
1. Holomorphic functions

1.1. Complex-valued functions.

At the start of the study of calculus, we usually consider real-valued functions f
of a real variable x. Now we want to replace real -valued functions f by complex -
valued functions F , and we want to replace the real variable x by a complex variable
z = x + iy. Thus we consider functions F defined on the complex plane (or a
subregion of the complex plane) which takes on complex values. Examples of such
functions are:

F1(x+ iy) = (x+ iy)2, or equivalently F1(z) = z2

F2(x+ iy) = ex cos(y) + iex sin(y), or equivalently F2(z) = ez

F3(x+ iy) = x− iy, or equivalently F3(z) = z̄.

A complex-valued function has a real part and an imaginary part. Thus every
complex-valued function F can be written

F (x+ iy) = u(x+ iy) + iv(x+ iy)

where u and v are real -valued functions of a complex variable. For example

F1(x+ iy) = (x+ iy)2 = (x2 − y2) + i (2xy),

so in this case

u(x+ iy) = x2 − y2

and

v(x+ iy) = 2xy.

It follows that a complex-valued function F of a complex variable is really the same
as a pair of real-valued functions (u, v) of a complex variable. Also, since a complex
number z is determined by giving its real part x and its imaginary part y, we can
think of a real-valued functions u and v of a complex variable as the same as a pair
of real-valued functions of two real variables (x, y).

A complex-valued function F of a complex variable z is really the same as a
pair (u, v) of real-valued functions of a pair (x, y) of real variables. We can write
F (x+ iy) = u(x+ iy) + iv(x+ iy), or equivalently, F (x, y) =

(
u(x, y), v(x, y)

)
.

1.2. Derivatives.

In the differential calculus we define the derivative of a real-valued function f
of a real variable x. We think of f as defined on an interval of the real axis with
values on the real axis, and we write:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

.

We would like to do the same thing for complex -valued functions of a complex
variable. The key point is that if F is a complex-valued function of a complex
variable, and if h is a non-zero complex number, the expression

F (z + h)− F (z)
h
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is the quotient of two complex numbers, and hence is itself a complex number.

It is important to realize that this situation is very special to the case of complex-
valued functions of a complex variable. If we consider functions F which map R3

to R3, and if x̄ and h̄ are vectors in R3, then F (x̄ + h̄) − F (x̄) is a vector in R3,
and the quotient

F (x̄+ h̄)− F (x̄)
h̄

makes no sense because division of vectors is not defined!

Now just as with real-valued functions of a real variable, we say that the function
F is (complex) differentiable at the point z if the limit as h→ 0 of this expression
exists, and we write

F ′(z) = lim
h→0

F (z + h)− F (z)
h

.

Definition 1.1. A complex-valued function F of a complex variable is holomorphic
in a region Ω ⊂ C if F is complex differentiable at each point of Ω.

Examples:

(i) Consider F1(z) = z2. We have

F1(z + h)− F1(z)
h

=
(z + h)2 − z2

h
=

2zh+ h2

h
= 2z + h

and so

lim
h→0

F1(z + h)− F1(z)
h

= lim
h→0

[2z + h] = 2z.

It follows that F1(z) = z2 is a holomorphic function, and its derivative is
F ′1(z) = 2z.

(ii) Consider F3(z) = z̄. We have

F3(z + h)− F3(z)
h

=
(z + h)− z

h
=
z̄ + h̄− z̄

h
=
h̄

h
.

Now if h is real, h̄ = h, and so

lim
h→0
h real

F3(z + h)− F3(z)
h

= lim
h→0
h real

h

h
= 1.

On the other hand, if h is imaginary, h̄ = −h, and so

lim
h→0

h imaginary

F3(z + h)− F3(z)
h

= lim
h→0

h imaginary

−h
h

= −1.

It follows that

lim
h→0

F3(z + h)− F3(z)
h

does not exist,

and so F3(z) = z̄ is not a holomorphic function.

Exercise: Show that F2(z) = ez and F4(z) = z−1 are holomorphic functions.
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1.3. The Cauchy-Riemann equations.

We now examine the meaning of complex differentiablity in terms of the real
and imaginary parts of a complex valued function. Thus suppose that F (z) =
u(z)+iv(z) where u and v are real valued functions, and suppose that F is complex
differentiable. Then if h is a complex number,

F (z + h)− F (z)
h

=

[
u(z + h)− u(z)

]
+ i
[
v(z + h)− v(z)

]
h

.

If we let z = x+ iy = (x, y), and we take h = (h, 0) to be a (small) real number, it
follow that

F ′(z) = lim
h→0

u(x+ h, y)− u(x, y)
h

+ i lim
h→0

v(x+ h, y)− v(x, y)
h

=
∂u

∂x
(x, y) + i

∂v

∂x
(x, y).

