
NOTES ON INFINITE SEQUENCES AND SERIES OF FUNCTIONS

1. Sequences and Series of Functions

1.1. Pointwise and Uniform convergence of functions.

Let {fn} be a sequence of functions defined on a subset E ⊂ C. We say that the sequence converges
pointwise to a function g if for every z ∈ E, limn→∞ fn(z) = g(z). Precisely, this means:(

∀z ∈ E
)(
∀ε > 0

)(
∃N
)(
n ≥ N =⇒ |fn(x)− g(x)| < ε

)
. (1.1)

We say that the sequence converges uniformly to a function g if the N can depend on ε, but not on x:(
∀ε > 0

)(
∃N
)(
∀z ∈ E

)(
n ≥ N =⇒ |fn(x)− g(x)| < ε

)
. (1.2)

Although the definitions in (1.1) and (1.2) look very similar, there is an important difference. In the first
definition for pointwise convergence, the choice of N can depend on both the quantity ε > 0 and also on the
point z ∈ E. For uniform convergence, the choice of N depends only on ε, and is independent of z.

Example 1. Let fn(x) = xn, and let

f0(x) =


0 for 0 ≤ x < 1,

1 for x = 1.

Then
(A) limn→∞ fn = f0 pointwise on the interval [0, 1], but this convergence is NOT uniform.

(B) If 0 < r < 1, then limn→∞ fn = f0 uniformly on the interval [0, r].

In particular, this shows

The pointwise limit of a sequence of continuous functions need not be continuous. (1.3)

Example 2. Let gn(x) =
1
n

sin(nx). Then limn→∞ gn = 0 uniformly on the whole real line. Note that the

limit is continuous. However g′n(x) = cos(nx) does not converge anywhere except at x = 0.

In particular, this shows

The derivative of the uniform limit of a sequence of differentiable func-
tions need not be equal to the limit of the sequence of derivatives. (1.4)

Example 3. Let

hn(x) =


0 if −∞ < x ≤ n,
n(x− n) if n ≤ x ≤ n+ 1,
n if x ≥ n+ 1.

Then limn→∞ hn = 0 pointwise.

Example 4. For x ≥ 0 let

kn(x) = n
( e
n

)n
xne−x.

Note that kn(0) = 0 and for each fixed n, lim
x→∞

kn(x) = 0. Clearly kn(x) ≥ 0 for all x ≥ 0. We find the
maximum value of kn:
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k′n(x) = n
( e
n

)n [
nxn−1e−x − xne−x

]
= n

( e
n

)n
xn−1e−x

[
n− x

]
.

Thus k′n(x) = 0 if and only if x = 0 or x = n. The maximum must occur at x = n, and we have

kn(n) = n
( e
n

)n
nne−n = n.

Thus limn→∞ supx≥0 kn(x) = +∞. However, for any fixed x ≥ 0, we have

n > 2ex =⇒
(x
n

)
<

1
2e

=⇒
(x
n

)n
<

(
1
2e

)n
.

Thus if n > 2ex we ahve

kn(x) = n
( e
n

)n
xne−x = n en

(x
n

)n
e−x < nen

(
1
2e

)n
e−x ≤ n

2n
.

It follows that limn→∞ kn(x)→ 0 pointwise on [0,∞).

1.2. Uniform convergence and continuity.

The difficulty encountered in the statement in (1.4) is removed if we replace pointwise convergence with
uniform convergence. We have the following important result.

Theorem 1.1. Suppose that {fn} is a sequence of functions defined on a set E ⊂ C. Suppose that each fn
is continuous at a point p ∈ E, and that limn→∞ fn = f0 uniformly on E. Then f0 is also continuous at p.
In particular, if each fn is continuous on all of E, then the uniform limit f0 is also continuous on E.

Proof. Choose ε > 0. Since fn → f0 uniformly on E, there exists N so that for all n ≥ N we have
|fn(t) − f0(t)| < 1

3ε for all z ∈ E. Now the function fN is continuous at p, so there exists δ > 0 so that if
|z − p| < δ then |fN (p)− fN (z)| < 1

3ε.

Now suppose |p− z| < δ. Then

|f0(p)− f0(x)| = |f0(p)− fN (p) + fN (p)− fN (x) + fN (x)− f0(x)|
≤ |f0(p)− fN (p)|+ |fN (p)− fN (x)|+ |fN (x)− f0(x)|

≤ 1
3
ε+

1
3
ε+

1
3
ε = ε.

Thus f0 is continuous at p. �

Corollary 1.2. Suppose {uk} is a sequence of continuous functions on an set E ⊂ C. If the infinite series∑∞
n=1 un converges uniformly on E, then the sum is also a continuous function on I.

