), vxe 7%,
k - k
Stationary distribution 7 satisfies

0= Mlx—G)m(x — G) —m(x) D M(x), Vx ez



Example: population growth
Example
% oB

with X(0) = 10.
Stochastic equation:

X(t)=10+Y (/0' %X(s)ds) .

Forward equation (master equation): For x € {10,11,...}

d 1 1
7P = g (x = Dplx = Ngx_az10y — 5% pr(X)

i.e.
& pi(10) = —1 10 p(10)
%pt(ﬂ) = % 10 - pe(10) — % A1 p(11)
%Pt(12) = % 11 p(11) — % 12 p(12)



Example: population growth

» Below is a plot of the solution of the deterministic system versus three
different realizations of the stochastic system.
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Example: population growth - evolution of distribution
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Connection
Suppose V is a (large) scaling parameter and
» X;=O(V),and X(t) € v X(1),

> A(X(1) = O(V)
Then,

1 1 ! /
XY(t) ~ vXo+ > v <V/ fikXV(S)YKd-s) ke = ¥i)
p 0

LLN for Yy says

lYk(Vu) ~u ( lim sup |V~ Yi(Vu) — u) =0, a.s.)

4 V—oo y<u
S0 a good approximation is solution to
X(0)=x00)+ 3 [ mex(s)"ds- (- )
k
where

v __ 7] Vo
u _U1 ...le7

is standard mass-action kinetics. See Tom Kurtz’s works....



LLN: Example

» Stochastic models:
A+B%Y 2B (R1)
B A (R2)
with X(0) = [3V, V] so that [AY, BY] = X/ V satisfies

AY(0)=3, BY(0)=1.

» ODE model of
A+ B35 2B
BL A,
with x(0) = [3,1].



LLN: Example, A+ B—2B B — A
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LLN: Example, A+ B—2B B — A

V=10
4.5

a+
3.51
3
2.5-

2
1.5
1
0.5

2
-
N
[
S
o

V=50




LLN: Example, A+ B—2B B — A




What now?

So now you know what these models are.

Big question: Can we relate network structure to dynamics?



Deficiency zero theorem of Horn, Jackson, Feinberg

Theorem (Series of papers from 1972-1995)

Let{S,C, R} be a chemical reaction network with deterministic mass-action
kinetics. Suppose:

1. the network is weakly reversible, and
2. has a deficiency of zero.

Then, for any choice of rate constants ry, within each positive stoichiometric
compatibility class there is precisely one equilibrium value c to the associated
ODE system:

> rke™ (i — yi) = 0,
k

and that equilibrium value is locally (globally?) asymptotically stable relative
to its compatibility class.

Actually have stronger result: for each n € C,
Z IikCyk: Z IikC’Vk. (1)
k:yk=n k:yg=n

c is said to be a complex balanced equilibrium



Deficiency Zero Theorem - stochastic

Theorem (A., Craciun, Kurtz, 2010)

Let{S,C, R} be a stochastically modeled reaction network with rate
constants k. Suppose:

1. the network is weakly reversible, and

2. has a deficiency of zero.
Then, for any irreducible communicating equivalence class, I', the stochastic
system has a product form stationary distribution

X

d i
w)= = [[e°%, xer @)
Zr i1 X! ’

where Z; is a normalizing constant and c is a complexed-balanced
equilibrium of the corresponding ODE.

David F. Anderson, Gheorghe Craciun, and Thomas G. Kurtz, Product-form stationary distributions
for deficiency zero chemical reaction networks, Bulletin of Mathematical Biology, Vol. 72, No. 8,
1947 - 1970, 2010.



Stoichiometric compatibility classes

1. Note that for either model:

x(t) - x(0) = 3 ( /0 H(x(s)) ds) 0k — yi) € spany [y — yi}

k

-3 % ([ Mx(eas) 0~ 19 € spany i — e

Definition.
S = span{yx — Yk}«

is the stoichiometric subspace of the network. Let dim(S) = s.

We see that solutions are bound to translations:
x(0) + S,

which are the stoichiometric compatibility classes.



Compatibility classes

Example: Reaction network

A+B=2B
B=A

# B Molecules

4 6
# A Molecuels




Compatibility classes

Reaction network

# B Molecules

A— B

2B — 2A
ofF \*
8- \*
| N
6 \*
5- \*
4+ \*
2F \*
| ‘ ‘ X\
uo 2 #4A Molecue?s 8 1



Compatibility classes
Reaction network
2A =2 A+B , B = C,
¢ S C R®is the plane spanned by (—1,1,0)” and (0, —1,1)".

For T > 0, the non-negative stoichiometric compatibility classes are
two-dimensional triangles

{(Xayxbaxc)eR320|Xa+Xb+xC: T}




Connectivity

Definition
The connected components of the reaction network are called the linkage
classes.
Cs Gy C,
| o | e
3 6
c” ¢ Oxg,
Example
A+B32B (Linkage Class 1)
BA A (Linkage Class 2)

Has two linkage classes.



Connectivity

Definition
A chemical reaction network, {S,C, R}, is said to be weakly reversible if each
linkage class is strongly connected.

A network is called reversible if yx — y, € R = ¥ — ¥k € R.

Weakly Reversible Reversible

WA

1



Connectivity

The following is not weakly reversible:
A+B3% 2B (Linkage Class 1)
B2 A (Linkage Class 2)



Deficiency: in multiple ways!
Attempt 1:
deficiency of {S,C,R} =d=n—-{—s,

where

1. n=# of complexes.

2. ¢ =# of linkage classes.

3. s =dimension of span of reaction vectors.
So it is easy to check!

Example

A+B=2B
B=A

n=4¢=2s=1 = 6=1.But,

A+B=C
B=A

n=4/(=2s=2 — §=0.



Deficiency

Example:

[l
n



Deficiency: in multiple ways!

deficiency of {S,C,R} =d=n—¢—3s,

have no idea what it means!
Attempt 2: a measure of nonlinearity (Technical but *very* useful)

We define :
f(xX) = mex (Y — i),
k

and will now find other functions, Y, A., and W for which

f(x) =Y oA oW(x).

Key point: Y and A, are matrices!



The hunt for linearity: f = Yo A, oW

Example
K1 K3
A+ B = 2B = 2A,
K2 K4
then
—K1 Ko 0
Ac=| k1 —(k2+k3) ks |,
0 K3 —Ka4

Note: Simply consider linear model:
Kq K3
Ci 2 C = G,
Ko K4

then .
ECU) = A.C(1).



The hunt for linearity: f = Yo A, oW

Example

A+B = 2B = 2A

Ko K4

then
1 0 2
Y*[1 20]



The hunt for linearity: f = Yo A, oW

Example
XaXB
A+B=2B=2A gives W(x)=|
2 4 Xi
Thus,

. 10 2 —h f2
X(t) = [ 1 2 0 :| [ ’B‘ _(52‘%"' 53)
3



Deficiency: attempt 2

f(x) = Yo A, o W(x).
The deficiency of the model is

6 = dim(ker Y NnimageA.).

You are probably thinking: Oh my, that did not help at all..... in fact, | think it
made things significantly worse.

My response: think about fixed points to ODE model:
f(X)=YoA.,oWV¥(x)=0
with x € Rio. This can happen in one of two ways:

(i) Ac(W(X)) ekerY or (i) W(X) € ker A,.

The second is a very nice condition: complexed balanced equilibrium



Deficiency

Example:
A =2B
A+C = D

NS

B+ FE

We know there is a ¢ satisfying,

KA28CA = Ko2BACH
Ka+c—»DCACc = Kp—arcCp + KBrE—A+cCBCE
KkD—A+cCD + KpB+ECD = Karc—DCACC
KB+E—A+cCBCE = KpBrECD

Generalizes detailed balancing.



Deficiency zero theorem of Horn, Jackson, Feinberg

Theorem (The Deficiency Zero Theorem - Deterministic)
Let{S,C,R} be

1. weakly reversible, and

2. have a deficiency zero

Then, for any choice of rate constants r, within the interior of each positive
stoichiometric compatibility class there is precisely one equilibrium value c to
the associated ODE system:

> ke (yk — yk) =0,
P

and that equilibrium value is locally (globally?) asymptotically stable relative
to its compatibility class.

Actually have stronger result: for each n € C,

Z ke = Z Kk (3)

k:yk=n k:yj=n

c is said to be a complex balanced equilibrium



Deficiency Zero Theorem - stochastic

Theorem (A., Craciun, Kurtz, 2010)

Let{S,C, R} be a chemical reaction network with rate constants ry.
Suppose the associated ODE has a complexed balanced equilibrium ¢ (or

1. the network is weakly reversible, and
2. has a deficiency of zero.

)
Then, for any irreducible communicating equivalence class, T, the stochastic
system has a product form stationary distribution

d X,-

m(x) = H TOh xer, (4)

where Zr is a normalizing constant.

David F. Anderson, Gheorghe Craciun, and Thomas G. Kurtz, Product-form stationary distributions
for deficiency zero chemical reaction networks, Bulletin of Mathematical Biology, Vol. 72, No. 8,
1947 - 1970, 2010.



Proof of stochastic version

Let ¢ be a complexed balanced equilibrium for the deterministically modeled
system and for x € Z<, let

X; d

d

C; b

m(x) = I I e
=1

|
[V
3
=
=
8
Il
=
=
—
—
>

X;! 1
L " — Yid)! {Xi>yki}

x

Plug 7(x) and A«(x) into

D omX = Yk VM = Y+ y) = 7(X) D A(x).

k k

Simplify (with some tricks) — ask offline if you want to see tricks.



Examples — (M/M/co queue)

Ode model:
. «
X=a—px = c= E

State space of stochastic model is

{0,1,2,...}
SO a \ X
ﬂ(x):e_%.@



Examples

ODE model:
o 2 e
X=aX—px° = c=—.
B
State space of stochastic model is

{1,2,...}
So, forx € {1,2,...}




Enzyme kinetics

Consider the possible enzyme kinetics given by

E+S=2ES=2E+P , E=20=S8

Easy to check that state space is
r=173%,
so in distributional equilibrium
» the specie numbers are independent and

» have Poisson distributions.



Enzyme kinetics

Consider the slightly different enzyme kinetics given by

E+S=2ES=E+P , E=0

» Wesee S+ ES+P=N.
» In distributional equilibrium:

» E has Poisson distribution,
» S, ES, P have a multinomial distribution, and

> E is independent from S, ES, and P.



Higher deficiency

What about the situation of § > 1? Tomorrow.



That is the story so far. Thanks!

Collaborators: Gheorghe Craciun and Tom Kurtz

Funding: Army Research Office, grant W911NF-14-1-0401.
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