
UNDISTORTED PURELY PSEUDO-ANOSOV GROUPS

M. BESTVINA, K. BROMBERG, A. E. KENT, AND C. J. LEININGER

Abstract. In this paper we prove that groups as in the title are convex co-

compact in the mapping class group.

1. Introduction

Let S be a finite type surface with negative Euler characteristic, and Mod(S) its
mapping class group. In [FM02], Farb and Mosher define a notion of convex co-
compactness for a subgroup G < Mod(S) by requiring that the orbit in Teichmüller
space be quasi-convex. More importantly, a subgroup G < Mod(S) is convex co-
compact if and only if in the surface group extension

1→ π1(S)→ ΓG → G→ 1,

the group ΓG is hyperbolic when S is closed ([FM02, Ham]), and relatively hyper-
bolic when S has punctures ([MS12]).

The definitions readily imply that if G is convex cocompact, then it is finitely
generated and purely pseudo-Anosov, meaning that every infinite order element is
pseudo-Anosov. The next question asks if the converse holds (see [FM02]).

Question 1.1. If G < Mod(S) is finitely generated and purely pseudo-Anosov, is
it convex cocompact?

This is closely related to Gromov’s hyperbolicity question (see [Bes, Question
1.1]). Indeed, if S is closed, and if G < Mod(S) has a finite K(G, 1) and is purely
pseudo-Anosov, then ΓG has a finite K(ΓG, 1) and no Baumslag-Solitar subgroups
(see, e.g. [KL07]), and Gromov’s question asks if ΓG is hyperbolic.

Question 1.1 seems to be quite difficult, though several classes of finitely gener-
ated, purely pseudo-Anosov subgroups have been shown to be convex cocompact;
see [KLS09, DKL14, MT16, KMT14]. In this paper we prove that the additional
assumption of being undistorted (that is, quasi-isometrically embedded) in Mod(S)
suffices for convex cocompactness.

Main Theorem. A subgroup G < Mod(S) is convex cocompact if and only if it is
finitely generated, undistorted, and purely pseudo-Anosov.

In [DT15], Durham and Taylor define a strong form of quasi-convexity they
call stability, and prove that stability in the mapping class group is equivalent to
being convex cocompact. The definition of stability includes the assumption of be-
ing undistorted, and it follows easily from the Nielsen-Thurston classification (see

The authors gratefully acknowledge support from NSF grants DMS-1308178, DMS-1509171,
DMS-1350075, and DMS-1510034. The third author extends her thanks to the Institute for
Advanced Study for its support under NSF grant DMS-1128155 while this work was completed.

1



2 M. BESTVINA, K. BROMBERG, A. E. KENT, AND C. J. LEININGER

[FM10]) and Masur-Minsky distance formula (Theorem 2.7 below), that stable sub-
groups must be purely pseudo-Anosov. We therefore recover Durham and Taylor’s
characterization of convex cocompactness as a corollary of the Main Theorem.

Corollary 1.2. A subgroup G < Mod(S) is convex cocompact if and only if it is
stable in Mod(S).

Koberda-Mangahas-Taylor proved that if G is a subgroup of an admissible right-
angled Artin subgroups of Mod(S), then G is convex cocompact if and only if G is
finitely generated and purely pseudo-Anosov; see [KMT14] for definitions and the
precise statement. This appealed to the Durham-Taylor stability formulation of
convex cocompactness, together with previous work of Mangahas-Taylor [MT16].
Admissible right-angled Artin subgroups are in particular undistorted, and so we
obtain a generalization of the mapping class group result of [KMT14].

Corollary 1.3. Suppose H < Mod(S) is an undistorted, finitely generated right-
angled Artin subgroup of the mapping class group, and G < H is any subgroup.
Then G is convex cocompact if and only if G is finitely generated and purely pseudo-
Anosov.

Proof. The forward implication is immediate from the forward implication of the
Main Theorem, so we assume thatG is finitely generated and purely pseudo-Anosov,
and prove that it must be convex cocompact. First, the fact that G is purely pseudo-
Anosov means that as a subgroup of the right-angled Artin group H, G is purely
loxodromic—the centralizer of every nontrivial element is cyclic; see [KMT14]. From
this and Theorem 1.1 of [KMT14], it follows that G is undistorted in H. Since H is
undistorted in Mod(S) by assumption, it follows that G is undistorted in Mod(S).
By the Main Theorem, G is convex cocompact. �

Outline. The forward implication of the Main Theorem is straight forward from
the definition, using the thick part of Teichmüller space as a model for Mod(S). Here
we outline a proof of the reverse implication. We use the following characterization
of convex cocompactness in terms of C(S), the curve graph of S, proved in [KL08]
and [Ham].