1.3. Uniform convergence and integration.

The following theorem contains the main results about convergence of power series.

Theorem 1.3. Suppose that {fn} is a sequence of continuous functions on an interval [a, b] and suppose
fn → f0 uniformly on [a, b]. Define

gn(x) =
∫ x

a

fn(t) dt,

g0(x) =
∫ x

a

f0(t) dt.

Then the sequence {gn} converges uniformly to g0 on the interval [a, b].
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Proof. Let ε > 0. Since fn → f0 uniformly on I, there exists a positive integer N so that for all n ≥ N we
have |fn(t)− f0(t)| < ε

(b−a) for all t ∈ [a, b]. Then for any x ∈ [a, b], if n ≥ N we have

|gn(x)− g0(x)| =
∣∣∣ ∫ x

a

fn(t) dt−
∫ b

a

f0(t) dt
∣∣∣

=
∣∣∣ ∫ x

a

(fn(t)− f0(t)) dt
∣∣∣

≤
∫ x

a

∣∣fn(t)− f0(t)
∣∣ dt

≤
∫ b

a

ε

(b− a)
dt = ε.

It follows that gn converges uniformly to g0 on the interval [a,b]. �

1.4. Uniform convergence and differentiation.

Theorem 1.4. Suppose that {fn} is a sequence of continuously differentiable functions on an interval [a, b].
Suppose that fn converges uniformly to f0 and f ′n converges uniformly to g0. Then f0 is differentiable, and
f ′0(x) = g′0(x).

Proof. We have

fn(x) = fn(x) +
∫ x

a

f ′n(t) dt.

Taking the limit as n→∞, it follows that

f0(x) = lim
n→∞

fn(x)

= lim
n→∞

fn(a) + lim
n→∞

∫ x

a

f ′n(t) dt

= f0(a) +
∫ x

a

lim
n→∞

f ′n(t) dt

= f0(a) +
∫ x

a

g0(t) dt.

It follows from the Fundamental Theorem of Calculus that f0 is differentiable, and that f ′0(x) = g0(x). �

Definition 1.5. Let {un} be an infinite sequence of functions defined on a set E of real or complex numbers.
Let SN (x) =

∑N
n=1 un(x).

(A) The infinite series
∞∑
n=1

un(x) converges pointwise to S(x) if the sequence of functions {SN (x)} converges

pointwise on E to S(x). That if, for every x ∈ E and for every ε > 0 there exists a positive integer N
so that if k ≥ n then |Sk(x)− S(x)| < ε.

(B) The infinite series
∞∑
n=1

un(x) converges uniformly to S(x) if the sequence of functions {SN (x)} con-

verges uniformly on E to S(x). That is, if for every ε > 0 there exists a positive integer N so that if
k ≥ N and if x ∈ E then |Sk(x)− S(x)| < ε.

Suppose {un} is an infinite sequence of continuous functions defined on an interval I. We then have the
following facts:

(1) If
∞∑
n=1

un(x) converges uniformly on I, then the infinite sum defines a continuous function on I.
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(2) If
∞∑
n=1

un(x) converges uniformly on I, and if vn(x) =
∫ x
a
un(t) dt, then

∫ x

a

[ ∞∑
n=1

un(t)
]
dt =

∞∑
n=1

∫ x

a

un(t) dt =
∞∑
n=1

vn(x).

(3)
∞∑
n=1

un(x) converges uniformly on I, and if
∞∑
n=1

u′n(x) converges uniformly on I, then the function∑∞
n=1 un(x) is differentiable and

d

dx

( ∞∑
n=1

un(x)

)
=
∞∑
n=1

dun
dx

(x) =
∞∑
n=1

u′n(x).

We need a criterion for deciding when an infinite series
∞∑
n=1

un(x) converges uniformly.

Theorem 1.6 (The Weierstrass M -test). Suppose an infinite series of functions
∞∑
n=1

un converges pointwise

on a set E. Suppose also that there is an infinite sequence of non-negative constants {Mn} such that

(a) The series
∞∑
n=1

Mn converges.

(b) For every x ∈ E and all n ≥ 1 we have

0 ≤ |un(x)| ≤Mn.

Then the series
∞∑
n=1

un(x) converges absolutely and uniformly on the set E.

Proof. We hgave ∣∣∣∣∣
∞∑
n=1

un(x)−
N∑
n=1

un(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

un(x)

∣∣∣∣∣
≤

∞∑
n=N+1

|un(x)|

≤
∞∑

n=N+1

Mn.

This last can be made as small as we like since the series
∞∑
n=1

Mn converges. �

2. Power Series

A power series is an infinite series of the form
∞∑
n=0

an(z − c)n (2.1)

where the coefficients {an} and the ‘center’ c are complex numbers. We discuss the following questions about
such series:

(1) For which values of z does this series converge?
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(2) If we define a function f by setting f(z) =
∑∞
n=0 an(z − c)n for those complex numbers z for which the

series converges, what are the properties of the function f? In particular, is f continuous, and can one
integrate or differentiate f by integrating or differentiating the infinite series in (2.1) term by term?

(3) Given a function g, can we write g as a power series? In particular, can one expand familiar functions
such as ex, cos(x), sin(x), log(1 + x), arctan(x) in power series?

2.1. Convergence.

The following theorem contains the main results about convergence:

Theorem 2.1. Let
∑∞
n=0 an(z − c)n be a power series. Then there is a “number” r ∈ [0,+∞], called the

radius of convergence, with the following properties.

(a) The series converges absolutely for every z such that |z − c| < r.

(b) The series diverges for every z such that |z − c| > r; in fact, if |z − c| > r, the terms {an(z − c)n} do
not go to zero.

(c) For any real number r1 such that 0 < r1 < r, the series converges uniformly on the closed disk

{z ∈ C
∣∣ |z − c| ≤ r1}.

If r = 0, the series converges if and only if z = c, while if r = +∞, the series converges absolutely for all z
and converges uniformly on any bounded set of complex numbers.

The proof Theorem 2.1 is based on the following result.

Lemma 2.2. Suppose that the power series
∑∞
n=0 an(z − c)n converges for some complex number z0. Let

ρ = |z0 − c|. Then the series converges absolutely for any z such that |z − c| < ρ, and if 0 < ρ1 < ρ, the
series converges uniformly on the closed disk {z ∈ C

∣∣ |z − c| ≤ ρ1}.

Proof. If
∑∞
n=0 an(z0 − c)n converges, then limn→∞ an(z0 − c)n = 0. It follows that there exists N so that

for all n ≥ N we have
|an(z0 − c)n| ≤ 1.

Then

n ≥ N, |z − c| ≤ ρ1 < |z0 − a| =⇒ |an(z − c)n| = |an(z0 − c)n|
|z − c|n

|z0 − c|n
≤
(

ρ1

|z0 − c|

)n
.

Since
ρ1

|z0 − c|
< 1, the geometric series

∞∑
n=0

( ρ1

|z0 − c|

)n
converges. This shows that

∑∞
n=0 an(z−c)n converges

absolutely, and it follows from the Weierstrass M-test that that the series converges uniformly. �

The following can be useful in computing the radius of convergence

Lemma 2.3. Let
∑∞
n=0 anz

n be a power series, and suppose ρ = limn→∞
n
√
|an| exists. Then r = ρ−1 is

the radius of convergence.

Proof. Suppose |z| < ρ−1. Then
n
√
|anzn| = n

√
|an||z| −→ ρ|z| < 1,

and so there exists a positive integer N and a real number β with ρ|z| < β < 1 so that for n ≥ N we have
n
√
|anzn| < β. Then |anzn| < βn, and so

∑∞
n=0 anz

n converges absolutely.

On the other hand, suppose |z| > ρ−1. Then
n
√
|anzn| = n

√
|an||z| −→ ρ|z| > 1,

and so there exists a positive integer N and a real number β with ρ|z| > β > 1 so that for n ≥ N we have
n
√
|anzn| > β. Then |anzn| > βn →∞, and so

∑∞
n=0 anz

n diverges. This completes the proof. �
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2.2. Properties of functions given by power series.

We first observe that a function given by a power series must be continuous insider the radius of conver-
gence. If the radius of convergence of the power series

∑∞
n=0 an(z − c)n is r > 0, then for any 0 < r1 < r,

the series converges uniformly on the set {z ∈ C
∣∣ |z − c| ≤ r1}. That is, the sequence of partial sums

SN (z) =
∑N
k=0 ak(z − c)k converges uniformly to f on {z ∈ C

∣∣ |z − c| ≤ r1}. But each partial sum is a
continuous function, and it follows that the limit is also continuous. This give the following.

Theorem 2.4. Suppose that the radius of convergence of the power series
∑∞
n=0 an(z − c)n is r > 0. If we

define a function f by setting

f(z) =
∞∑
n=0

an(z − c)n,

then f is a continuous function on the disk {z ∈ C
∣∣ |z − c| < r}.

Next, we investigate termwise integration and differentiation. Given a power series
∞∑
n=0

an(z − α)n, we

can formally integrate or differentiate the series term by term to get two new power series:
∞∑
n=1

nan(z − α)n−1 and
∞∑
n=0

an
n+ 1

(z − α)n+1.

