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Outline

1. → General discussion of mathematical models and the difference between
deterministic and stochastic?

2. What are the basic stochastic models used?

3. How can we understand the behavior of stochastic models both
analytically and computationally?

(not-so-hidden) Ulterior motives:

i “Sell” the usefulness of probability and mathematics in this arena.

ii Recruit for my Stochastic Models in Biology course in Fall 2011 (Math 605).
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What is a mathematical model?

1. A mathematical description of real world phenomena.

2. Can be used to make predictions of behavior of the system.

3. Experimentally test predictions made.

4. Tweak the mathematical model and repeat.



Stochastic versus deterministic models

A process is deterministic if its future is completely determined by its present
and past. Examples include

I solutions to differential equations.
I solutions to difference equations.

Example
The initial value problem

d
dt

x(t) = 3x(t) x(0) = 2,

has the solution x(t) = 2e3t . �

Example
Consider the difference equation

F1 = F2 = 1

Fn = Fn−1 + Fn−2, for n > 2.

Then {Fn}∞n=1 is the well known Fibonacci sequence: {1, 1, 2, 3, 5, 8, . . . }. �
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Stochastic versus deterministic models

On the other hand, a stochastic process is a random process evolving in time.

Informally: even if you have full knowledge of the state of the system (and it’s
entire past), you can not be sure of it’s value at future times.

Example
Consider rolling a die multiple times. Let Sn denote the sum of the first n rolls.
Then,

S0 = 0

and
S1 ∈ {1, . . . , 6}, S2 ∈ {2, . . . , 12}, etc.

Knowing that S2 = 8 only guarantees that S3 ∈ {9, . . . , 14}.
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Why study stochastic models of intracellular processes?

Stochastic models have a long history in biology (Galton/Watson 1873,
Max Delbrück, JCP, 1940); however, over the past 15 years their use has
exploded.

One reason:
I recent advances in experimental methods in biology, such as green

fluorescent protein, have enabled quantitative measurements at the
single cell, and even single molecule, level.

I Such experiments show time and time again that the dynamics at this
level are intrinsically stochastic, or “noisy,” and that that noise can have
large implications for the qualitative dynamics.



Why study stochastic models of intracellular processes?
Clonal populations of cells exhibit substantial phenotypic variation:

1

Different levels of mRNA in genetically homogeneous populations:

infrequently indicates that the mRNA is not being continually
synthesized, but rather, it is synthesized during brief periods
of time when the gene is transcriptionally active. We refer to
these periods as transcriptional bursts. The rest of the time,
the gene is in a transcriptionally inactive state, during which
no mRNA molecules are synthesized and those synthesized
earlier are degraded.

Quantitative evidence of the burst-like nature of tran-
scription comes from comparing the number of mRNA in
cells containing active transcription sites to those without
active transcription sites. We found that of 97 randomly
selected cells from cell line E-YFP-M1-7x (details of construct
discussed below), the 23 containing transcriptional foci had
an average of 244 mRNA per cell, as compared to 33 mRNA
per cell in the 74 without any active transcription site (p ,
10!4). Because the FISH method also gives the spatial location
of the mRNA, we were also able to compare the relative
numbers of mRNA in the nucleus and cytoplasm to study
further the behavior of the transcriptional bursts. If tran-
scription occurs in bursts, then one would expect to find
more mRNA in the nucleus than in the cytoplasm when the
gene is active, as the nuclear mRNA has not been exported.
However, when the gene is in the inactive state, the nuclear
mRNA will be exported without being replenished, resulting
in a lower proportion of the total cellular mRNA being found
in the nucleus. To examine such behavior, we costained the
cells with DAPI after the hybridization and determined
whether each mRNA was located in the cytoplasm or nucleus.
Often, we found that cells without a transcriptional focus had
only cytoplasmic mRNA, whereas cells with a transcription
site usually had a large number of nuclear mRNA (Figure 2D).
Statistically speaking, cells containing active transcription
sites had a higher percentage of reporter mRNA in the
nucleus (35%, 17 cells analyzed) than did cells without active
transcription sites (25%, 22 cells analyzed) (p ¼ 0.0093).