On the other hand, if we take h = ik = (0, k) to be a small imaginary number, it
follows that

F ′(z) = lim
k→0

u(x, y + k)− u(x, y)
ik

+ i lim
h→0

v(x, y + k)− v(x, y)
ik

=
1
i

∂u

∂y
(x, y) +

∂v

∂y
(x, y).

It follows that we must have the following equalities: ∂u
∂x (x, y) = ∂v

∂y (x, y) and
∂v
∂x (x, y) = −∂u∂y (x, y). These are called the Cauchy-Riemann equations. We have
established

Lemma 1.2. If F (x+ iy) = u(x+ iy) + iv(x+ iy) is a holomorphic function of a
complex variable z = x+ iy, then the real and imaginary parts u and v must satisfy

∂u

∂x
(x, y) = +

∂v

∂y
(x, y),

∂v

∂x
(x, y) = −∂u

∂y
(x, y).

1.4. Line integrals.

We now consider line integrals of complex-valued functions. We need to introduce
some notation. We let

F (z) = u(x, y) + iv(x, y),
dz = dx+ idy,

so that formally,

F (z) dz =
(
u(x, y) + iv(x, y)

)(
dx+ idy

)
=
[
u(x, y) dx− v(x, y) dy

]
+ i
[
u(x, y) dy + v(x, y) dx

]
.

Then if C is a curve in the complex plane, we define the line integral
∫
C

F (z) dz to

be: ∫
C

F (z) dz =
∫
C

u(x, y) dx− v(x, y) dy + i

∫
C

u(x, y) dy + v(x, y) dx.
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Theorem 1.3. Suppose Ω ⊂ C = R2 is a region to which we can apply Green’s
theorem. Suppose that F is holomorphic and continuously differentiable on Ω and
its boundary. Then ∮

∂Ω

F (z) dz = 0.

Proof. From the definition, we have∮
∂Ω

F (z) dz =
∮
∂Ω

u(x, y) dx− v(x, y) dy + i

∮
∂Ω

u(x, y) dy + v(x, y) dx.

Using Green’s theorem, we show that∮
∂Ω

u(x, y) dx− v(x, y) dy = 0,(a) ∮
∂Ω

u(x, y) dy + v(x, y) dx = 0.(b)

For (a), we have∮
∂Ω

u(x, y) dx− v(x, y) dy =
∫∫

Ω

[
− ∂u

∂y
(x, y)− ∂v

∂x
(x, y)

]
dx dy

=
∫∫

Ω

0 dx dy = 0

from the second Cauchy-Riemann equation ∂v
∂x (x, y) = −∂u∂y (x, y). For (b), we have∮

∂Ω

u(x, y) dy + v(x, y) dx =
∫∫

Ω

[∂u
∂x

(x, y)− ∂v

∂y
(x, y)

]
dx dy

=
∫∫

Ω

0 dx dy = 0

from the first Cauchy-Riemann equation ∂u
∂x (x, y) = +∂v

∂y (x, y). This completes the
proof. �

Theorem 1.4 (Cauchy’s integral formula). Suppose Ω ⊂ C = R2 is a region to
which we can apply Green’s theorem. Suppose that F is holomorphic and continu-
ously differentiable on Ω and its boundary. If z ∈ Ω, then

F (z) =
1

2πi

∮
∂Ω

F (w)
w − z

dw.

Proof. We first consider the line integral
∮
Cε

F (w)
w − z

dw where Cε is the circle cen-

tered at z = x+ iy of radius ε. We can parameterize Cε by

w(t) = z + εeit =
(
x+ ε cos(t), y + ε sin(t)

)
, 0 ≤ t ≤ 2π.

Then

w − z = εeit,

dw = iεeit dt,
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and so ∮
Cε

F (w)
w − z

dw = i

∫ 2π

0

F (z + εeit) dt

= i

∫ 2π

0

F (z) dt+ i

∫ 2π

0

[F (z + εeit)− F (z)] dt

= 2πiF (z) + i

∫ 2π

0

[F (z + εeit)− F (z)] dt.

Since F is continuous at z, we can make |F (z + εeit) − F (z)| as small as we like
(for all t) by making ε sufficiently small. It follows that

lim
ε→0

∮
Cε

F (w)
w − z

dw = 2πiF (z).

But now it follows from Theorem 1.3 that for any ε > 0,∮
∂Ω

F (w)
w − z

dw =
∮
Cε

F (w)
w − z

dw.

This completes the proof. �

1.5. Evaluation of definite integrals.

The Cauchy integral formula can be used to evaluate some definite integrals. We
consider several examples.

Example 1: Evaluate
∫ 2π

0

dθ

1 + a cos(θ)
with 0 ≤ a < 1.