Lemma 2.5. The power series
∞∑
n=0

an(z − α)n,
∞∑
n=1

nan(z − α)n−1 and
∞∑
n=0

an
n+ 1

(z − α)n+1 all have the

same radius of convergence.

Proof. Without loss of generality, we can take α = 0. We shall consider only the case in which the radius of

convergence is given by
(

limn→∞
n
√
|an|

)−1

. But then

lim
n→∞

n
√
n|an| = lim

n→∞
n
√
n lim
n→∞

n
√
|an| = lim

n→∞
n
√
|an|,

lim
n→∞

n

√
1

n+ 1
|an| = lim

n→∞
n

√
1

n+ 1
lim
n→∞

n
√
|an| = lim

n→∞
n
√
|an|

�

As a consequence, we have the following result.

Lemma 2.6. Let α ∈ R, and suppose that the radius of convergence of
∑∞
n=0 an(x − α)n is r > 0. For

|x− α| < r, define a function f by f(x) =
∑∞
n=0 an(x− α)n. Then

(1) For any |x| < r we have ∫ x

α

f(t) dt =
∞∑
n=0

an
n+ 1

(x− α)n+1.

(2) The function f is continuously differentiable on the interval |x− α| < r and

f ′(x) =
∞∑
n=1

nan(x− α)n−1

for all |x| < r.

(3) In particular, the function f is infinitely differentiable on the interval |x− α| < r.
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2.3. Taylor Expansions.

We have already seen several examples where standard functions can be expanded in power series. We
have

1
1− z

= 1 + z + z2 + z3 + · · ·+ zn + · · · for |z| < 1; (2.2)

ez = 1 + z +
1
2!
z2 +

1
3!
z3 + · · ·+ 1

n!
zn + · · · for all z; (2.3)

cos(z) = 1− 1
2!
z2 +

1
4!
z4 − · · ·+ (−1)n

(2n)!
x2n + · · · for all z; (2.4)

sin(z) = z − 1
3!
z3 +

1
5!
z5 − · · ·+ (−1)n

(2n+ 1)!
z2n+1 + · · · for all z. (2.5)

According to the results of Section 1.2, we can integrate or differentiate these formulas term by term. Thus,
for example, differentiation of the series in equation (2.2) gives

1
(1− z)2

= 1 + 2z + 3z2 + · · ·+ nzn−1 + · · · , (2.6)

and integration term by term gives

− log(1− z) = z +
1
2
z2 +

1
3
z3 +

1
4
z4 + · · ·+ 1

n+ 1
zn+1 + · · · . (2.7)

The next two results give conditions under which the Taylor series of a function f actually converges to
f .

Theorem 2.7. Suppose that f is infinitely differentiable in the interval (a− r, a+ r), and assume there are
positive constants C and A so that |f (n)(x)| ≤ C An for all |x− a| < r. Then

f(x) =
∞∑
n=0

1
n!
f (n)(a)(x− a)n

for all |x− a| < r.

Proof. We know that the remainder term is given by

En[f ](x; a) =
1
n!

∫ x

a

(x− t)nf (n+1)(t) dt.

Assume that x > a. It follows that

|En[f ](x; a)| =
∣∣∣∣ 1
n!

∫ x

a

(x− t)nf (n+1)(t) dt
∣∣∣∣

≤ 1
n!

∫ x

a

(x− t)n|f (n+1)(t)| dt

≤ 1
n!

∫ x

a

(x− t)nC An+1 dt

=
C An+1

n!

∫ x

a

(x− t)n dt

=
C An+1

(n+ 1)!
|x− a|n+1

≤ C An+1rn+1

(n+ 1)!

But this goes to zero as n→∞, and completes the proof. �
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Theorem 2.8 (Bernstein). Suppose that f and all its derivatives are non-negative on the inverval [0, r].
Then

f(x) =
∞∑
n=0

1
n!
f (n)(0)xn

for all x ∈ [0, r).

Proof. Write

f(x) =
n∑
k=0

1
k!
f (k)(0)xk + En(x).

Since all derivatives are non-negative, we have En(x) ≤ f(x). Also, since each f (k) is monotone increasing,
we have

En(x) =
1
n!

∫ x

0

(x− t)nfn+1(t) dt

=
xn+1

n!

∫ 1

0

(1− s)nf (n+1)(xs) ds.

It follows htat
En(x)
xn+1

=
1
n!

∫ 1

0

(1− s)nf (n+1)(xs) ds.

Then it is clear that this last function is monotone increasing, and so
En(x)
xn+1

≤ En(r)
rn+1

≤ f(r)
rn+1

.

Hence
En(x) ≤

(x
r

)n+1

f(r) −→ 0

as n→∞. �


