Math 275

Assignment # 2 Due Tuesday, September 26, 2006

Read Chapter 1, sections 1 - 4, and Chapter 3, sections 1 - 5 in the text, and do the following problems:

Problem 1 Let
$$f(x) = \frac{x+1}{x-1}$$
, and let $g(x) = +\sqrt{x-1}$.

- (a) What are the domains and ranges of the functions f and g?
- (b) Compute each of the following: (f+g)(2), (fg)(2), g[f(2)].
- (c) What is the function $h = (f 1)g^2$?

Problem 2 Let $P(z) = \sum_{k=0}^{n} c_k z^k$ be a polynomial of degree *n*, where the coefficients are complex numbers and $c_n \neq 0$. Prove each of the following statements:

(a) If $n \ge 1$ and P(0) = 0 then $c_0 = 0$ and P(z) = zQ(z) where Q is a polynomial of degree at most n - 1.

(b) For each complex number $a \in \mathbb{C}$, the function given by f(z) = P(z + a) is also a polynomial of degree n.

(c) If $n \ge 1$ and P(a) = 0 for some complex number $a \in \mathbb{C}$, then P(z) = (z-a)R(z) where R is a polynomial of degree at most n-1. [Hint: apply part (a) to the polynomial f of part (b)].

(d) If P(z) = 0 for n + 1 distinct complex values of z, then every coefficient $c_k = 0$, and hence P(z) = 0 for all complex numbers z.

Problem 3 For each of the following, find *all* complex polynomials P(z) of degree ≤ 2 which satisfy the given conditions:

(a) P(0) = P(i) = P(3 - 17i) = 5.

(b)
$$P(1) = P(-i) = 1$$

- (c) P(1) = P(i) and P(1+i) = 2.
- (d) P(z) = P(1-z).
- (e) P(iz) = iP(z).

Problem 4 In each of the following, compute the limit, and explain which theorems about limits you are using:

(a)
$$\lim_{x \to 3} \frac{1}{(x-2)^2}$$
; (b) $\lim_{x \to 2} \frac{x^2 - 4}{x-2}$.
(c) $\lim_{h \to 0} \frac{(t+h)^3 - t^3}{h}$ (d) $\lim_{x \to a} \frac{x^2 - 2ax + a^2}{x^2 - a^2}$.
(e) $\lim_{t \to 0^+} \frac{|t|}{t}$. (f) $\lim_{t \to 0^-} \frac{|t|}{t}$.

Problem 5 Define a function $f : \mathbb{R} \to \mathbb{R}$ as follows:

$$f(x) = \begin{cases} \sin(3x) & \text{if } x \le c, \\ ax + b & \text{if } x > c, \end{cases}$$

where a, b, c are real constants. If b and c are given, find all values of a for which f is continuous at the point x = c.

Problem 6 For all real numbers $x \neq 0$, define $g(x) = \sin\left(\frac{1}{x}\right)$. Show that there is **no** real number A such that $\lim_{x\to 0} g(x) = A$. [Hint: Look at the discussion in problem 27 on page 139 of the text].

Problem 7 For all real numbers $x \neq 0$, define $h(x) = x \sin\left(\frac{1}{x}\right)$. Can *h* be defined at x = 0 so that the function is continuous at x = 0?

Problem 8 Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is continuous at x = 0 but is not continuous at any other point $a \in \mathbb{R}$.

Problem 9 Let f be a real-valued function defined on an interval $[a, b] \subset \mathbb{R}$. Suppose that $|f(\alpha) - f(\beta)| \le |\alpha - \beta|$ for all $\alpha, \beta \in [a, b]$. Prove that f is continuous at every point $x \in [a, b]$.

Problem 10 Write out in detain the proof that if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$, then $\lim_{x \to a} (fg)(x) = LM$.