NOTES ON INFINITE SEQUENCES AND SERIES OF FUNCTIONS

1. Sequences and Series of Functions

1.1. Pointwise and Uniform convergence of functions.

Let $\{f_n\}$ be a sequence of functions defined on a subset $E \subset \mathbb{C}$. We say that the sequence converges *pointwise* to a function g if for every $z \in E$, $\lim_{n\to\infty} f_n(z) = g(z)$. Precisely, this means:

$$(\forall z \in E) (\forall \epsilon > 0) (\exists N) (n \ge N \Longrightarrow |f_n(x) - g(x)| < \epsilon).$$
(1.1)

We say that the sequence converges uniformly to a function g if the N can depend on ϵ , but not on x:

$$(\forall \epsilon > 0) (\exists N) (\forall z \in E) (n \ge N \Longrightarrow |f_n(x) - g(x)| < \epsilon).$$
(1.2)

Although the definitions in (1.1) and (1.2) look very similar, there is an important difference. In the first definition for pointwise convergence, the choice of N can depend on both the quantity $\epsilon > 0$ and also on the point $z \in E$. For uniform convergence, the choice of N depends only on ϵ , and is independent of z.

Example 1. Let $f_n(x) = x^n$, and let

$$f_0(x) = \begin{cases} 0 & \text{for } 0 \le x < 1, \\ \\ 1 & \text{for } x = 1. \end{cases}$$

Then

(A) $\lim_{n\to\infty} f_n = f_0$ pointwise on the interval [0, 1], but this convergence is NOT uniform.

(B) If 0 < r < 1, then $\lim_{n \to \infty} f_n = f_0$ uniformly on the interval [0, r].

In particular, this shows

The pointwise limit of a sequence of continuous functions need not be continuous. (1.3)

Example 2. Let $g_n(x) = \frac{1}{n} \sin(nx)$. Then $\lim_{n \to \infty} g_n = 0$ uniformly on the whole real line. Note that the limit is continuous. However $g'_n(x) = \cos(nx)$ does not converge anywhere except at x = 0.

In particular, this shows

The derivative of the uniform limit of a sequence of differentiable functions need not be equal to the limit of the sequence of derivatives.

(1.4)

Example 3. Let

$$h_n(x) = \begin{cases} 0 & \text{if } -\infty < x \le n, \\ n(x-n) & \text{if } n \le x \le n+1, \\ n & \text{if } x \ge n+1. \end{cases}$$

Then $\lim_{n\to\infty} h_n = 0$ pointwise.

Example 4. For $x \ge 0$ let

$$k_n(x) = n \left(\frac{e}{n}\right)^n x^n e^{-x}.$$

Note that $k_n(0) = 0$ and for each fixed n, $\lim_{x\to\infty} k_n(x) = 0$. Clearly $k_n(x) \ge 0$ for all $x \ge 0$. We find the maximum value of k_n :

$$k'_{n}(x) = n \left(\frac{e}{n}\right)^{n} \left[nx^{n-1}e^{-x} - x^{n}e^{-x}\right] = n \left(\frac{e}{n}\right)^{n} x^{n-1}e^{-x} \left[n-x\right]$$

Thus $k'_n(x) = 0$ if and only if x = 0 or x = n. The maximum must occur at x = n, and we have

$$k_n(n) = n \left(\frac{e}{n}\right)^n n^n e^{-n} = n.$$

Thus $\lim_{n\to\infty} \sup_{x>0} k_n(x) = +\infty$. However, for any fixed $x \ge 0$, we have

$$n > 2ex \implies \left(\frac{x}{n}\right) < \frac{1}{2e} \implies \left(\frac{x}{n}\right)^n < \left(\frac{1}{2e}\right)^n.$$

Thus if n > 2ex we alve

$$k_n(x) = n\left(\frac{e}{n}\right)^n x^n e^{-x} = n e^n \left(\frac{x}{n}\right)^n e^{-x} < n e^n \left(\frac{1}{2e}\right)^n e^{-x} \le \frac{n}{2^n}$$

It follows that $\lim_{n\to\infty} k_n(x) \to 0$ pointwise on $[0,\infty)$.

1.2. Uniform convergence and continuity.

The difficulty encountered in the statement in (1.4) is removed if we replace pointwise convergence with uniform convergence. We have the following important result.

Theorem 1.1. Suppose that $\{f_n\}$ is a sequence of functions defined on a set $E \subset \mathbb{C}$. Suppose that each f_n is continuous at a point $p \in E$, and that $\lim_{n\to\infty} f_n = f_0$ uniformly on E. Then f_0 is also continuous at p. In particular, if each f_n is continuous on all of E, then the uniform limit f_0 is also continuous on E.

