
Math 275 Fall Semester 2006-07

1. Using integration by part to estimate integrals

Recall that the formula for integration by parts is∫ b

a

f(x) g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x) g(x) dx.

If u = f(x) and dv = g′(x) dx, we have du = f ′(x) dx and v = g(x), so this formula
is sometimes written ∫ b

a

u dv = uv
∣∣∣b
a
−

∫ b

a

v du,

We will see how this can be used to estimate certain integrals whose integrand
involves a term like sin(x) or cos(x) which oscillates. As an example, consider the
function defined for x > 0 by

F (x) =
∫ x

0

sin(t)√
t

dt.

We want to see how big F (x) gets as x → +∞ gets large. Without integration by
parts, we can argue as follows:

|F (x)| =
∣∣∣∣∫ x

0

sin(t)√
t

dt

∣∣∣∣ ≤ ∫ x

0

∣∣∣∣ sin(t)√
t

∣∣∣∣ dt ≤
∫ x

0

1√
t
dt = 2 t

1
2

∣∣∣x
0

= 2
√

x.

Here, in the second inequality, we have used the fact that | sin(t)| ≤ 1 for all t. Note
that, according to this estimate, it is still possible that |F (x)| gets arbitrarily large
as x → +∞. However, we now show

Theorem 1:
∣∣∣∣∫ x

0

sin(t)√
t

dt

∣∣∣∣ ≤ 8
3

for all x ≥ 0.

Proof: For x ≥ 1, we can write∣∣∣∣∫ x

0

sin(t)√
t

dt

∣∣∣∣ =
∣∣∣∣∫ 1

0

sin(t)√
t

dt +
∫ x

1

sin(t)√
t

dt

∣∣∣∣
≤

∣∣∣∣∫ 1

0

sin(t)√
t

dt

∣∣∣∣ +
∣∣∣∣∫ x

1

sin(t)√
t

dt

∣∣∣∣ ,

(1)

and we shall study each integral separately. We have∣∣∣∣∫ 1

0

sin(t)√
t

dt

∣∣∣∣ =
∣∣∣∣∫ 1

0

sin(t)
t

t
1
2 dt

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣ sin(t)
t

∣∣∣∣ t
1
2 dt ≤

∫ 1

0

t
1
2 dt =

2
3
, (2)

where we have use the inequality
∣∣∣∣ sin(t)

t

∣∣∣∣ ≤ 1, which holds for all real numbers t.

This takes care of the first integral in (1).

To deal with the second integral, we integrate by parts. Let u =
1√
t

= t−
1
2 and

dv = sin(t) dt so that du = − 1
2 t−

3
2 and v = − cos(t). We have∫ x

1

sin(t)√
t

dt = cos(1)− cos(x)√
x

− 1
2

∫ x

1

cos(t)
t

3
2

dt.



2

It follows that∣∣∣∣∫ x

1

sin(t)√
t

dt

∣∣∣∣ =
∣∣∣∣cos(1)− cos(x)√

x
− 1

2

∫ x

1

cos(t)
t

3
2

dt

∣∣∣∣
≤

∣∣ cos(1)
∣∣ +

∣∣∣∣cos(x)√
x

∣∣∣∣ +
1
2

∫ x

1

∣∣∣∣cos(t)
t

3
2

∣∣∣∣ dt

≤ 1 +
1√
x

+
1
2

∫ x

1

t−
3
2 dt

≤ 1 +
1√
x
− t−

1
2

∣∣∣x
1

= 2.

(3)

Putting the inequalities (1), (2), and (3) together, we see that∣∣∣∣∫ x

0

sin(t)√
t

dt

∣∣∣∣ ≤ 8
3
.

2. Evaluation of

∫ 1

0

xm(1− x)n dx

We want to explicitly find the value of

B(m,n) =
∫ 1

0

xm(1− x)n dx.

We could try to expand out the expression (1−x)n by using the binomial theorem,
but this quickly gets very messy. Instead, we shall use integration by parts.

Proposition 1: If m and n are positive integers, we have

B(m,n) =
m

n + 1
B(m− 1, n + 1).

Proof: In the integral defining B(m,n), let u = xm and dv = (1 − x)n dx so that

du = m xm−1 dx and v = − 1
n + 1

(1− x)n+1. Then integration by parts gives

B(m,n) =
∫ 1

0

xm(1− x)n dx

= − 1
n + 1

xm(1− x)n+1
∣∣∣1
0
−

∫ 1

0

− 1
n + 1

(1− x)n+1 m xm−1 dx

=
m

n + 1

∫ 1

0

xm−1 (1− x)n+1 dx

=
m

n + 1
B(m− 1, n + 1),

as we wanted to show.

Proposition 2: If N ≥ 0 is an integer, then B(0, N) =
1

N + 1
.

Proof: We have

B(0, N) =
∫ 1

0

(1− x)N dx = − 1
N + 1

(1− x)N+1
∣∣∣1
0

=
1

N + 1
,

as asserted.
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We can now prove

Theorem 2: If m and n are positive integers, then B(m,n) =
m!n!

(m + n + 1)!
.

Proof: Suppose that m and n are non-negative integers. Using Proposition 1 over
and over again, we have

B(m,n) =
m

n + 1
B(m− 1, n + 1)

=
m

n + 1
· m− 1

n + 2
B(m− 2, n + 2)

=
m

n + 1
· m− 1

n + 2
· m− 2

n + 3
B(m− 3, n + 3)

= · · ·

=
m

n + 1
· m− 1

n + 2
· m− 2

n + 3
· · · 3

m + n− 2
· 2
m + n− 1

· 1
m + n

B(0,m + n)

=
m!n!

(m + n)!
B(0,m + n).

But then Proposition 2 shows that

B(m,n) =
m!n!

(m + n)!
1

(m + n + 1)
=

m!n!
(m + n + 1)!

.

This proves the theorem.