We can write cos(θ) =
1
2
[
eiθ + e−iθ

]
, and so

1
1 + a cos(θ)

=
1

1 + a
2

[
eiθ + e−iθ

]
=

2eiθ

2eiθ + a
[
e2iθ + 1

] .
If we put z = eiθ, then dz = ieiθ dθ, and so∫ 2π

0

dθ

1 + a cos(θ)
=

2
i

∫ 2π

0

ieiθ dθ

ae2iθ + 2eiθ + a

=
2
i

∮
dz

az2 + 2z + a

= (4π)
1

2πi

∮
dz

az2 + 2z + a

where the line integral is take around the boundary of the unit circle. But the
polynomial az2 + 2z+ a has two roots: r1 = −1−

√
1− a2 and r2 = −1 +

√
1− a2.

Moreover, r1 < −1 < r2 < 0. Thus one root r2 is inside the circle, and the other is
outside the circle. We can write

az2 + 2z + a = a(z − r1)(z − r2).
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Thus ∫ 2π

0

dθ

1 + a cos(θ)
= (4π)

1
2πi

∮
dz

(z − r1)(z − r2)

= (4π)
1

r2 − r1

=
2π√

1− a2
.

Example 2: Evaluate
∫ +∞

−∞

dx

(x2 + 4)(x2 + 9)

The function

f(z) =
1

(z2 + 4)(z2 + 9)
=

1
(z + 2i)(z − 2i)(z + 3i)(z − 3i)

is holomorphic everywhere except at the four points ±2i and ±3i. We consider∮
C(R1,R2,N)

dz

(z2 + 4)(z2 + 9)

where C(R1, R2, N) is the square with vertices at {R1, R1 + iN,−R2 + iN,−R2},
where N > 3 Then the points 2i and 3i are inside this square, and the points −2i
and −3i are outside.

We can replace this line integral with the sum of two line integrals, one going
around a small circle C2 centered at 2i and the other around a small circle C3

centered at 3i. Using the Cauchy integral formula, we have∮
C2

dz

(z2 + 4)(z2 + 9)
= 2πi

[
(2i+ 2i)(2i+ 3i)(2i− 3i)

]−1 =
2πi
−20i3

=
π

10
;∮

C3

dz

(z2 + 4)(z2 + 9)
= 2πi

[
(3i+ 2i)(3i− 2i)(3i+ 3i)

]−1 =
2πi
30i3

= − π

15
.

Thus ∮
C(R1,R2,N)

dz

(z2 + 4)(z2 + 9)
=

π

10
− π

15
=

π

30
.

But
∮
C(R1,R2,N)

dz
(z2+4)(z2+9) is the sum of four integrals I1 + I2 + I3 + I4. The

first is parameterized by z = x with −R2 ≤ x ≤ R1, and gives

I1 =
∫ R1

−R2

dx

(x2 + 4)(x2 + 9)
.

The second is parameterized by z = R1 + it with 0 ≤ t ≤ N , and gives

I2 =
∫ N

0

i dt

(R1 + it)2 + 4)(R1 + it)2 + 9)
.

The third is paramterized by z = t+ iN with R1 ≥ t ≥ −R2, and gives

I3 =
∫ −R2

R1

dt

(t+ iN)2 + 4)(t+ iN)2 + 9)
.

The fourth is parameterized by z = −R2 + it with N ≥ t ≥ 0, and gives

I4 =
∫ 0

N

i dt

(−R1 + it)2 + 4)(−R2 + it)2 + 9)
.
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Now we need to make estimates of the absolute values of I2, I3, and I4. We can
show

|I2| ≤
N

(R2
1 − 4)(R2

1 − 9)

|I3| ≤
1
N2

∫ +∞

−∞

dt

t2 + 9
≤ π

2N2

|I4| ≤
N

(R2
2 − 4)(R2

2 − 9)
.

We first let R1 and R2 go to positive infinity, which makes |I2| and |I4| go to zero.
We then let N go to positive infinity, which makes |I3| go to zero. In this process,
I1 goes to the desired integral, and so we get∫ +∞

−∞

dx

(x2 + 4)(x2 + 9)
=

π

30
.

Example 3: Show that
∫ +∞

−∞

sin(x)
x

dx = π.

1.6. Holomorphic functions and power series.

We want to prove:

Theorem 1.5. Suppose F (z) is holomorphic in an open set containing the closed
disk D(R) =

{
z ∈ C

∣∣∣ |z| ≤ R}. Then for |z| < R we can represent F (z) by a
convergent power series

F (z) =
∞∑
n=0

anz
n.

Moreover, the coefficients are given by

an =
1
n!
F (n)(0) =

1
2πi

∮
∂D(R)

F (w)
wn+1

dw.

Proof. For any |z| < R, we can use the Cauchy integral formula to write

F (z) =
1

2πi

∮
∂D(R)

F (w)
w − z

dw

=
1

2πi

∮
∂D(R)

F (w)
w

(
1− z

w

)−1

t dw

=
1

2πi

∮
∂D(R)

F (w)
w

∞∑
n=0

( z
w

)n
dw

=
∞∑
n=0

[
1

2πi

∮
∂D(R)

F (w)
wn+1

dw

]
zn.

�


