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Outline

1. — General discussion of mathematical models and the difference between
deterministic and stochastic?

2. What are the basic stochastic models used?

3. How can we understand the behavior of stochastic models both
analytically and computationally?

(not-so-hidden) Ulterior motives:
i “Sell” the usefulness of probability and mathematics in this arena.

i Recruit for my Stochastic Models in Biology course in Fall 2011 (Math 605).



What is a mathematical model?

1. A mathematical description of real world phenomena.

2. Can be used to make predictions of behavior of the system.

3. Experimentally test predictions made.

4. Tweak the mathematical model and repeat.



Stochastic versus deterministic models

A process is deterministic if its future is completely determined by its present
and past. Examples include

» solutions to differential equations.
» solutions to difference equations.
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Stochastic versus deterministic models

A process is deterministic if its future is completely determined by its present
and past. Examples include

» solutions to differential equations.
» solutions to difference equations.

Example
The initial value problem
d
Ex(t) = 3x(t) x(0) =2,
has the solution x(t) = 2&%. O

Example
Consider the difference equation

Fi=Fa=1
Frn=Fn_1+ ang, forn > 2.

Then {F,}2; is the well known Fibonacci sequence: {1,1,2,3,5,8,...}. O



Stochastic versus deterministic models

On the other hand, a stochastic process is a random process evolving in time.

Informally: even if you have full knowledge of the state of the system (and it's
entire past), you can not be sure of it’s value at future times.



Stochastic versus deterministic models

On the other hand, a stochastic process is a random process evolving in time.

Informally: even if you have full knowledge of the state of the system (and it's
entire past), you can not be sure of it’s value at future times.

Example

Consider rolling a die multiple times. Let S, denote the sum of the first n rolls.
Then,
So=0

and
316{1,...,6}, 826{2,...,12}7 etc.

Knowing that S, = 8 only guarantees that S; € {9, ...,14}.



Why study stochastic models of intracellular processes?

Stochastic models have a long history in biology (Galton/Watson 1873,
Max Delbriick, JCP, 1940); however, over the past 15 years their use has
exploded.

One reason:

» recent advances in experimental methods in biology, such as green
fluorescent protein, have enabled quantitative measurements at the
single cell, and even single molecule, level.

» Such experiments show time and time again that the dynamics at this
level are intrinsically stochastic, or “noisy,” and that that noise can have
large implications for the qualitative dynamics.



Why study stochastic models of intracellular processes?
Clonal populations of cells exhibit substantial phenotypic variation:

3 C RP22ArecA+IPTG
N

F M22+Repressilator

1x-tetO | . 7x-tetO

"Elowitz et al., Science, 297, 2002.
2Raj et al., PLoS Biology, 4(10), 2006.



What are the differences? Example: Bacterial Growth

Let’s consider two oversimplified models for bacterial growth (by growth here,
I mean the growth of the size of the colony, not of an individual bacterium):

» one deterministic

» one stochastic.
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What are the differences? Example: Bacterial Growth
Let’s consider two oversimplified models for bacterial growth (by growth here,
I mean the growth of the size of the colony, not of an individual bacterium):
» one deterministic
» one stochastic.

We suppose
» there are 10 bacteria at time zero.
» each bacteria divides at an “average” rate of once per three hours.

Deterministic model: a “reasonable” model would be
d 1
X0 =3x(®)  x(0)=10, (1)

with solution
x(t) = 10e"®,

where the units of t are hours.



Example: Bacterial Growth

Stochastic Model: Without going into the finer details yet, assume

1. Each bacteria divides after a random (independent, exponential) amount
of time with an average wait of 3 hours.



Example: Bacterial Growth

Stochastic Model: Without going into the finer details yet, assume

1. Each bacteria divides after a random (independent, exponential) amount
of time with an average wait of 3 hours.

Similar to equation (1) for the deterministic model, it is possible to write down
systems of equations describing the time evolution of model

1. Evolution of individual sample paths — instance of experiment (like the
ODE model)

2. Evolution of the distribution (probability of being in certain states)

However, | will postpone doing so until later.



