
Math 275 Solutions to Exam #1

Problem 1 Give brief but precise answers to each of the following questions:

(a) If z = x + iy is a complex number, what is the complex conjugate z̄?

z̄ = x− iy

(b) What is the least upper bound axiom for the real numbers?

If S ⊂ R is a non-empty subset which has an upper bound, then S has a least upper bound.

(c) What does it mean that the limit of f(x) as x approaches a is L?

For every ε > 0 there exists δ > 0 so that if 0 < |x− a| < δ, it follows that |f(x)− L| < ε.

(d) What does it mean that a function f is continuous at a point a?

lim
x→a

f(x) = f(a).

(e) What does it mean that a function f is differentiable at a point x?

The limit lim
h→0

f(x + h)− f(x)
h

exists.

Problem 2 For each of the following functions f(x), find the derivative f ′(x). You do not need to
simplify your answer.

(a) f(x) =
(
x3 + 3x2 cos(x)

)(
x2 − 9 sin(x)

)
.

f ′(x) =
(
3x2 + 6x cos(x)− 3x2 sin(x)

)(
x2 − 9 sin(x)

)
+

(
x3 + 3x2 cos(x)

)(
2x− 9 cos(x)

)
.

(b) f(x) =
x2 sin(x) + 3
cos(x)− 1

.

f ′(x) =

(
2x sin(x) + x2 cos(x)

)(
cos(x)− 1

)
−

(
x2 sin(x) + 3

)(
− sin(x)

)(
cos(x)− 1

)2 .

(c) f(x) =
π3 cos(3.2)− 19 sin(2.3− π)

327 + tan(5.4)
+

√
726π12 − 19

f ′(x) = 0 since f(x) is a constant.

Problem 3 Let z = −4
√

2 + 4
√

2i.

(a) Calculate
z̄

z
. Your answer should be a complex number.

z̄

z
=
−4
√

2− 4
√

2i

−4
√

2 + 4
√

2i
=
−1− i

−1 + i
=

(−1− i)
(−1 + i)

(−1− i)
(−1− i)

=
1 + 2i− 1
12 + 12

=
2i

2
= 0 + i.

(b) Find the polar coordinate expression of the complex number z.

We have r =
√

(−4
√

2)2 + (4
√

2)2 =
√

64 = 8. We also have tan(θ) =
4
√

2
−4
√

2
= −1. Since the point z is

in the second quadrant, it follows that θ =
3π

4
. Thus in polar coordinates, z = 8

(
cos

(
3π

4

)
+ i sin

(
3π

4

))
.
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(c) Calculate z12. Your answer should be a complex number.

We have z12 = 812

(
cos

(
12

3π

4

)
+ i sin

(
12

3π

4

))
= 812 (cos (9π) + i sin (9π)) = −812 + 0i.

(d) Find all the cube roots of z.

Let w = r (cos(θ) + i sin(θ)) satisfy w3 = z. Since w3 = r3 (cos(3θ) + i sin(3θ)), we must have r3 = 8,

cos(3θ) = cos
(

3π

4

)
, and sin(3θ) = sin

(
3π

4

)
. This gives r = 2, and θ =

π

4
+

2nπ

3
for any integer n. We

get three distinct cube roots by taking n = 0, 1, 2. Thus the cube roots of z are

2
(
cos

(π

4

)
+ i sin

(π

4

))
, 2

(
cos

(
π

4
+

2π

3

)
+ i sin

(
π

4
+

2π

3

))
, 2

(
cos

(
π

4
+

4π

3

)
+ i sin

(
π

4
+

4π

3

))
.

Problem 4 Evaluate each of the following limits. In each case, briefly explain what facts or theorems
about limits are you using to get your answer.

(a) lim
x→3

x− 3
x + 3

We have lim
x→3

x− 3
x + 3

=
limx→3(x− 3)
limx→3(x + 3)

=
limx→3(x)− limx→3(3)
limx→3(x) + limx→3(3)

=
3− 3
3 + 3

= 0.

