1. HOLOMORPHIC FUNCTIONS
1.1. Complex-valued functions.

At the start of the study of calculus, we usually consider real-valued functions f
of a real variable x. Now we want to replace real-valued functions f by complex-
valued functions F', and we want to replace the real variable x by a complex variable
z = x + iy. Thus we consider functions F' defined on the complex plane (or a
subregion of the complex plane) which takes on complex values. Examples of such
functions are:

Fi(z +iy) = (z +1iy)?, or equivalently Fi(z) = 2*
Fy(z +iy) = e” cos(y) + ie” sin(y), or equivalently Fy(z) =¢*
F3(x 4 iy) = = — 1y, or equivalently F3(z) = z.

A complex-valued function has a real part and an imaginary part. Thus every
complex-valued function F' can be written

F(x +iy) = u(z + iy) + iv(z + 1y)
where u and v are real-valued functions of a complex variable. For example
Fi(z +iy) = (z +iy)* = (2" —y*) +i (22y),
so in this case
u(z +iy) = a? — y?
and

v(x + iy) = 2zy.

It follows that a complex-valued function F' of a complex variable is really the same
as a pair of real-valued functions (u,v) of a complex variable. Also, since a complex
number z is determined by giving its real part z and its imaginary part y, we can
think of a real-valued functions v and v of a complex variable as the same as a pair
of real-valued functions of two real variables (z,y).

A complex-valued function F' of a complex variable z is really the same as a
pair (u,v) of real-valued functions of a pair (x,y) of real variables. We can write
F(z +iy) = u(z + iy) + iv(x + iy), or equivalently, F(z,y) = (u(z,y), v(z,y)).

1.2. Derivatives.

In the differential calculus we define the derivative of a real-valued function f
of a real variable x. We think of f as defined on an interval of the real axis with
values on the real axis, and we write:

. +h)— f(x)
N IC: |
fi(z) = lim 3
We would like to do the same thing for complez-valued functions of a complex
variable. The key point is that if F' is a complex-valued function of a complex
variable, and if A is a non-zero complex number, the expression
F(z+h)— F(z)
h



is the quotient of two complex numbers, and hence is itself a complex number.

It is important to realize that this situation is very special to the case of complex-
valued functions of a complex variable. If we consider functions F which map R?
to R3, and if 7 and h are vectors in R3, then F(Z + h) — F(Z) is a vector in R3,
and the quotient

F(z+h) — F(z)

h

makes no sense because division of vectors is not defined!

Now just as with real-valued functions of a real variable, we say that the function

F' is (complex) differentiable at the point z if the limit as A — 0 of this expression
exists, and we write

F'(z) = }lzli% w

Definition 1.1. A complez-valued function F of a complex variable is holomorphic
in a region  C C if F' is complex differentiable at each point of €.

Examples:

(i) Consider Fy(z) = 22. We have
Fi(z+h)— Fi(2) _(2+h)?—2% 2zh+h?

= =22+h
h h h i
and so . B
lim 1(z4h) = 1) = lim[2z + h] = 2z.
h—0 h h—0
It follows that Fy(z) = 22 is a holomorphic function, and its derivative is
Fl(z) = 2z.
(ii) Consider F3(z) = z. We have
Fy(z+h)—Fs3(z) (z+h)—2zZ z+h—2 h
h N h B h b
Now if h is real, h = h, and so
i DBEFRN =BG by
h—0 h h—0 h
h real h real
On the other hand, if h is imaginary, h = —h, and so
i DBEHRN =BG Zh
h—0 h _h—0 h
h imaginary h imaginary

It follows that
lim F5(z+ h) — F3(z)
h—0 h

does not exist,

and so F3(z) = Z is not a holomorphic function.

Exercise:  Show that Fy(z) = e* and Fy(z) = 27! are holomorphic functions.