Proposition 1.4. A subgroup G < Mod(S) is convex cocompact if and only if it is
finitely generated and, for any α ∈ C(S), the orbit map g 7→ g ·α is a quasi-isometric
embedding.

A finitely generated subgroup G < Mod(S) is quasi-isometrically embedded if
the orbit map g 7→ gµ to the marking graph of S, G→M(S), is a quasi-isometric
embedding. Further assuming that G is purely pseudo-Anosov, but not convex
cocompact, we ultimately produce an infinite order reducible element of G, which
is a contradiction.

We begin by proving Proposition 3.1, which says that if one can find a sufficiently
large group element g ∈ G and a proper subsurface Y so that the projection distance
between µ and gµ in the marking graph of Y are linear in word length |g|, then G
contains a reducible element. To apply this, we proceed as follows.

By Proposition 1.4, the assumption that G is not convex cocompact means that
there are arbitrarily large group elements g ∈ G so that the distance between µ
and gµ in C(S) grows sub-linearly in |g|. By Theorem 2.7 (Distance Formula), this
means that the sum of other big subsurface projections between µ and gµ must
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be growing linearly. Furthermore, by Proposition 2.9 (Overlapping Factors), we
may assume that the subsurfaces in this sum overlap (no two are either disjoint or
nested).

Proposition 2.6 (Subsurface Order) provides a natural total order on the subsur-
faces appearing in the sum, and appealing to Proposition 2.5 (Behrstock Inequality)
we show that the path inM(S) from µ to g ·µ (coming from a geodesic in the Cay-
ley graph of G) is basically forced to traverse the required distance in each of the
curve complexes of these subsurfaces one at a time and in order (see Lemma 4.3).

These subsurfaces can be divided into maximal intervals of subsurfaces which fill
larger, proper subsurfaces of S. Appealing to Proposition 2.4 (Bounded Geodesic
Image), we show that the number of these larger subsurfaces is at most the distance
in the curve graph of S. Because the curve complexes are traversed one at a time
and in order, the marking graphs are also effectively traversed one at a time. From
this, we can efficiently express g as a product of group elements so that each element
corresponds to the traversal of one of the marking graphs of these larger subsurfaces.
This is essentially the content of Proposition 4.1.

Finally, sublinearity of the distance between µ and gµ in C(S) guarantees that
one of the elements in the product has length tending to infinity, and projection
to the marking graph of the associated subsurface linear in length. Applying our
criterion (Proposition 3.1), we obtain a nontrivial reducible element, and hence our
desired contradiction.

We note that the general strategy of our proof shares some features with the
proof of Theorem 1.1 of [KMT14] regarding an analogous class of subgroups of
right-angled Artin groups, though the techniques are quite different.

Acknowledgements. The authors would like to thank Johanna Mangahas for
pointing out Corollary 1.3.

2. Preliminaries

By a subsurface of S, we mean a connected, π1–injective, properly embedded
subsurface Y ⊆ S such that every puncture of Y is a puncture of S, and every
boundary component is a homotopically essential, nonperipheral closed curve in S
(in fact, this latter implies Y is π1–injective), and such that Y is not homeomorphic
to a 3–holed sphere. A curve in Y is a homotopically essential, non-peripheral
simple closed curve in S. Subsurfaces and curves will be considered up to isotopy,
and we will freely pass between isotopy classes and representatives of the isotopy
classes whenever convenient. Given a subsurface Y , let ξ(Y ) = 3g− 3 + n, where g
is the genus of Y and n is the number of punctures plus the number of boundary
components of Y .

If Y is not an annulus, the curve graph of Y is the simplicial graph, C(Y ), whose
vertices are curves in Y and whose edges are pairs of distinct curves that can be
realized with minimal intersection in Y (that is, pairwise disjoint if Y is not a
four-punctured sphere or once-punctured torus and intersecting twice or once, in
these two cases, respectively). If Y is an annulus, C(Y ) is defined as follows. Let

Ỹ be the natural compactification of the cover of S in which Y lifts so that the
inclusion is a homotopy equivalence. The vertices of C(Y ) are (isotopy classes of)

arcs connecting the distinct boundary components of Ỹ and edges are pairs of arcs
that can be realized with disjoint interiors. For any two vertices α, α′ ∈ C(Y ), the
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distance between α and α′ in C(Y ) is defined to be the minimal length (number
of edges) of any edge-path between α and α′ in C(Y ). A geodesic is any minimal
length edge-path. According to [MM99], C(Y ) is a Gromov hyperbolic, geodesic
metric space.

We say that two proper subsurfaces Y,Z ⊂ S overlap if they cannot be realized
disjointly and neither can be realized as a subsurface of the other. In this case, we
write Y t Z. A curve α cuts a subsurface Y if α cannot be realized disjoint from
Y , and in this case we similarly write α t Y . If α is a curve and Y is a subsurface
with α t Y , then the projection of α to Y , πY (α) ⊂ C(Y ) is defined as follows; see

[MM00]. If Y is an annulus, then πY (α) is the union of the arcs of Ỹ which are

(closures of) arcs of the preimage of α in Ỹ with endpoints on distinct boundary
components. If Y is not an annulus, then realize α and Y so that they intersect
minimally, and let α′ be any arc (or simple closed curve) of α∩Y . There is at least
one component of the regular neighborhood of α′ ∪ ∂Y which is essential in Y , and
we let πY (α) denote the union of all curves in Y so obtained (over all choices of arc
α′). If α 6t Y , we define πY (α) = ∅.

If Y is not an annulus, a marking µ on Y is maximal set of pairwise disjoint
curves b in Y (i.e. a pants decomposition) called the base of µ, together with a
diameter 1 subset tα ⊂ C(Yα) for each α ∈ b, where Yα is the annular neighborhood
of α. The subset tα is called a transversal for α. If Y is an annulus, then a marking
is just an vertex of C(Y ); see [MM00, BKMM12]. Markings are considered up
to isotopy, and the set of markings on Y are the vertices of a connected graph
M(Y ) called the marking graph of Y . Edges correspond to markings that differ by
elementary moves. We will not need the specifics of this definition, instead we note
that Mod(S) acts on M(S) with the following key properties; [MM00].

Proposition 2.1 (Mapping Class Group Marking Graph). For any finite generat-
ing set of Mod(S) and element µ ∈M(S), the orbit map Mod(S)→M(S), defined
by g 7→ g · µ, is a quasi-isometric embedding.

Markings can also be projected to either curve complexes or marking graphs of
subsurfaces. Given Y ⊆ Z ⊆ S, and any µ in M(Z) we write πY (µ) ⊂ C(Y ) and
πM(Y )(µ) ⊂ M(Y ) for these projections. The projection πY (µ) is defined as the
union of the projections of all base curves to Y , unless Y is an annulus whose core
curve is itself one of the base curves α ∈ b. In this latter situation, Y = Yα, and
πY (µ) is defined as tα ∈ C(Y ), the transversal of α. The projection to M(Y ) is
defined by an inductive procedure, making several choices, then taking the union
over all choices. Again, we will not need the specifics of these projections, but
instead we list here various facts that will be important for us.

We begin with the following; see [MM00, Beh06, BKMM12].

Proposition 2.2 (Bounded Diameter Projection). There is a constant δ > 0,
depending on S, so that if µ is a marking or curve on Z ⊆ S and Y ⊆ Z, then
πY (µ) and πM(Y )(µ) has diameter at most δ.

For any two curves or markings µ1, µ2 in Z ⊆ S and Y ⊆ Z (with µ1, µ2 t Y if
µ1, µ2 are curves), we define

dY (µ1, µ2) = diamC(Y)(πY(µ1) ∪ πY(µ2)).

Similarly, for µ1, µ2 ∈M(Z), define

dM(Y )(µ1, µ2) = diamM(Y)(πM(Y)(µ1) ∪ πM(Y)(µ2)).
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This particular choice of distance makes the triangle inequality hold whenever the
relevant projections are nonempty. Along with Proposition 2.2, another basic fact
is that projections are Lipschitz.

Proposition 2.3 (Lipschitz projection). There exists a constant δ′, depending on
S, so that for all Y ⊆ Z ⊆ S and µ1, µ2 ∈M(Z),

dY (µ1, µ2), dM(Y )(µ1, µ2) ≤ δ′dM(Z)(µ1, µ2).

A strong boundedness property of projections is the following, due to Masur and
Minsky [MM00].

Proposition 2.4 (Bounded Geodesic Image). There exists M > 0, depending on
S, so that for any two curves or markings µ1, µ2 on Z ⊆ S and proper subsurface
Y ( Z (with µ1, µ2 t Y if µ1, µ2 are curves), if dY (µ1, µ2) ≥M , then any geodesic
between µ1, µ2 in C(Z) must have a vertex α so that πY (α) = ∅.