Proof. Choose $\epsilon > 0$. Since $f_n \to f_0$ uniformly on E, there exists N so that for all $n \ge N$ we have $|f_n(t) - f_0(t)| < \frac{1}{3}\epsilon$ for all $z \in E$. Now the function f_N is continuous at p, so there exists $\delta > 0$ so that if $|z - p| < \delta$ then $|f_N(p) - f_N(z)| < \frac{1}{3}\epsilon$.

Now suppose $|p - z| < \delta$. Then

$$\begin{aligned} |f_0(p) - f_0(x)| &= |f_0(p) - f_N(p) + f_N(p) - f_N(x) + f_N(x) - f_0(x)| \\ &\leq |f_0(p) - f_N(p)| + |f_N(p) - f_N(x)| + |f_N(x) - f_0(x)| \\ &\leq \frac{1}{3}\epsilon + \frac{1}{3}\epsilon + \frac{1}{3}\epsilon = \epsilon. \end{aligned}$$

Thus f_0 is continuous at p.

Corollary 1.2. Suppose $\{u_k\}$ is a sequence of continuous functions on an set $E \subset \mathbb{C}$. If the infinite series $\sum_{n=1}^{\infty} u_n$ converges uniformly on E, then the sum is also a continuous function on I.

1.3. Uniform convergence and integration.

The following theorem contains the main results about convergence of power series.

Theorem 1.3. Suppose that $\{f_n\}$ is a sequence of continuous functions on an interval [a, b] and suppose $f_n \to f_0$ uniformly on [a, b]. Define

$$g_n(x) = \int_a^x f_n(t) dt,$$

$$g_0(x) = \int_a^x f_0(t) dt.$$

Then the sequence $\{g_n\}$ converges uniformly to g_0 on the interval [a, b].

Proof. Let $\epsilon > 0$. Since $f_n \to f_0$ uniformly on I, there exists a positive integer N so that for all $n \ge N$ we have $|f_n(t) - f_0(t)| < \frac{\epsilon}{(b-a)}$ for all $t \in [a, b]$. Then for any $x \in [a, b]$, if $n \ge N$ we have

$$|g_n(x) - g_0(x)| = \left| \int_a^x f_n(t) dt - \int_a^b f_0(t) dt \right|$$
$$= \left| \int_a^x (f_n(t) - f_0(t)) dt \right|$$
$$\leq \int_a^x \left| f_n(t) - f_0(t) \right| dt$$
$$\leq \int_a^b \frac{\epsilon}{(b-a)} dt = \epsilon.$$

It follows that g_n converges uniformly to g_0 on the interval [a,b].

1.4. Uniform convergence and differentiation.

Theorem 1.4. Suppose that $\{f_n\}$ is a sequence of continuously differentiable functions on an interval [a, b]. Suppose that f_n converges uniformly to f_0 and f'_n converges uniformly to g_0 . Then f_0 is differentiable, and $f'_0(x) = g'_0(x)$.

Proof. We have

$$f_n(x) = f_n(x) + \int_a^x f'_n(t) dt$$

Taking the limit as $n \to \infty$, it follows that

$$f_0(x) = \lim_{n \to \infty} f_n(x)$$

= $\lim_{n \to \infty} f_n(a) + \lim_{n \to \infty} \int_a^x f'_n(t) dt$
= $f_0(a) + \int_a^x \lim_{n \to \infty} f'_n(t) dt$
= $f_0(a) + \int_a^x g_0(t) dt$.

It follows from the Fundamental Theorem of Calculus that f_0 is differentiable, and that $f'_0(x) = g_0(x)$. \Box

Definition 1.5. Let $\{u_n\}$ be an infinite sequence of functions defined on a set E of real or complex numbers. Let $S_N(x) = \sum_{n=1}^N u_n(x)$.

- (A) The infinite series $\sum_{n=1}^{\infty} u_n(x)$ converges **pointwise** to S(x) if the sequence of functions $\{S_N(x)\}$ converges pointwise on E to S(x). That if, for every $x \in E$ and for every $\epsilon > 0$ there exists a positive integer N so that if $k \ge n$ then $|S_k(x) S(x)| < \epsilon$.
- (B) The infinite series $\sum_{n=1}^{\infty} u_n(x)$ converges **uniformly** to S(x) if the sequence of functions $\{S_N(x)\}$ converges uniformly on E to S(x). That is, if for every $\epsilon > 0$ there exists a positive integer N so that if $k \ge N$ and if $x \in E$ then $|S_k(x) S(x)| < \epsilon$.

Suppose $\{u_n\}$ is an infinite sequence of continuous functions defined on an interval I. We then have the following facts:

(1) If $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on *I*, then the infinite sum defines a continuous function on *I*.

(2) If $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on I, and if $v_n(x) = \int_a^x u_n(t) dt$, then $\int_a^x e^{-\infty} dx = \int_a^\infty dx = \int_a^\infty dx$

$$\int_{a}^{x} \left[\sum_{n=1}^{\infty} u_n(t) \right] dt = \sum_{n=1}^{\infty} \int_{a}^{x} u_n(t) dt = \sum_{n=1}^{\infty} v_n(x).$$

(3) $\sum_{\substack{n=1\\\sum_{n=1}^{\infty}u_n(x)}}^{\infty} u_n(x)$ converges uniformly on I, and if $\sum_{n=1}^{\infty}u'_n(x)$ converges uniformly on I, then the function

$$\frac{d}{dx}\left(\sum_{n=1}^{\infty}u_n(x)\right) = \sum_{n=1}^{\infty}\frac{du_n}{dx}(x) = \sum_{n=1}^{\infty}u'_n(x).$$

We need a criterion for deciding when an infinite series $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly.

Theorem 1.6 (The Weierstrass *M*-test). Suppose an infinite series of functions $\sum_{n=1}^{\infty} u_n$ converges pointwise on a set *E*. Suppose also that there is an infinite sequence of non-negative constants $\{M_n\}$ such that

- (a) The series $\sum_{n=1}^{\infty} M_n$ converges.
- (b) For every $x \in E$ and all $n \ge 1$ we have

$$0 \le |u_n(x)| \le M_n.$$

Then the series $\sum_{n=1}^{\infty} u_n(x)$ converges absolutely and uniformly on the set E.

Proof. We hgave

$$\left|\sum_{n=1}^{\infty} u_n(x) - \sum_{n=1}^{N} u_n(x)\right| = \left|\sum_{n=N+1}^{\infty} u_n(x)\right|$$
$$\leq \sum_{n=N+1}^{\infty} |u_n(x)|$$
$$\leq \sum_{n=N+1}^{\infty} M_n.$$

This last can be made as small as we like since the series $\sum_{n=1}^{\infty} M_n$ converges.

2. Power Series

A power series is an infinite series of the form

$$\sum_{n=0}^{\infty} a_n (z-c)^n \tag{2.1}$$

where the coefficients $\{a_n\}$ and the 'center' c are complex numbers. We discuss the following questions about such series:

(1) For which values of z does this series converge?

- (2) If we define a function f by setting $f(z) = \sum_{n=0}^{\infty} a_n (z-c)^n$ for those complex numbers z for which the series converges, what are the properties of the function f? In particular, is f continuous, and can one integrate or differentiate f by integrating or differentiating the infinite series in (2.1) term by term?
- (3) Given a function g, can we write g as a power series? In particular, can one expand familiar functions such as e^x , $\cos(x)$, $\sin(x)$, $\log(1+x)$, $\arctan(x)$ in power series?

2.1. Convergence.

The following theorem contains the main results about convergence:

Theorem 2.1. Let $\sum_{n=0}^{\infty} a_n (z-c)^n$ be a power series. Then there is a "number" $r \in [0, +\infty]$, called the radius of convergence, with the following properties.

- (a) The series converges absolutely for every z such that |z-c| < r.
- (b) The series diverges for every z such that |z c| > r; in fact, if |z c| > r, the terms $\{a_n(z c)^n\}$ do not go to zero.
- (c) For any real number r_1 such that $0 < r_1 < r$, the series converges uniformly on the closed disk

$$\{z \in \mathbb{C} \mid |z - c| \le r_1\}.$$

If r = 0, the series converges if and only if z = c, while if $r = +\infty$, the series converges absolutely for all z and converges uniformly on any bounded set of complex numbers.

The proof Theorem 2.1 is based on the following result.

Lemma 2.2. Suppose that the power series $\sum_{n=0}^{\infty} a_n (z-c)^n$ converges for some complex number z_0 . Let $\rho = |z_0 - c|$. Then the series converges absolutely for any z such that $|z-c| < \rho$, and if $0 < \rho_1 < \rho$, the series converges uniformly on the closed disk $\{z \in \mathbb{C} \mid |z-c| \le \rho_1\}$.

Proof. If $\sum_{n=0}^{\infty} a_n (z_0 - c)^n$ converges, then $\lim_{n\to\infty} a_n (z_0 - c)^n = 0$. It follows that there exists N so that for all $n \ge N$ we have

$$|a_n(z_0-c)^n| \le 1$$

Then

$$n \ge N, \ |z-c| \le \rho_1 < |z_0-a| \implies |a_n(z-c)^n| = |a_n(z_0-c)^n| \frac{|z-c|^n}{|z_0-c|^n} \le \left(\frac{\rho_1}{|z_0-c|}\right)^n$$

Since $\frac{\rho_1}{|z_0 - c|} < 1$, the geometric series $\sum_{n=0}^{\infty} \left(\frac{\rho_1}{|z_0 - c|}\right)^n$ converges. This shows that $\sum_{n=0}^{\infty} a_n (z-c)^n$ converges absolutely, and it follows from the Weierstrass M-test that the series converges uniformly. \Box

The following can be useful in computing the radius of convergence

Lemma 2.3. Let $\sum_{n=0}^{\infty} a_n z^n$ be a power series, and suppose $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ exists. Then $r = \rho^{-1}$ is the radius of convergence.

Proof. Suppose $|z| < \rho^{-1}$. Then

$$\sqrt[n]{|a_n z^n|} = \sqrt[n]{|a_n|} |z| \longrightarrow \rho |z| < 1,$$

and so there exists a positive integer N and a real number β with $\rho|z| < \beta < 1$ so that for $n \ge N$ we have $\sqrt[n]{|a_n z^n|} < \beta$. Then $|a_n z^n| < \beta^n$, and so $\sum_{n=0}^{\infty} a_n z^n$ converges absolutely.

On the other hand, suppose $|z| > \rho^{-1}$. Then

$$\sqrt[n]{|a_n z^n|} = \sqrt[n]{|a_n|} |z| \longrightarrow \rho |z| > 1$$

and so there exists a positive integer N and a real number β with $\rho|z| > \beta > 1$ so that for $n \ge N$ we have $\sqrt[n]{|a_n z^n|} > \beta$. Then $|a_n z^n| > \beta^n \to \infty$, and so $\sum_{n=0}^{\infty} a_n z^n$ diverges. This completes the proof.

2.2. Properties of functions given by power series.

We first observe that a function given by a power series must be continuous insider the radius of convergence. If the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n(z-c)^n$ is r > 0, then for any $0 < r_1 < r$, the series converges uniformly on the set $\{z \in \mathbb{C} \mid |z-c| \leq r_1\}$. That is, the sequence of partial sums $S_N(z) = \sum_{k=0}^{N} a_k(z-c)^k$ converges uniformly to f on $\{z \in \mathbb{C} \mid |z-c| \leq r_1\}$. But each partial sum is a continuous function, and it follows that the limit is also continuous. This give the following.

Theorem 2.4. Suppose that the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n(z-c)^n$ is r > 0. If we define a function f by setting

$$f(z) = \sum_{n=0}^{\infty} a_n (z - c)^n$$

then f is a continuous function on the disk $\{z \in \mathbb{C} \mid |z - c| < r\}$.

Next, we investigate termwise integration and differentiation. Given a power series $\sum_{n=0}^{\infty} a_n (z-\alpha)^n$, we can formally integrate or differentiate the series term by term to get two new power series:

$$\sum_{n=1}^{\infty} n a_n (z - \alpha)^{n-1} \quad \text{and} \quad \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z - \alpha)^{n+1}.$$

Lemma 2.5. The power series $\sum_{n=0}^{\infty} a_n (z-\alpha)^n$, $\sum_{n=1}^{\infty} n a_n (z-\alpha)^{n-1}$ and $\sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-\alpha)^{n+1}$ all have the same radius of convergence.

Proof. Without loss of generality, we can take $\alpha = 0$. We shall consider only the case in which the radius of convergence is given by $\left(\lim_{n\to\infty} \sqrt[n]{|a_n|}\right)^{-1}$. But then

$$\lim_{n \to \infty} \sqrt[n]{n|a_n|} = \lim_{n \to \infty} \sqrt[n]{n} \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|a_n|},$$
$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{n+1}|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n+1}} \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

As a consequence, we have the following result.