1.3. The Cauchy-Riemann equations.

We now examine the meaning of complex differentiablity in terms of the real
and imaginary parts of a complex valued function. Thus suppose that F(z) =
u(z)+iv(z) where u and v are real valued functions, and suppose that F' is complex
differentiable. Then if h is a complex number,

F(z+h)—F(z) _ [u(z + h) — u(2)] + i[v(z + h) — v(2)]
h N h '
If we let z = x + iy = (z,y), and we take h = (h,0) to be a (small) real number, it
follow that

u(x+hvy) _u(xvy) v(nc—i—h,y) _U(xvy)

/ 1 . q-
FE =y h O
ou

Ov

On the other hand, if we take h = ik = (0, k) to be a small imaginary number, it
follows that

u($>y+k.)_u(x’y) U(m,y—i—k.)—v(w,y)

/ BT A
Fiz) = %lir%) ik + lezlino ik
10u v
= ;a*y(%y) + %(x7y)-
It follows that we must have the following equalities: %(z,y) = g—g(x,y) and
%(x,y) = —g—Z(x,y). These are called the Cauchy-Riemann equations. We have
established

Lemma 1.2. If F(x + iy) = u(z + iy) + iv(x + iy) is a holomorphic function of a
complex variable z = x + iy, then the real and imaginary parts u and v must satisfy

ou ov
%(xuy) - +87y(x7y)7
ov ou

a(fﬂ,y) = _@(xay)'

1.4. Line integrals.

We now consider line integrals of complex-valued functions. We need to introduce
some notation. We let

F(z) = u(z,y) +iv(x,y),
dz = dx + idy,
so that formally,
F(2)dz = (u(z,y) +iv(z,y)) (dz + idy)
= [u(z,y) dz — v(z,y) dy] + i[u(z,y) dy + v(z, y) dz].
Then if C is a curve in the complex plane, we define the line integral / F(2)dz to

c
be:

/CF(z)dz:/Cu(x,y)dzfv(x,y)dy+i/Cu(os,y)derv(o:,y)d:E.
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Theorem 1.3. Suppose Q C C = R? is a region to which we can apply Green’s
theorem. Suppose that F' is holomorphic and continuously differentiable on 0 and

its boundary. Then
f F(z)dz=0.
o0

Proof. From the definition, we have

f F<Z>dZ27{ w(w,y) de — v(e,y) dy + i 74 w(z,y) dy + v(z, y) dr.
o0 o oN

Using Green’s theorem, we show that
(a) j{ u(z,y)de —v(z,y)dy =0,
a0

(b) j{dﬂ u(z,y) dy + v(z,y)de = 0.

For (a), we have
]{m u(z,y)dr —v(z,y) dy = //Q [* %(x,y) - %(x,y)} dx dy

://OdmdyZO
Q

from the second Cauchy-Riemann equation %(x, y) = —g—;(x, y). For (b), we have

$ vy otado= [[ [Fwm) - 5w ] dedy

://dedy:()
Q

from the first Cauchy-Riemann equation 2%(z,y) = —i—g—Z(x, y). This completes the

proof. ([

Theorem 1.4 (Cauchy’s integral formula). Suppose @ C C = R? is a region to
which we can apply Green’s theorem. Suppose that F' is holomorphic and continu-
ously differentiable on Q0 and its boundary. If z € 1, then

1 F(w)

F(z)=—

= — dw.
2mi Joq w— 2

F
Proof. We first consider the line integral % (w) dw where C. is the circle cen-
c.wW—=z

tered at z = x 4 iy of radius e. We can paraemeterize C. by
w(t) =z+ee’ = (x+ecos(t),y +esin(t)), 0<t< 2
Then

w—z = ee”,

dw = iee™ dt,



and so

F 27 ]
7{ (w) dw = z/ F(z+ee™)dt
C. 0

) v 27 27
:i/ F(2) dt+z‘/ [F(z + ee't) — F(2)] dt
0 0

— 2miF(2) 4 /0 1P (s + ee't) — F(2)] dt.

Since F is continuous at z, we can make |F(z + ee') — F(2)| as small as we like
(for all ¢t) by making e sufficiently small. It follows that

F
lim Flw) dw = 2miF(z).
e—0 c W—=z

But now it follows from Theorem 1.3 that for any € > 0,

égﬂdw:ﬁ %dw.

This completes the proof. [

1.5. Evaluation of definite integrals.

The Cauchy integral formula can be used to evaluate some definite integrals. We
consider several examples.

2m
de
Example 1: Evaluate / — with0<a<1.
o 14 acos(f)
1. . .
We can write cos(f) = 3 [e + 7], and so
I 1
L+acos(f) 1+ %[ei + e
261'9

T 9l + a[ezw + 1] :

If we put z = €*?, then dz = ie*? df, and so

/2” o 2 /2” ie'? do

o l+acos(d) i)y ae?i® 42 4qa
B 274 dz
i) az2+22+a

= (4m) L f oz
2mi ) az?2+2z2+a
where the line integral is take around the boundary of the unit circle. But the
polynomial az? 4 2z + a has two roots: r; = —1 —+/1 —a2 and ry = —1++/1 — a2.
Moreover, 71 < —1 < r9 < 0. Thus one root 9 is inside the circle, and the other is
outside the circle. We can write

az? + 224 a=a(z—ry)(z—ro).



Thus
/2” dg —(4ﬂ)i7{ dz
o l+acos(d) 2t J (z—r1)(z —12)
=4
)
27
Vi—a?
Heo dx
Example 2: Evaluate / —_——
oo (@2 +4)(2%+9)

The function

1 1

f(z) = (2 +40(22+9)  (z+2i)(z — 2i)(z + 3i)(z — 30)

is holomorphic everywhere except at the four points +2i and +3i. We consider

j{ dz

C(R1 R, N) (22 +4)(22 +9)

where C'(Ry, R, N) is the square with vertices at {Ry, Ry + 4N, —Rg + iN,—Rs},
where N > 3 Then the points 2¢ and 3¢ are inside this square, and the points —2i
and —37 are outside.

We can replace this line integral with the sum of two line integrals, one going
around a small circle Cy centered at 2¢ and the other around a small circle Cy
centered at 3¢. Using the Cauchy integral formula, we have

dz -1 2mi 0

— 9mi[(2i + 20) (2 + 30)(2i — 3i === _ .
fa T mi[(2i + 24)(2i 4 34) (20 — 3i)] 08 — 10’
dz -1 2m T
e = 2m | (37 4+ 24) (3% — 27) (31 + 3¢ b ——
f;g (22 +4)(2*+9) mi(31 -+ 20)(3i — 20)(3i + 30) 3043 15

Thus
% b _m T
C(Ry,RauN) (22 +4) (22 +9) 10 15 30°

But fC(Rl Ra.N) Mﬁ is the sum of four integrals I + I 4+ Is + I;. The
first is parameterized by z = x with —Ry < x < Rj, and gives

/Rl dx

Il = ﬁ.

_R, (@ +4)(22+9)

The second is parameterized by z = Ry + it with 0 <t¢ < N, and gives
I /N idt
> )y (Ri+it)2+ (R, +it)2+9)

The third is paramterized by z =t + ¢N with Ry >t > — R, and gives

_R2
I / dt
7 Jr, G+iN2Z+4)(t+iN)2+9)
The fourth is parameterized by z = — Ry + it with NV > ¢ > 0, and gives

0 .
I :/ i dt
YTy CRI+ )2+ 4)(—Re+it)2+9)
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Now we need to make estimates of the absolute values of I, I3, and I,. We can

show
N

(R —4)(RT - 9)
|[3<1/+Oodt<ﬂ-
N2 J_ t?+9 ~ 2N?
N
(7~ 1)’ —9)°
We first let Ry and Ry go to positive infinity, which makes |I5| and |I4] go to zero.

We then let N go to positive infinity, which makes |I5| go to zero. In this process,
I goes to the desired integral, and so we get

|2 <

[1a] <

/+°° dx T
Ceo (24 4)(22+9) 30
+oo

sin(z) dr = .

Example 3: Show that /

— 00

T

1.6. Holomorphic functions and power series.

We want to prove:

Theorem 1.5. Suppose F(z) is holomorphic in an open set containing the closed
disk D(R) = {z eC
convergent power series

|| < R}. Then for |z| < R we can represent F(z) by a

F(z)= Z anz".
Moreover, the coefficients are given by
1 . 1 F

n.

Proof. For any |z| < R, we can use the Cauchy integral formula to write
1 F
F(z)=— ?{ Fw) dw
21 Jopry w — 2

:L?{ M(l,i)_ltdw
21 Jopr)y w w