Interestingly, the two cells depicted in Figure 2D are clearly
descended from the same parent cell but seem to display
different transcriptional behavior. This behavior is typical
and indicates that variations global extrinsic factors such as
position in the cell cycle are not the primary source of
variation in the activity of the transgene; this is more
systematically analyzed in the ‘‘Relative Contributions of
Intrinsic and Extrinsic Factors to Variations in mRNA Level’’
section of the results.
Further evidence for transcriptional bursts comes from an

analysis of the statistics of the distribution of mRNA
molecules per cell over the entire cell population. If mRNA
were produced at a constant rate, one would expect a Poisson
distribution of mRNA per cell, in which case the mean
number of mRNA molecules per cell and the variance (the
square of the standard deviation) would be equal. However,
we found that the mean was approximately 40 mRNA
molecules per cell, while the variance was roughly 1,600
molecules squared, indicating that the mRNA is not synthe-
sized at a constant rate, consistent with the occurrence of
transcriptional bursts.

Mechanisms Controlling Transcriptional Bursts
To investigate the mechanisms controlling transcriptional

bursts, we altered the overall level of transcription both by
changing the amount of transcriptional activator present in
the cells and by altering the number of binding sites for that
activator in the promoter. To accomplish this, the gene was
inserted downstream from a minimal cytomegalovirus pro-
moter, and either one or seven copies of the tetracycline-
sensitive tet operator sequence were present upstream from
the promoter (Figure 2A). Transcription from the promoter
is only possible when a protein known as the tet-trans-
activator (tTA) binds to the operator sequence. tTA is a
protein consisting of two domains: one that binds to the tet

Figure 2. Cell-to-Cell Variation of mRNA Numbers in Clonal Cell Lines

(A) Schematic diagram of the doxycycline-controllable promoters and the reporter genes that they control. Doxycycline binds to the tTA protein,
thereby preventing it from binding to the tet operator.
(B, C) Representative fields of cells from cell lines E-YFP-M1-1x and E-YFP-M1-7x, containing the 1x-tetO and 7x-tetO promoters, respectively, where each
mRNA is hybridized to FISH probe P1-TMR and the image was obtained by merging a three-dimensional stack of images.
(D) Two sister cells from cell line E-YFP-M1-7x displaying mRNA hybridized to FISH probe P1-TMR (red) and costained with DAPI (blue). The image
represents one focal plane. The scale bars are 5 lm long.
DOI: 10.1371/journal.pbio.0040309.g002
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1Elowitz et al., Science, 297, 2002.
2Raj et al., PLoS Biology, 4(10), 2006.



What are the differences? Example: Bacterial Growth

Let’s consider two oversimplified models for bacterial growth (by growth here,
I mean the growth of the size of the colony, not of an individual bacterium):

I one deterministic

I one stochastic.

We suppose
I there are 10 bacteria at time zero.
I each bacteria divides at an “average” rate of once per three hours.

Deterministic model: a “reasonable” model would be

d
dt

x(t) =
1
3

x(t) x(0) = 10, (1)

with solution
x(t) = 10et/3,

where the units of t are hours.
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Example: Bacterial Growth

Stochastic Model: Without going into the finer details yet, assume

1. Each bacteria divides after a random (independent, exponential) amount
of time with an average wait of 3 hours.

Similar to equation (1) for the deterministic model, it is possible to write down
systems of equations describing the time evolution of model

1. Evolution of individual sample paths – instance of experiment (like the
ODE model)

2. Evolution of the distribution (probability of being in certain states)

However, I will postpone doing so until later.
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Example: Bacterial Growth - evolution of sample paths

I Below is a plot of the solution of the deterministic system versus three
different realizations of the stochastic system.
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I Stochastic realizations/experiments appear to follow the deterministic
system in a “noisy” way.

I It is clear that the behavior of a single realization or experiment of the
stochastic system can not be predicted with absolute accuracy.



Example: population growth - evolution of distribution
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Example: Bacterial Growth and Death

Now suppose that we change the model “slightly” in that:

1. we allow bacteria to die as well as divide.

2. we suppose we begin with only two bacteria.

We suppose that they die after about five hours.

Our new deterministic model could be

ẋ(t) =
1
3

x(t)− 1
5

x(t) =
2

15
x(t), x(0) = 2,

with solution
x(t) = 2e2t/15.
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Example: Bacterial Growth and Death

For the stochastic model, we now model the two possible changes to the size
of the colony separately. That is, the next event is either

1. a growth event (via a division) or

2. a decrease event (via a death).



Example: Bacterial Growth and Death

I Deterministic vs. three realizations/experiments of stochastic system.
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I The models now behave qualitatively differently:

one of the realizations of the stochastic model (i.e. one of the colonies
under observation) has been completely wiped out, something not
possible in the deterministic modeling context .



Stochastic models for biochemical processes

Gene transcription & translation:
...

Gi → Gi + Mi transcription
Mi → Mi + Pi translation
Mi → ∅ degradation
Pi → ∅ degradation

Gi + Pj → Boundi

...

Cartoon representation:

3

E. coli Heat Shock Response Model. 9 species, 18 reactions.

4

3J. Paulsson, Physics of Life Reviews, 2, 2005 157 – 175.
4Hye Won Kang, presentation at SPA in 2007.
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Outline

1. Why do people want to model some processes stochastically as
opposed to deterministically?

2. → What are the basic models used?

3. How can we understand the behavior of these models both analytically
and computationally?



Basic stochastic models of (bio)chemical reaction networks

Consider the simple system
A + B → C

where one molecule each of A and B is being converted to one of C.

Intuition for standard model is that the probability of reaction occurring in a
small time interval (t , t + ∆t ] should be

P{reaction occurs in (t , t + ∆t ]} ≈ κXA(t)XB(t)∆t

where
I κ is a positive constant, the reaction rate constant.



Basic stochastic models of (bio)chemical reaction networks

Consider the simple system
A + B → C

where one molecule each of A and B is being converted to one of C.

Intuition for standard model is that the probability of reaction occurring in a
small time interval (t , t + ∆t ] should be

P{reaction occurs in (t , t + ∆t ]} ≈ κXA(t)XB(t)∆t

where
I κ is a positive constant, the reaction rate constant.



Models of interest

A + B → C

Simple book-keeping: if X (t) = (XA(t),XB(t),XC(t)) gives the state at time t
then

X (t) = X (0) + R(t)

0@ −1
−1
1

1A , (2)

where
I R(t) is the # of times the reaction has occurred by time t and
I X (0) is the initial condition.

Note:
I R(0) = 0 and
I R is constant except for jumps of plus one.

Goal: represent R in terms of Poisson process.
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The Poisson process

A Poisson process, Y , is a model for a series of random observations
occurring in time.

(a) Let {ξi} be i.i.d. exponential random variables with parameter one.

(b) Now, put points down on line with spacing equal to the ξi .

x x x x x x x x
↔
ξ1
↔
ξ2

←→
ξ3 · · · t

I Let Y (t) denote the number of points hit by time t .

I In the figure above, Y (t) = 6.

Intuition: The unit rate Poisson process is simply the number of points hit
when we run along the time frame at rate one.
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The Poisson process

Let
I Y be a unit rate Poisson process.

I Yλ(t) ≡ Y (λt),

Then Yλ is a Poisson process with parameter λ.

Intuition: The Poisson process with rate λ is simply the number of points hit
(of the unit-rate point process) when we run along the time frame at rate λ.

Thus, we have “changed time” to convert a unit-rate Poisson process to one
which has rate λ.

There is no reason λ needs to be constant in time, in which case

Yλ(t) ≡ Y
„Z t

0
λ(s)ds

«
.
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Putting it all together

It turns out that

P{Yλ(t + ∆t)− Yλ(t) > 0} ≈ 1− e−λ(t)∆t ≈ λ(t)∆t .

Recall that for A + B → C we wanted to model

P{reaction occurs in (t , t + ∆t ]} ≈ κXA(t)XB(t)∆t .

This suggests we can model

R(t) = Y
„Z t

0
λ(s)ds

«
= Y

„Z t

0
κXA(s)XB(s)ds

«
where Y is unit-rate Poisson process. This is similar to deterministic model!
Hence0@ XA(t)

XB(t)
XC(t)

1A ≡ X (t) = X (0) +

0@ −1
−1
1

1AY
„Z t

0
κXA(s)XB(s)ds

«
.