Example: Bacterial Growth - evolution of sample paths

» Below is a plot of the solution of the deterministic system versus three
different realizations of the stochastic system.
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» Stochastic realizations/experiments appear to follow the deterministic
system in a “noisy” way.

» It is clear that the behavior of a single realization or experiment of the
stochastic system can not be predicted with absolute accuracy.



Example: population growth - evolution of distribution
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Example: population growth - evolution of distribution
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Example: population growth - evolution of distribution
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Example: Bacterial Growth and Death

Now suppose that we change the model “slightly” in that:

1. we allow bacteria to die as well as divide.

2. we suppose we begin with only two bacteria.

We suppose that they die after about five hours.



Example: Bacterial Growth and Death

Now suppose that we change the model “slightly” in that:

1. we allow bacteria to die as well as divide.

2. we suppose we begin with only two bacteria.

We suppose that they die after about five hours.

Our new deterministic model could be
() = 2x(1) = 2x(f) = 2x(1),  x(0)=2
~ 3 5 ~ 15 ’ -7

with solution
x(t) = 26*/".



Example: Bacterial Growth and Death

For the stochastic model, we now model the two possible changes to the size
of the colony separately. That is, the next event is either

1. a growth event (via a division) or

2. a decrease event (via a death).



Example: Bacterial Growth and Death

» Deterministic vs. three realizations/experiments of stochastic system.
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» The models now behave qualitatively differently:

one of the realizations of the stochastic model (i.e. one of the colonies
under observation) has been completely wiped out, something not
possible in the deterministic modeling context.



Stochastic models for biochemical processes

Gene transcription & translation:
Cartoon representation:

G; — Gj + M; transcription gene (1) mRNA (n)  Protein (1)
M; — M; + P; translation — __—yw,.,._: — N Qé-

M — 0 degradation N g i s
P — 0 degradation off on iy 2

G + P/- — Bound;

3J. Paulsson, Physics of Life Reviews, 2, 2005 157 — 175.
“Hye Won Kang, presentation at SPA in 2007.



Stochastic models for biochemical processes

Gene transcription & translation:

Cartoon representation:

G; — Gj + M; transcription gene (m) mRNA (m)  Protein (1)
M; — M; + P; translation SIS, ). . «4—
M, — 0 degradation N é i * N
P —0 degradation off of ' : : * .

G + P/- — Bound;

E. coli Heat Shock Response Model. 9 species, 18 reactions.

Reaction Intensity Reaction Intensity

0 — Ag 4.00 x 100 As +Ag — Ag | 3.62 x 107Xy, Xa,
Ay — Az 7.00 x 1071 Xy, Ag — 0 9.99 x 1075X4,
Az — Ay 1.30 x 101X, Ag — As + Ag 4.40 x 1075X,

04 A, 7.00 x 10~3X,, 0 — A 1.40 x 10~5
stuff + Az — As + Ay 6.30 x 1073Xy, A — 0 1.40 x 1076 X4,
stuff + Az — Aq + Ax 4.88 x 1073Xp, Ar 2 A 1.42 x 107%X 4, Xa,
stuff + Az — Ag + Az | 4.88 x 1073Xy, As — 0 1.80 x 1078 X s,

A7 — Ay + Ag 4.40 x 107%Xy, As — 0 6.40 x 10710,
Ar + Ag — A7 3.62 X 10~%X, Xa, Ay — 0 7.40 x 107X, |4

3J. Paulsson, Physics of Life Reviews, 2, 2005 157 — 175.
“Hye Won Kang, presentation at SPA in 2007.



Outline

1. Why do people want to model some processes stochastically as
opposed to deterministically?

2. — What are the basic models used?

3. How can we understand the behavior of these models both analytically
and computationally?



Basic stochastic models of (bio)chemical reaction networks

Consider the simple system
A+B—C

where one molecule each of A and B is being converted to one of C.



Basic stochastic models of (bio)chemical reaction networks

Consider the simple system
A+B—C

where one molecule each of A and B is being converted to one of C.

Intuition for standard model is that the probability of reaction occurring in a
small time interval (¢, t + At] should be

P{reaction occurs in (f, { + At]} ~ cXa(t)Xp(t)At

where
> K is a positive constant, the reaction rate constant.



Models of interest

A+B—C

Simple book-keeping: if X(t) = (Xa(t), Xa(t), Xc(t)) gives the state at time ¢
then

-1
X(t) = X(0) + R(1) ( —1 ) ) (@)
1
where
» R(t) is the # of times the reaction has occurred by time t and

» X(0) is the initial condition.



Models of interest

A+B—C

Simple book-keeping: if X(t) = (Xa(t), Xa(t), Xc(t)) gives the state at time ¢
then

—1
X(t) = X(0) + R(t) ( =1 ) , (2)
1

where
» R(t) is the # of times the reaction has occurred by time t and
» X(0) is the initial condition.

Note:
» R(0)=0and
» R is constant except for jumps of plus one.

Goal: represent R in terms of Poisson process.



The Poisson process

A Poisson process, Y, is a model for a series of random observations
occurring in time.

(a) Let {&} be i.i.d. exponential random variables with parameter one.



The Poisson process

A Poisson process, Y, is a model for a series of random observations
occurring in time.

(a) Let {&} be i.i.d. exponential random variables with parameter one.

(b) Now, put points down on line with spacing equal to the &;.

> Let Y(t) denote the number of points hit by time .
> In the figure above, Y(t) = 6.

Intuition: The unit rate Poisson process is simply the number of points hit
when we run along the time frame at rate one.



The Poisson process

Let
» Y be a unit rate Poisson process.

> Yi(t) = Y(),
Then Y, is a Poisson process with parameter .

Intuition: The Poisson process with rate ) is simply the number of points hit
(of the unit-rate point process) when we run along the time frame at rate .

Thus, we have “changed time” to convert a unit-rate Poisson process to one
which has rate .



The Poisson process

Let
» Y be a unit rate Poisson process.

> Ya(t) = Y(O),

Then Y, is a Poisson process with parameter .

Intuition: The Poisson process with rate ) is simply the number of points hit
(of the unit-rate point process) when we run along the time frame at rate .

Thus, we have “changed time” to convert a unit-rate Poisson process to one
which has rate .

There is no reason \ needs to be constant in time, in which case

Ya()=Y </Ot>\(s)ds) .



Putting it all together
It turns out that

P{YA(t + At) — Ya(t) > 0} = 1 — e X8 x \(1)AL.
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where Y is unit-rate Poisson process. This is similar to deterministic model!



Putting it all together
It turns out that
P{YA(t + At) — Ya(t) > 0} = 1 — e X8 x \(1)AL.
Recall that for A+ B — C we wanted to model

P{reaction occurs in (f, f + Af]} ~ Xa(t)Xa(t)At.

This suggests we can model

R(t) =Y (/Ot)\(s)ds) —y (/Ot KXA(S)XB(S)dS)

where Y is unit-rate Poisson process. This is similar to deterministic model!
Hence

Xa(1) —1 ,
( Xa(t) ) = X(t) = X(0) + ( 1 ) Y(/ HXA(S)XB(s)ds>.
Xo(1) 1 0

This equation uniquely determines X for all t > 0.



Stochastic models of (bio)chemical reactions

e We consider a network of reactions involving d chemical species,

Si 9ooog Sd:
d d
/
E VikSi — E VikSi
i=1 i=1



Stochastic models of (bio)chemical reactions

e We consider a network of reactions involving d chemical species,

Si 9ooog Sd:
d d
/
E VikSi — E VikSi
i=1 i=1

e The state of the system, X(t) € ZZ,, gives the number of molecules of
each species in the system at time t.

e vy vector giving number of molecules of each chemical species
consumed in the kth reaction.

e v, vector giving number of molecules of each chemical species created
in the kth reaction.



Stochastic models of (bio)chemical reactions

o If kth reaction occurs at time t, the new state becomes

X(t) = X(t=) + vk — vk.

e The rate of kth reaction is s : Z%y — R.

e By analogy with before

X(t) = X(0)+ 3 Vi (/0[ )\k(X(s))ds> (v = ).



Mass-action kinetics

The standard intensity function chosen is mass-action kinetics:
ZHk(HVik!) X —fikH
; Vk )= V,k)'

Rate is proportional to the number of distinct subsets of the molecules
present that can form inputs for the reaction. (this assumes vessel is
“well-stirred”.)