(b) lim
y→−1

y2 + 3y + 2
y + 1

We have lim
y→−1

y2 + 3y + 2
y + 1

= lim
y→−1

(y + 1)(y + 2)
(y + 1)

= lim
y→−1

(y + 2) = −1 + 2 = 1.

(c) lim
t→2

t5 − 32
t− 2

If f(t) = t5, the definition of the derivative at t = 2 is f ′(2) = lim
t→2

f(t)− f(2)
t− 2

= lim
t→2

t5 − 32
t− 2

. On the other

hand we can use the formula for the derivative f ′(t) = 5t4. It follows that lim
t→2

t5 − 32
t− 2

= 5(2)4 = 80.

Problem 5 Using the definition of limits, prove that lim
x→2

x2 − 3x = −2.

Given any ε > 0 we must find δ > 0 so that 0 < |x− 2| < δ implies
∣∣(x2 − 3x)− (−2)

∣∣ < ε. Thus we want∣∣x2− 3x + 2
∣∣ < ε. But this is the same as |(x− 2)(x− 1)| < ε. We can make |(x− 2)| as small as we like. We

just need to make sure that |(x− 1)| does not get too large.

Thus suppose first that |x− 2| < δ1. It follows that 2− δ1 < x < 2+ δ1, and hence 1− δ1 < x− 1 < 1+ δ1.
If we take, for example, δ1 = 7, it follows that −6 < x − 1 < 8, and so |x − 1| < 8. Thus if |x − 2| < 7,
it follows that

∣∣x2 − 3x + 2
∣∣ = |(x − 2)(x + 1)| < 8|x − 2|. To make this less that ε, we can require that

|x− 2| < δ2 =
ε

8
.

Thus if we take δ = min
{
δ1, δ2

}
= min

{
7,

ε

8

}
, we have both |x− 1| < 8 and |x− 2| < ε

8
. It follows that∣∣(x2 − 3x)− (−2)

∣∣ < ε.
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Problem 6

(a) Show that the equation 3 cos(x) + x sin2(x) = 2 has at least one real root between x = 0 and x = π,
and at least one real root between x = π and x = 2π. Be sure to state carefully any theorem you use.

Let f(x) = 3 cos(x) + x sin2(x)− 2. Then f(0) = 3− 2 = 1, f(π) = −3− 2 = −5, and f(2π) = 3− 2 = 1.
Since these values are of opposite sign, we can use the intermediate value theorem (or Bolzano’s theorem) to
conclude that there is a point c1 between 0 and π such that f(c1) = 0, and also a point c2 between π and 2π
such that f(c2) = 0. But then c1 and c2 are roots of the given equation.

(b) Show that the equation 3 cos(x) + x sin2(x) = 2 actually has infinitely many distinct real roots.

We can use the same argument on each interval [nπ, (n + 1)π]. Since sin(nπ) = sin((n + 1)π) = 0, and
cos(x) is equal to +1 at one endpoint and to −1 at the other endpoint, it follows that f(x) is positive at one
endpoint and negative at the other. Hence there is a root of the equation between nπ and (n + 1)π.

Note that, because of the term x sin2(x), it is NOT true that the function f(x) is periodic.

Problem 7 Show that there is no rational number whose square is 7.

We argue by contradiction. Suppose that there were a rational number
m

n
such that

(m

n

)2
= 7. We can

assume that the integers m and n have no common integer divisor.

We have m2 = 7n2. This says that 7 divides m2, and it follows that 7 divides m. Thus we can write
m = 7p. It then follows that (7p)2 = 7n2, and hence 7p = n2. But this says that 7 divides n2, and it follows
that 7 divides n so n = 7q. But now we have shown that both m and n are divisible by 7, which contradicts our
earlier assumption that these two numbers have no common divisor. Thus there is no rational number whose
square is 7.