This equation uniquely determines X for all t ≥ 0.
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Stochastic models of (bio)chemical reactions

• We consider a network of reactions involving d chemical species,
S1, . . . ,Sd :

dX
i=1

νik Si −→
dX

i=1

ν′ik Si

• The state of the system, X (t) ∈ Zd
≥0, gives the number of molecules of

each species in the system at time t .

• νk : vector giving number of molecules of each chemical species
consumed in the k th reaction.

• ν′k : vector giving number of molecules of each chemical species created
in the k th reaction.
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Stochastic models of (bio)chemical reactions

• If k th reaction occurs at time t , the new state becomes

X (t) = X (t−) + ν′k − νk .

• The rate of k th reaction is λk : Zd
≥0 → R.

• By analogy with before

X (t) = X (0) +
X

k

Yk

„Z t

0
λk (X (s))ds

«
(ν′k − νk ).



Mass-action kinetics

The standard intensity function chosen is mass-action kinetics:

λk (x) = κk (
Y

i

νik !)

 
x
νk

!
= κk

Y
i

xi !

(xi − νik )!
.

Rate is proportional to the number of distinct subsets of the molecules
present that can form inputs for the reaction. (this assumes vessel is
“well-stirred”.)

Example: If S1 → anything, then λk (x) = κk x1.

Example: If S1 + S2 → anything, then λk (x) = κk x1x2.

Example: If S1 + 2S2 → anything, then λk (x) = κk x1x2(x2 − 1).



Population Example: Lotka-Volterra predator-prey model

Think of A as a prey and B as a predator.

A
κ1→ 2A, A + B

κ2→ 2B, B
κ3→ ∅,

with A(0) = B(0) = 1000 and κ1 = 2, κ2 = .002, κ3 = 2.

Deterministic model. Let x(t) = [A(t),B(t)]T .

x(t) = x(0) + κ1

Z t

0
x1(s)ds

»
1
0

–
+ κ2

Z t

0
x1(s)x2(s)ds

»
−1
1

–
+ κ3

Z t

0
x2(s)ds

»
0
−1

–

Stochastic model. Let X (t) = [A(t),B(t)]T .

X(t) = X(0) + Y1

„
κ1

Z t

0
X1(s)ds

«»
1
0

–
+ Y2

„
κ2

Z t

0
X1(s)X2(s)ds

«»
−1
1

–
+ Y3

„
κ3

Z t

0
X2(s)ds

«»
0
−1

–



Population Example: Lotka-Volterra predator-prey model

Think of A as a prey and B as a predator.

A
κ1→ 2A, A + B

κ2→ 2B, B
κ3→ ∅,

with A(0) = B(0) = 1000 and κ1 = 2, κ2 = .002, κ3 = 2.

Deterministic model. Let x(t) = [A(t),B(t)]T .

x(t) = x(0) + κ1

Z t

0
x1(s)ds

»
1
0

–
+ κ2

Z t

0
x1(s)x2(s)ds

»
−1
1

–
+ κ3

Z t

0
x2(s)ds

»
0
−1

–

Stochastic model. Let X (t) = [A(t),B(t)]T .

X(t) = X(0) + Y1

„
κ1

Z t

0
X1(s)ds

«»
1
0

–
+ Y2

„
κ2

Z t

0
X1(s)X2(s)ds

«»
−1
1

–
+ Y3

„
κ3

Z t

0
X2(s)ds

«»
0
−1

–



Population Example: Lotka-Volterra predator-prey model

Think of A as a prey and B as a predator.

A
κ1→ 2A, A + B

κ2→ 2B, B
κ3→ ∅,

with A(0) = B(0) = 1000 and κ1 = 2, κ2 = .002, κ3 = 2.

Deterministic model. Let x(t) = [A(t),B(t)]T .

x(t) = x(0) + κ1

Z t

0
x1(s)ds

»
1
0

–
+ κ2

Z t

0
x1(s)x2(s)ds

»
−1
1

–
+ κ3

Z t

0
x2(s)ds

»
0
−1

–

Stochastic model. Let X (t) = [A(t),B(t)]T .