Example: If S; — anything, then A\«(x) = rkXi.
Example: If S; + Sz — anything, then \¢(x) = rix1Xa.

Example: If S + 2S5, — anything, then A\«(x) = rrXxiX2(x2 — 1).



Population Example: Lotka-Volterra predator-prey model

Think of A as a prey and B as a predator.

AL 2A A+ B3 2B, B2,

with A(0) = B(0) = 1000 and k1 = 2, kz = .002, kg = 2.



Population Example: Lotka-Volterra predator-prey model

Think of A as a prey and B as a predator.

AL 2A A+ B3 2B, B2,
with A(0) = B(0) = 1000 and k¢ = 2, k2 = .002, 3 = 2.

Deterministic model. Let x(f) = [A(t), B(t)]".

xO=x0) +n1 [ 1@as| § ] +me [T T ][] %]



Population Example: Lotka-Volterra predator-prey model

Think of A as a prey and B as a predator.

AL 2A A+ B3 2B, B2y,
with A(0) = B(0) = 1000 and k¢ = 2, k2 = .002, 3 = 2.

Deterministic model. Let x(f) = [A(t), B(t)]".

xO=x0) +n1 [ 1@as| § ] +me [T T ][] %]

Stochastic model. Let X(t) = [A(t), B(t)]".

X(t) = X(0) + Y4 (M /OtX1(s)ds> { 5 } Y (w /Otx1(s)x2(s)ds) { B }

+ Y3 (n3 /otxz(s)ds) [ 91 ]



Lotka-Volterra
Think of A as a prey and B as a predator.

AL 2A, A+B332B, B2,

with A(0) = B(0) = 1000 and k1 = 2, k2 = .002, k3 = 2.

1800, T T T 1501
—— Stochastic model 1400 — Prey
— Predator
1600 — ODE model |
1300)
1200
1400|
1100
1000
> 1200
o 900
[
1000 o
“o 5 10 15 20 25 30 35 40
800
—Prey
18007 — predator
600 1600
, , . . . .
400 600 800 1000 1200 1400 1600 1800 4%
Predator .
1000
800}
600]
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1. Why do people want to model some processes stochastically as
opposed to deterministically?

2. What are the basic models used?

3. — How can we understand the behavior of these models both analytically
and computationally?



How can the models be understood?
1. Understand how the distribution of the process behaves.

2. Understand how paths behave.




How can the models be understood?
1. Understand how the distribution of the process behaves.

2. Understand how paths behave.

Kolmogorov’s forward equation (“Chemical Master Equation”) describes the
evolution of the distribution of the state of the system

d

&P(x, t) = }k: (X — vk + vk )P(X — vk + vk, 1) — }k: M (X)P(x, 1),

where P(x, t) is probability X(t) = x.



How can the models be understood?

1. Understand how the distribution of the process behaves.

2. Understand how paths behave.

Kolmogorov’s forward equation (“Chemical Master Equation”) describes the
evolution of the distribution of the state of the system

d ; /
) :;AK(X—VHVK)P(X—VHW, ZAK P(x, 1),

where P(x, t) is probability X(t) =

P — (1/3)(n ~ 1)Par() ~ (1/3)nPu(0)

0.1§
03| 014 0.08| 0.08
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Example: Stationary distributions

ng (x,1) Zkk(x—uk—',-uk)P(x—uk-&-yk, —Zkk(x)P(x, f),

Large (oftentimes infinite), linear system: very difficult to solve.



Example: Stationary distributions

ng (x,1) Z/\k(x—yk+uk)P(x—uk+z/k, —;XK(X)P(X, f),

Large (oftentimes infinite), linear system: very difficult to solve.

e Shows stationary distribution (analog of a fixed point) satisfies

0= ; Me(X = v + v)m(x — v +vg) — ;)\k(x)ﬂ-(x).

1. These can sometimes be found and can determine “large time behavior.”



Example: Stationary distributions
ng (x, 1) Z/\k(x—yk+uk)P(x—uk+z/k, —ZAK(X)P(X, t),
k

Large (oftentimes infinite), linear system: very difficult to solve.

e Shows stationary distribution (analog of a fixed point) satisfies
0= M(X — v+ v)m(x — v + ) = D M(X)7(x).
k k
1. These can sometimes be found and can determine “large time behavior.”
2. Mathematicians spend time thinking of ways to connect network
structure with existence/form of stationary distribution.
3. Example (A., Craciun, Kurtz, Bull. Math. Biol. 2010):
weakly reversible + deficiency zero = =(x) is of very special form:

» Product form.

» Product of Poisson’s.
d X

@ _a
W(X):Hﬁe 4,  xezi,.
i=1 7

Point of analysis: result will be useful in myriad applications.



Pathwise Representations — Random time changes

A representation for path-wise solutions of our model is given by random
time-changes of Poisson processes

X(t) = X(0) + Xk: Y </Ot A;&X(s))ds) (Vk — k),

where the Yj are independent, unit-rate Poisson processes.

Random time changes have interesting history:

(Wolfgang Déblin)



Methods of investigation: numerical simulation

)+ 3% ([ Mxcsnds) whc— o,

(GOOD NEWS) There are a number of numerical methods that produce
statistically exact sample paths:

1. Gillespie’s algorithm.
2. The first reaction method.
3. The next reaction method.

For each step of these methods one must find :
(7) the amount of time that passes until the next reaction takes place:

An ~ exp (Z )\k(X(t))>
k

(the minimum of exponential RVs)
(i) which reaction takes place at that time.



Methods of investigation: numerical simulation

)+ 3% ([ Mxcsnds) whc— o,

(GOOD NEWS) There are a number of numerical methods that produce
statistically exact sample paths:

1. Gillespie’s algorithm.
2. The first reaction method.
3. The next reaction method.

For each step of these methods one must find :
(7) the amount of time that passes until the next reaction takes place:

An ~ exp (Z )\k(X(t))>
k

(the minimum of exponential RVs)
(i) which reaction takes place at that time.

(BAD NEWS) If S5, M(X(£)) > 1, then Ap ~ 1 < 1

2 M(X(D)

x time to produce a single path over an interval [0, T] can be prohibitive.



Tau-leaping
Explicit “r-leaping” ®> was developed by Dan Gillespie in an effort to overcome
the problem that A, may be prohibitively small.

»5

t
Tau-leaping is essentially an Euler approximation of / Ak(X(8))ds:
0

5D. T. Gillespie, J. Chem. Phys., 115, 1716 — 1733.



Tau-leaping
Explicit “r-leaping” ®> was developed by Dan Gillespie in an effort to overcome
the problem that A, may be prohibitively small.

»5

t
Tau-leaping is essentially an Euler approximation of / Ak(X(8))ds:
0

Say: x(t) = x(t) + J, x(s)ds (i.e. <x(t) = x(1))

Use approximation: X(t) = x(f) + (t — fo)x(f).

 X(t)

4 x(Euler)
t

1
1
1
|
1
1
1
1
1
|
1
1
|
1
1
|
1
!

5D. T. Gillespie, J. Chem. Phys., 115, 1716 — 1733.



Tau-leaping

Explicit “r-leaping” ® was developed by Dan Gillespie in an effort to overcome
the problem that A, may be prohibitively small.

t
Tau-leaping is essentially an Euler approximation of / Ak(X(s))ds:
0

)+ Z Yi (/ M(Z(s)) ds) (Vi — vk)
+ ; Y, (/0 M(Z(0)) ds) Wk — )
0)+ 3 ¥i (20 7) 0~ )

[l

+ " Poisson (AK(Z(O)) T> (Vk — k).
k

6D. T. Gillespie, J. Chem. Phys., 115, 1716 — 1733.



Another algorithm: A midpoint method
For atime discretization0=fh < t; < --- <ty = T, with 7 = t, — th_1, let

*Z+*TZ)\;( k*l/k

be a “deterministic” midpoint approximation

x(Midpoint)

x(Euler)

- - -



Another algorithm: A midpoint method

For a time discretization0 =fh < t; < --- < ty = T, with 7 = t, — t,_1, let
1 /
p2)=z+ 57 > M(2) (v — w),
k

be a “deterministic” midpoint approximation

and let Z(t) solve:

20)= 20+ 3 % ([ rwtztsn as) i~ )

Q

200+ 5 ¥ ([ Mtotz () 08) (i - )

1ES

Z(0)+ ) _ Poisson <)\k(p(Z(0))) T> (Vi — vi).
k



Error analysis

Under the scaling 7 — 0:

1. Li” and also Rathinam, Petzold, Cao, and Gillespie® showed Euler
tau-leaping is a first order method.

2. The midpoint method has the same order of accuracy as explicit Euler
tau-leaping as 7 — 0.

"T. Li, SIAM Multi. Model. Simul., 6, 2007, 417 — 436.
8M. Rathinam et al., SIAM Multi. Model. Simul., 4, 2005, 867 — 895.



Example
Again think of A as a prey and B as a predator.

ZL2A, A+ B3 2B, B2y,
with A(0) = B(0) = 1000 and k¢ = 2, k2 = .002, k3 = 2.

Letting = = 1/20 and simulating 30,000 sample paths with each method
yields the following approximate distributions for B(10):

0.16

0.14t -%- Gillespie Algorithm |
—©-Standard Tau-Leaping

0.121 —#—-Midpoint Tau-Leaping -

0.1
0.08
0.06
0.04
0.021

0°°""500 1000 1500 2000 2500 3000



Another perspective

Recall, tau-leaping methods are used when 7 > A, for otherwise an exact
method would be performed. Therefore, we should require that

1

T sy S A while Xk:Ak(X(f))>>1~

So 7 — 0 does not tell the whole story.
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Begs the question: how else can one perform a useful error analyses?



Another perspective

Recall, tau-leaping methods are used when 7 > A, for otherwise an exact
method would be performed. Therefore, we should require that

1

T sy S A while Xk:Ak(X(f))>>1~

So 7 — 0 does not tell the whole story.

Begs the question: how else can one perform a useful error analyses?

» Perform non-standard error analysis. Take natural scales into account.



Another perspective

Take natural scales into account. Suppose that

(/) Numbers of molecules X" = O(V) for some V large (100’s, 10007, ...).
(i) A(XY (1)) = O(V).

(i) Timestep not too small.
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(i) Timestep not too small.
Can prove that (A., Ganguly, Kurtz, 2011, to appear in Ann. of Appl. Prob.):

1. Euler 7—leaping is a first order method.
2. Midpoint 7—leaping is a second order method.



Another perspective
Take natural scales into account. Suppose that
(/) Numbers of molecules X" = O(V) for some V large (100’s, 10007, ...).
(i) M(XV (1)) = O(V).
(i) Timestep not too small.
Can prove that (A., Ganguly, Kurtz, 2011, to appear in Ann. of Appl. Prob.):

1. Euler 7—leaping is a first order method.
2. Midpoint 7—leaping is a second order method.

Proof makes explicit use of representation and uses facts of Poisson process:

X' ty=x"0)+> ‘17 Yi <v /"Xk(iv(s))ds> (h — k)

J0

Note: this informs what algorithm should be used in what situation.



Example
Consider A as a prey and B as a predator.

AL 2A A+ B3 2B, B2y,

with A(0) = B(0) = 1000 and 1 = 2, k2 = .002, g = 2.

V =1,000and 7 = 1/20 = 1/V-***, Simulating 30,000 sample paths yields
the following approximate distributions for B(10):

0.16

0.14} -%- Gillespie Algorithm |
-©-Standard Tau-Leaping

0.121 —#—Midpoint Tau-Leaping -

0.1
0.08
0.061
0.04
0.021

1000 500 3000



Post-leap check: Poisson Bridge
What else can be done with good representation?

Problem: 7—leaping can lead to negative molecular counts.

8 David F. Anderson, Incorporating postleap checks in tau-leaping, J. Chem. Phys., 2008
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Solution: Postleap check or Poisson bridge. Main ideas:

» Given Y(t) and Yk(s) with s < t, forr € (s, t)

Yi(r) = Binomial (Yk(t) ~ Yi(s), :: z) .
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Post-leap check: Poisson Bridge

What else can be done with good representation?