Lemma 2.6. Let $\alpha \in \mathbb{R}$, and suppose that the radius of convergence of $\sum_{n=0}^{\infty} a_n (x-\alpha)^n$ is r > 0. For $|x-\alpha| < r$, define a function f by $f(x) = \sum_{n=0}^{\infty} a_n (x-\alpha)^n$. Then

(1) For any |x| < r we have

$$\int_{\alpha}^{x} f(t) \, dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-\alpha)^{n+1}.$$

(2) The function f is continuously differentiable on the interval $|x - \alpha| < r$ and

$$f'(x) = \sum_{n=1}^{\infty} na_n (x - \alpha)^{n-1}$$

for all |x| < r.

(3) In particular, the function f is infinitely differentiable on the interval $|x - \alpha| < r$.

2.3. Taylor Expansions.

We have already seen several examples where standard functions can be expanded in power series. We have

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots + z^n + \dots \qquad \text{for } |z| < 1;$$
(2.2)

$$e^{z} = 1 + z + \frac{1}{2!}z^{2} + \frac{1}{3!}z^{3} + \dots + \frac{1}{n!}z^{n} + \dots$$
 for all z ; (2.3)

$$\cos(z) = 1 - \frac{1}{2!}z^2 + \frac{1}{4!}z^4 - \dots + \frac{(-1)^n}{(2n)!}x^{2n} + \dots \qquad \text{for all } z; \tag{2.4}$$

$$\sin(z) = z - \frac{1}{3!}z^3 + \frac{1}{5!}z^5 - \dots + \frac{(-1)^n}{(2n+1)!}z^{2n+1} + \dots \qquad \text{for all } z.$$
(2.5)

According to the results of Section 1.2, we can integrate or differentiate these formulas term by term. Thus, for example, differentiation of the series in equation (2.2) gives

$$\frac{1}{(1-z)^2} = 1 + 2z + 3z^2 + \dots + nz^{n-1} + \dots,$$
(2.6)

and integration term by term gives

$$-\log(1-z) = z + \frac{1}{2}z^2 + \frac{1}{3}z^3 + \frac{1}{4}z^4 + \dots + \frac{1}{n+1}z^{n+1} + \dots$$
 (2.7)

The next two results give conditions under which the Taylor series of a function f actually converges to f.

Theorem 2.7. Suppose that f is infinitely differentiable in the interval (a - r, a + r), and assume there are positive constants C and A so that $|f^{(n)}(x)| \leq C A^n$ for all |x - a| < r. Then

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a) (x-a)^n$$

for all |x - a| < r.

Proof. We know that the remainder term is given by

$$E_n[f](x;a) = \frac{1}{n!} \int_a^x (x-t)^n f^{(n+1)}(t) dt$$

Assume that x > a. It follows that

$$|E_n[f](x;a)| = \left|\frac{1}{n!} \int_a^x (x-t)^n f^{(n+1)}(t) dt\right|$$

$$\leq \frac{1}{n!} \int_a^x (x-t)^n |f^{(n+1)}(t)| dt$$

$$\leq \frac{1}{n!} \int_a^x (x-t)^n C A^{n+1} dt$$

$$= \frac{C A^{n+1}}{n!} \int_a^x (x-t)^n dt$$

$$= \frac{C A^{n+1}}{(n+1)!} |x-a|^{n+1}$$

$$\leq \frac{C A^{n+1} r^{n+1}}{(n+1)!}$$

But this goes to zero as $n \to \infty$, and completes the proof.

Theorem 2.8 (Bernstein). Suppose that f and all its derivatives are non-negative on the inverval [0, r]. Then

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^n$$

for all $x \in [0, r)$.

Proof. Write

$$f(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(0) x^{k} + E_{n}(x).$$

Since all derivatives are non-negative, we have $E_n(x) \leq f(x)$. Also, since each $f^{(k)}$ is monotone increasing, we have

$$E_n(x) = \frac{1}{n!} \int_0^x (x-t)^n f^{n+1}(t) dt$$

= $\frac{x^{n+1}}{n!} \int_0^1 (1-s)^n f^{(n+1)}(xs) ds$.

It follows htat

$$\frac{E_n(x)}{x^{n+1}} = \frac{1}{n!} \int_0^1 (1-s)^n f^{(n+1)}(xs) \, ds.$$

Then it is clear that this last function is monotone increasing, and so

$$\frac{E_n(x)}{x^{n+1}} \le \frac{E_n(r)}{r^{n+1}} \le \frac{f(r)}{r^{n+1}}.$$

Hence

$$E_n(x) \le \left(\frac{x}{r}\right)^{n+1} f(r) \longrightarrow 0$$

as $n \to \infty$.