X(t) = X(0) + Y1

„
κ1

Z t

0
X1(s)ds

«»
1
0

–
+ Y2

„
κ2

Z t

0
X1(s)X2(s)ds

«»
−1
1

–
+ Y3

„
κ3

Z t

0
X2(s)ds

«»
0
−1

–



Lotka-Volterra
Think of A as a prey and B as a predator.
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Outline

1. Why do people want to model some processes stochastically as
opposed to deterministically?

2. What are the basic models used?

3. → How can we understand the behavior of these models both analytically
and computationally?



How can the models be understood?
1. Understand how the distribution of the process behaves.

2. Understand how paths behave.

Kolmogorov’s forward equation (“Chemical Master Equation”) describes the
evolution of the distribution of the state of the system

d
dt

P(x , t) =
X

k

λk (x − ν′k + νk )P(x − ν′k + νk , t)−
X

k

λk (x)P(x , t),

where P(x , t) is probability X (t) = x .

dPn(t)
dt

= (1/3)(n − 1)Pn−1(t)− (1/3)nPn(t),
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Example: Stationary distributions
d
dt

P(x , t) =
X

k

λk (x − ν′k + νk )P(x − ν′k + νk , t)−
X

k

λk (x)P(x , t),

Large (oftentimes infinite), linear system: very difficult to solve.

• Shows stationary distribution (analog of a fixed point) satisfies

0 =
X

k

λk (x − ν′k + νk )π(x − ν′k + νk )−
X

k

λk (x)π(x).

1. These can sometimes be found and can determine “large time behavior.”

2. Mathematicians spend time thinking of ways to connect network
structure with existence/form of stationary distribution.

3. Example (A., Craciun, Kurtz, Bull. Math. Biol. 2010):
weakly reversible + deficiency zero =⇒ π(x) is of very special form:

I Product form.
I Product of Poisson’s.

π(x) =
dY

i=1

cxi
i

xi !
e−ci , x ∈ Zd

≥0.

Point of analysis: result will be useful in myriad applications.
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Pathwise Representations – Random time changes
A representation for path-wise solutions of our model is given by random
time-changes of Poisson processes

X (t) = X (0) +
X

k

Yk

„Z t

0
λk (X (s))ds

«
(ν′k − νk ),

where the Yk are independent, unit-rate Poisson processes.

Random time changes have interesting history:

(Wolfgang Döblin)



Methods of investigation: numerical simulation

X (t) = X (0) +
X

k

Yk

„Z t

0
λk (X (s))ds

«
(ν′k − νk ),

(GOOD NEWS) There are a number of numerical methods that produce
statistically exact sample paths:

1. Gillespie’s algorithm.
2. The first reaction method.
3. The next reaction method.

For each step of these methods one must find :
(i) the amount of time that passes until the next reaction takes place:

∆n ∼ exp

 X
k

λk (X (t))

!
(the minimum of exponential RVs)

(ii) which reaction takes place at that time.

(BAD NEWS) If
P

k λk (X (t))� 1, then ∆n ≈
1P

k λk (X (t))
� 1

∗ time to produce a single path over an interval [0,T ] can be prohibitive.



Methods of investigation: numerical simulation

X (t) = X (0) +
X

k

Yk

„Z t

0
λk (X (s))ds

«
(ν′k − νk ),

(GOOD NEWS) There are a number of numerical methods that produce
statistically exact sample paths:

1. Gillespie’s algorithm.
2. The first reaction method.
3. The next reaction method.

For each step of these methods one must find :
(i) the amount of time that passes until the next reaction takes place:

∆n ∼ exp

 X
k

λk (X (t))

!
(the minimum of exponential RVs)

(ii) which reaction takes place at that time.

(BAD NEWS) If
P

k λk (X (t))� 1, then ∆n ≈
1P

k λk (X (t))
� 1

∗ time to produce a single path over an interval [0,T ] can be prohibitive.



Tau-leaping
Explicit “τ -leaping” 5 was developed by Dan Gillespie in an effort to overcome
the problem that ∆n may be prohibitively small.

Tau-leaping is essentially an Euler approximation of
Z t

0
λk (X (s))ds:

Say: x(t) = x(t0) +
R t

t0
x(s)ds (i.e. d

dt x(t) = x(t))

Use approximation: x̃(t) = x(t0) + (t − t0)x(t0).

5D. T. Gillespie, J. Chem. Phys., 115, 1716 – 1733.
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Tau-leaping

Explicit “τ -leaping” 6 was developed by Dan Gillespie in an effort to overcome
the problem that ∆n may be prohibitively small.

Tau-leaping is essentially an Euler approximation of
Z t

0
λk (X (s))ds:

Z (τ) = Z (0) +
X

k

Yk

„Z τ

0
λk (Z (s)) ds

«
(ν′k − νk )

≈ Z (0) +
X

k

Yk

„Z τ

0
λk (Z (0)) ds

«
(ν′k − νk )

= Z (0) +
X

k

Yk

„
λk (Z (0)) τ

«
(ν′k − νk )

d
= Z (0) +

X
k

Poisson
„
λk (Z (0)) τ

«
(ν′k − νk ).

6D. T. Gillespie, J. Chem. Phys., 115, 1716 – 1733.



Another algorithm: A midpoint method
For a time discretization 0 = t0 < t1 < · · · < tN = T , with τ = tn − tn−1, let

ρ(z) = z +
1
2
τ
X

k

λk (z)(ν′k − νk ),

be a “deterministic” midpoint approximation
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ρ(z) = z +
1
2
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Error analysis

Under the scaling τ → 0:

1. Li7 and also Rathinam, Petzold, Cao, and Gillespie8 showed Euler
tau-leaping is a first order method.

2. The midpoint method has the same order of accuracy as explicit Euler
tau-leaping as τ → 0.

7T. Li, SIAM Multi. Model. Simul., 6, 2007, 417 – 436.
8M. Rathinam et al., SIAM Multi. Model. Simul., 4, 2005, 867 – 895.



Example
Again think of A as a prey and B as a predator.

A
κ1→ 2A, A + B

κ2→ 2B, B
κ3→ ∅,

with A(0) = B(0) = 1000 and κ1 = 2, κ2 = .002, κ3 = 2.

Letting τ = 1/20 and simulating 30,000 sample paths with each method
yields the following approximate distributions for B(10):
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Another perspective

Recall, tau-leaping methods are used when τ � ∆n, for otherwise an exact
method would be performed. Therefore, we should require that

τ � 1P
k λk (X (t))

≈ ∆n while
X

k

λk (X (t))� 1.

So τ → 0 does not tell the whole story.

Begs the question: how else can one perform a useful error analyses?

I Perform non-standard error analysis. Take natural scales into account.
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Another perspective

Take natural scales into account. Suppose that

(i) Numbers of molecules X V
i = O(V ) for some V large (100’s, 1000’s, ...).

(ii) λk (X V (t)) = O(V ).

(iii) Timestep not too small.

Can prove that (A., Ganguly, Kurtz, 2011, to appear in Ann. of Appl. Prob.):

1. Euler τ−leaping is a first order method.

2. Midpoint τ−leaping is a second order method.

Proof makes explicit use of representation and uses facts of Poisson process:

X
V

(t) = X
V

(0) +
X

k

1
V

Yk

„
V
Z t

0
λk (X

V
(s))ds

«
(ν′k − νk )

Note: this informs what algorithm should be used in what situation.
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Example
Consider A as a prey and B as a predator.

A
κ1→ 2A, A + B

κ2→ 2B, B
κ3→ ∅,

with A(0) = B(0) = 1000 and κ1 = 2, κ2 = .002, κ3 = 2.

V = 1,000 and τ = 1/20 = 1/V .434. Simulating 30,000 sample paths yields
the following approximate distributions for B(10):
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Post-leap check: Poisson Bridge

What else can be done with good representation?

Problem: τ−leaping can lead to negative molecular counts.

Solution: Postleap check or Poisson bridge. Main ideas:

I Given Yk (t) and Yk (s) with s < t , for r ∈ (s, t)

Yk (r) = Binomial
„

Yk (t)− Yk (s),
r − s
t − s

«
.

x x x x x x x x
↔
ξ1
↔
ξ2

←→
ξ3 · · · t

Som benefits:
1. Guaranteed that any “leap condition” can be enforced with prob. 1.

2. Easy to implement.

3. Naturally avoids negative population numbers without biasing Yk .

8 David F. Anderson, Incorporating postleap checks in tau-leaping, J. Chem. Phys., 2008
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Some conclusions

1. Simulation of continuous time Markov chains is easy.

....unless it’s not.

2. Mathematics has a role to play:

2.1 Error analysis informs choice of algorithm in different setting.

2.2 Post-leap checking serves as core of error reduction strategy in multiple
algorithms.

3. Stochastic models do have a place in biology.

4. Mathematical tools just as sophisticated for stochastic as opposed to
deterministic models.

5. What can be said about different type of modes? Langevin?
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Diffusion/Langevin Approximation
Classical result:

1
V

Y (Vu) ≈ u +
1√
V

W (u) for large V ,

where W is a Brownian motion (Functional LLN and CLT).

Under the classical scaling, can use diffusion approximation

X(t) = X(0) +
1
V

X
k

Yk

„
V
Z t

0
λ(X(s))ds

«
(ν′k − νk )

≈ X(0) +
X

k

Z t

0
λ(X(s))ds (ν′k − νk ) +

1√
V

X
k

Wk

„Z t

0
λk (X(s))ds

«
(ν′k − νk ).

Hence can approximate X with solution to

dZ (t) =
X

k

λk (Z (t)) (ν′k − νk ) dt +
1√
V

X
k

(ν′k − νk )
p
λ(Z (t)) dWk (t).

This is:
I Continuous.

I Used *very often*.



Diffusion/Langevin Approximation
Classical result:

1
V

Y (Vu) ≈ u +
1√
V

W (u) for large V ,

where W is a Brownian motion (Functional LLN and CLT).

Under the classical scaling, can use diffusion approximation

X(t) = X(0) +
1
V

X
k

Yk

„
V
Z t

0
λ(X(s))ds

«
(ν′k − νk )

≈ X(0) +
X

k

Z t

0
λ(X(s))ds (ν′k − νk ) +

1√
V

X
k

Wk

„Z t

0
λk (X(s))ds

«
(ν′k − νk ).

Hence can approximate X with solution to

dZ (t) =
X

k

λk (Z (t)) (ν′k − νk ) dt +
1√
V

X
k

(ν′k − νk )
p
λ(Z (t)) dWk (t).

This is:
I Continuous.
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Brownian motions



Want a good algorithm: change representation!

System

dX (t) =

Z t

0
b(X (s))ds +

X
k

Z t

0
σk (X (s)) νk dWk (s),

is equivalent to

X (t) = X (0) +

Z t

0
b(X (s))ds +

X
k

νk

Z ∞
0

Z t

0
1[0,σ2

k (X(s)))(u)W̃k (ds × du),

where the W̃k are independent space-time white noise processes.

Challenge is in approximating diffusion term.



Why this works: θ = 1/2
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Approximating the diffusion approximation
Let approximate path be Yi . The following is 2nd order accurate in weak
sense.

ALGORITHM 1 (D. Anderson and J. Mattingly, 2011). Fixing a θ ∈ (0, 1), we
define

α1
def
=

1
2

1
θ(1− θ)

and α2
def
=

1
2

(1− θ)2 + θ2

θ(1− θ)
. (3)

Next fixing a discretization step h, for each i ∈ {1, 2, 3, . . . } we repeat the
following steps in which we first compute a θ-midpoint y∗ and then the new
value Yi :

Step 1. Set
y∗ = Yi−1 + b(Yi−1)θh +

X
k

σk (Yi−1) νk η
(i)
1k

√
θh

Step 2. Set

Yi = y∗ + (α1b(y∗)− α2b(Yi−1))(1− θ)h

+
X

k

qˆ
α1σ2

k (y∗)− α2σ2
k (Yi−1)

˜+
νk η

(i)
2k

p
(1− θ)h.

1D. F. Anderson and J. C. Mattingly, Comm. Math. Sci., 2011