Problem: 7—leaping can lead to negative molecular counts.

Solution: Postleap check or Poisson bridge. Main ideas:

» Given Y(t) and Yk(s) with s < t, forr € (s, t)

Yi(r) = Binomial (Yk(t) ~ Yi(s), :: z) .

| x x X X X x | x X

‘ & & & e ‘ t
Som benefits:
1. Guaranteed that any “leap condition” can be enforced with prob. 1.
2. Easy to implement.
3. Naturally avoids negative population numbers without biasing Y.

8 David F. Anderson, Incorporating postleap checks in tau-leaping, J. Chem. Phys., 2008
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Some conclusions

1. Simulation of continuous time Markov chains is easy.....unless it's not.

2. Mathematics has a role to play:

2.1 Error analysis informs choice of algorithm in different setting.

2.2 Post-leap checking serves as core of error reduction strategy in multiple
algorithms.

3. Stochastic models do have a place in biology.

4. Mathematical tools just as sophisticated for stochastic as opposed to
deterministic models.



Some conclusions

1. Simulation of continuous time Markov chains is easy.....unless it's not.

2. Mathematics has a role to play:

2.1 Error analysis informs choice of algorithm in different setting.

2.2 Post-leap checking serves as core of error reduction strategy in multiple
algorithms.

3. Stochastic models do have a place in biology.

4. Mathematical tools just as sophisticated for stochastic as opposed to
deterministic models.

5. What can be said about different type of modes? Langevin?



Diffusion/Langevin Approximation
Classical result:
1 1
—Y(W)=~u+—=W(u) forlarge V,
v Y (W) = U+ o W) 9

where W is a Brownian motion (Functional LLN and CLT).
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Diffusion/Langevin Approximation
Classical result:

1 1
—Y(W)=~u+—=W(u) forlarge V,
y V(W) ~ 0 —C W) 9

where W is a Brownian motion (Functional LLN and CLT).

Under the classical scaling, can use diffusion approximation

X(t) = VZYK( / ))ds) (v — vk)
+Z/ (vk ka)+\FZWk (/ /\k(X(s))ds>( — ).

Hence can approximate X with solution to

dZ(t) = 5" M(Z(D) (v — i) at + # Sk — ) VA (D) dW(t)

k
This is:
» Continuous.

» Used *very often™.



Brownian motions
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Want a good algorithm: change representation!

System t t
dXx(t) = /0 b(X(s))ds+; /O ox(X(8)) vk dWk(s),

is equivalent to
t oo t .
X(t) = X(0) +/ b(X(s))ds + ZVk/ / 1[0YU§(X(S)))(U) Wi(ds x du),
0 P o Jo

where the W are independent space-time white noise processes.

Challenge is in approximating diffusion term.



Why this works: 6 = 1/2

o (X(0) 7

P (y") \,)\

Region 1




Why this works: 6 = 1/2

7 (X(0))

o2 (y")

oR(X (1) Fok(X (1)
/ ) 4egion3 2
Region 1 \_/\ \
Region 2
—h e h [ —h——h
2 2 2 2



Why this works: 6 = 1/2

7 (X(0))

o2 (y")

ar(X(t)) Lo (X (1)
/ ) 4egion3 2
Region 1 Region 2 \
2 2 2 2
oK)
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Approximating the diffusion approximation

Let approximate path be Y;. The following is 2nd order accurate in weak
sense.

ALGORITHM ' (D. Anderson and J. Mattingly, 2011). Fixinga 6 € (0,1), we
define
w1 1 wor 1 (1 —0)2 + 62

and ax = —

= 250 0 2 90 -0) &

Next fixing a discretization step h, for each i € {1,2,3,...} we repeat the
following steps in which we first compute a 6-midpoint y* and then the new

value Y;:
Step 1. Set |
Y =Y+ b(Yi)0h+ > ow(Yio1) vk n)/oh
k
Step 2. Set

Yi=y" + (eab(y”) — azb(Y;-1))(1 — 0)h

+ 3 [a102 (") — 202(Yi1)]* v i/ — O
k

'D. F. Anderson and J. C. Mattingly, Comm. Math. Sci., 2011