Another important important bound for projections is the following, due to
Behrstock [Beh06] (see also [Man10]).

Proposition 2.5 (Behrstock Inequality). There exists B > 0 so that if Y,Z ( S
and γ ∈ C(S) is any curve with γ t Y,Z, then

min{dY (γ, ∂Z), dZ(γ, ∂Y )} < B.

Given two markings µ1, µ2 ∈M(S) and β > 0, define

Ω◦β(µ1, µ2) = {Y ( S | dY (µ1, µ2) ≥ β}

and

Ωβ(µ1, µ2) = {Z ⊆ S | Z is filled by subsurfaces Y ⊆ Z with Y ∈ Ω◦β(µ1, µ2)}.

Here, we say that a subsurface Z is filled by a collection of subsurfaces {Yα ⊆ Z}α
if either Z is an annulus and {Yα}α = {Z}, or Z is not an annulus and for every
curve γ ∈ C(Z), there exists α so that γ t Yα. The following is a straightforward
consequence of Proposition 2.5 (Behrstock Inequality) proven in [BKMM12] (see
also [CLM12]).

Proposition 2.6 (Subsurface Order). Given two markings µ1, µ2 and β > 2B
(with B > 0 from Proposition 2.5 (Behrstock Inequality)) there is a partial order
on Ω◦β(µ1, µ2) such that Y,Z ∈ Ω◦β(µ1, µ2) are comparable if and only if Y t Z. In
this case, the following are equivalent

(1) Y < Z, (2) dY (µ1, ∂Z) ≥ B, (3) dZ(µ2, ∂Y ) ≥ B,
(4) dZ(µ1, ∂Y ) < B, (5) dY (µ2, ∂Z) < B.

One final fact about projection distances is the following theorem. Given β > 0
and x ∈ R we write

{{x}}β =

{
x if x ≥ β
0 otherwise.

Theorem 2.7 (Distance Formula). Given any β > 0 sufficiently large there exists
κ ≥ 1 with the following property. If µ1, µ2 ∈M(S) and Z ⊆ S, then

1

κ
dM(Z)(µ1, µ2) ≤

∑
Y⊆Z

{{dY (µ1, µ2)}}β ≤ κdM(Z)(µ1, µ2),
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for all µ1, µ2 such that either the sum in the middle is nonzero or dM(Z)(µ1, µ2) ≥ κ.
Furthermore, when Z = S, there are only finitely many Mod(S)–orbits of pairs
(µ1, µ2) (under the diagonal action) in which the middle term is zero.

The original distance formula, due to Masur-Minsky [MM00], has an additive
error (in addition to the multiplicative error κ) instead of the conditional validity
of the inequality, which is more useful for our purposes. Since the distances are all
integers, the version here follows easily from the original one. The original formula
was also stated only for S instead of for subsurfaces Z ⊆ S. The variant for a
subsurface follows from the “coarse transitivity” of iterated projections for nested
subsurfaces (see [BKMM12, Lemma 2.12]).

The following is an easy consequence of Theorem 2.7 (Distance Formula).

Corollary 2.8. Suppose β ≥ 1 (sufficiently large) and κ ≥ 1 are as in Theorem 2.7
(Distance Formula). Then for all µ1, µ2 ∈ M(S), the set Ωβ(µ1, µ2) is finite.
Furthermore, if dM(Z)(µ1, µ2) ≥ κβ, then there is a subsurface W ⊆ Z such that
W ∈ Ωβ(µ1, µ2) and

1

ξ(Z)κ2
dM(Z)(µ1, µ2) ≤ dM(W )(µ1, µ2) ≤ κ2dM(Z)(µ1, µ2).

Proof. Since dM(S)(µ1, µ2) is a finite number for any µ1, µ2 ∈ M(S), it follows
from Theorem 2.7 (Distance Formula) that there are only finitely many Y with
dY (µ1, µ2) ≥ β; that is, Ω◦β(µ1, µ2) is finite. The finite set of subsurfaces Z ⊆
S filled by the subsurfaces in Ω◦β(µ1, µ2) is exactly Ωβ(µ1, µ2), proving the first
statement.

Next, list the (finitely many) subsurfaces of Z in Ω◦β(µ1, µ2):

{Y ⊆ Z | Y ∈ Ω◦β(µ1, µ2)} = {Y1, . . . , Yk}.

Since dM(Z)(µ1, µ2) ≥ κβ ≥ κ, Theorem 2.7 (Distance Formula) implies

k∑
j=1

dYj
(µ1, µ2) ≥ 1

κ
dM(Z)(µ1, µ2),

so {Y1, . . . , Yk} is nonempty. If these subsurfaces fill Z, then Z ∈ Ωβ(µ1, µ2) and we
are done. Otherwise, we let W1, . . . ,Wr be the component subsurfaces of Z filled
by Y1, . . . , Yk, and note that r < ξ(Z). Iteratively applying Theorem 2.7 (Distance
Formula) we have

r∑
i=1

dM(Wi)(µ1, µ2) ≤ κ
k∑
j=1

dYj
(µ1, µ2) ≤ κ2dM(Z)(µ1, µ2).

and
r∑
i=1

dM(Wi)(µ1, µ2) ≥ 1

κ

k∑
j=1

dYj
(µ1, µ2) ≥ 1

κ2
dM(Z)(µ1, µ2).

Let i ∈ {1, . . . , r} be the such that the term dM(Wi)(µ1, µ2) in the sum above is
largest, and set W = Wi so that

dM(W )(µ1, µ2) ≥ 1

r

r∑
i=1

dM(Wi)(µ1, µ2) ≥ 1

ξ(Z)

r∑
i=1

dM(Wi)(µ1, µ2).

Since W ∈ Ωβ(µ1, µ2), these inequalities complete the proof. �
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In [BBF15], the first and second authors, with Fujiwara, construct a partition
of the set of subsurfaces into finitely many subsets that we will refer to as BBF
factors. The key property of a BBF factor is stated in the following.

Proposition 2.9 (Overlapping Factors). For any surface, a BBF factor Y has the
property that either Y = {S}, or else, for all Y 6= Y ′ ∈ Y, Y t Y ′.

3. A criterion for reducibility.

Proposition 3.1 (Linear projection reducibility). Suppose G < Mod(S) is finitely
generated and let |g| denote the word length of g ∈ G with respect to a finite gen-
erating set and let µ be a fixed marking. Then for any c > 0 there exists R > 0 so
that if |g| ≥ R and if there exists a proper subsurface Z ⊂ S with

dM(Z)(µ, gµ) ≥ c|g|
then G contains a nontrivial reducible element.

The proposition basically says that if there exists arbitrarily large group elements
g ∈ G so that on a proper subsurface Z, dM(Z)(µ, gµ) is (at least) linear in |g|, then
G contains a nontrivial reducible element. Before we give the proof, we sketch the
idea under the stronger assumption that the projection dZ(µ, gµ) is linear in |g|.

Finite generation guarantees that there are only finitely many “big projections”
among uniformly bounded length group elements. Considering the geodesic in the
Cayley graph from the identity to g as being a concatenation of uniformly bounded
length group elements, we see that a definite percentage of these must contribute to
the linear growth of the distance in C(Z). Each contribution comes from a translate,
by an initial segment of the geodesic, of one of the finitely many big projections.
The pigeonhole principle ensures that two distinct initial segments of the geodesic
are translating the same subsurface, and hence the composition of one with the
inverse of the other fixes that subsurface, and is hence reducible.

The case of marking graph projections is similar. If dM(Z)(µ, gµ) is linear in |g|,
then we pass to a minimal complexity subsurface W ⊆ Z for which dM(W )(µ, gµ) is
also linear in |g|. The required finiteness needed to apply the pigeonhole principle
follows from the minimal complexity of W , appealing to Corollary 2.8.

Proof. Suppose that there exists c′ > 0 such that for all R > 0, there exists g ∈ G
with |g| ≥ R and a proper subsurface Z ⊂ S with

dM(Z)(µ, gµ) ≥ c′|g|.
If there is no such c′, then the proposition holds vacuously.

Next, consider the smallest integer ξ0 such that for some c > 0 the following
holds. For all R > 0 there exists g ∈ G with |g| > R and a subsurface Z with
ξ(Z) = ξ0 and

dM(Z)(µ, gµ) ≥ c|g|.
The first paragraph guarantees that ξ0 exists. Indeed, an upper bound for ξ0 is
obtained as the minimum of ξ(Z) such that there exists g ∈ G with |g| ≥ R and
dM(Z)(µ, gµ) ≥ c′|g|. Fix this minimal ξ0 and the associated c > 0, and let

G = {g ∈ G | dM(Z)(µ, gµ) ≥ c|g| for some Z with ξ(Z) = ξ0}.
By assumption, G is an infinite set (and in particular, there exists g ∈ G with |g| as
large as we like). Given g ∈ G, let Z(g) be a subsurface with dM(Z(g))(µ, gµ) ≥ c|g|
and ξ(Z(g)) = ξ0.
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For any L > 0 let

B(L) = max{dM(Z)(µ, gµ) | g ∈ G, |g| ≤ L, and Z ⊂ S is a proper subsurface}.

Fix any g ∈ G, let Z = Z(g), and let g = g0g1 · · · gn such that g0 = id, |gj | = L for
1 ≤ j < n, |gn| ≤ L, and

n∑
j=1

|gj | = |g|.

(Note that n depends on g.) For each j = 0, . . . , n, we also write hj = g0 · · · gj , so
that hj = hj−1gj for all 1 ≤ j ≤ n. Partition the set {1, . . . , n} into two subsets:

JL` = JL` (g) = {j | dM(Z)(hj−1µ, hjµ) ≥ c

2
|gj |},

and

JLs = JLs (g) = {j | dM(Z)(hj−1µ, hjµ) <
c

2
|gj |}.

Then since |gj | ≤ L for all j, our assumptions and the triangle inequality implies

c|g| ≤ dM(Z)(µ, gµ)

≤
∑
j∈JL

s

dM(Z)(hj−1µ, hjµ) +
∑
j∈JL

`

dM(Z)(hj−1µ, hjµ)

≤ c

2

∑
j∈JL

s

|gj |+
∑
j∈JL

`

dM(h−1
j−1Z)(µ, gjµ)

≤ c

2
|g|+B(L)|JL` |.

Therefore, for all g ∈ G and L > 0 we have have

(1) |JL` (g)| ≥ c

2B(L)
|g|.

Now let β, κ ≥ 1 be as in Corollary 2.8.

Claim. For all L sufficiently large and g ∈ G with |g| > L, if we write g = g0g1 · · · gn
as above and let j ∈ JL` (g)− {n}, then

h−1j−1Z(g) ∈ Ωβ(µ, gjµ).

Proof of Claim. Observe that if L ≥ 2κβ
c , then for j ∈ JL` (g)− {n}, |gj | = L, and

dM(h−1
j−1Z(g))(µ, gjµ) = dM(Z(g))(hj−1µ, hjµ) ≥ c

2
|gj | =

cL

2
≥ κβ.

Therefore, either h−1j−1Z(g) ∈ Ωβ(µ, gjµ) and we are done, or else Corollary 2.8

implies that there is a proper subsurface W ⊂ h−1j−1Z(g) so that W ∈ Ωβ(µ, gjµ)
and

dM(W )(µ, gjµ) ≥ 1

ξ(Z(g))κ2
dM(h−1

j−1Z(g))(µ, gjµ) ≥ c

2ξ(Z(g))κ2
|gj |.

But if there are arbitrarily large L > 0, g ∈ G with |g| > L, and j ∈ JL` (g) − {n}
for which this inequality holds, then the fact that ξ(W ) < ξ(h−1j−1(Z(g))) = ξ0
contradicts our minimality assumption on ξ0 since c

2ξ(Z(g))κ2 is constant. This

proves the claim. �
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To complete the proof, let L > 0 be large enough for the claim to hold. By (1),
we may choose an R > 0 such that if g ∈ G with |g| > R then |JL` (g)| is as large as
we like. In particular, we choose R large enough so that∣∣∣∣∣∣

⋃
{h∈G||h|=L}

Ωβ(µ, hµ)

∣∣∣∣∣∣ < |JL` (g)− {n}|

By the claim, h−1j−1Z(g) ∈ Ωβ(µ, gjµ) for all j ∈ JL` (g) − {n}, and since |gj | = L,
the Pigeonhole Principle implies that some subsurface from the set

{h−1j−1Z(g) | j ∈ JL` (g)− {n}}

must be repeated in this listing. That is,

h−1j−1(Z(g)) = h−1i−1(Z(g))

for some i, j ∈ JL` (g)−{n} with i > j. But hi−1h
−1
j−1 ∈ G sends Z(g) to itself, and

is nontrivial since |hi−1| = (i − 1)L 6= (j − 1)L = |hj−1|. Therefore, hi−1h
−1
j−1 is a

nontrivial reducible element of G. �

4. Linear factors

To prove the Main Theorem, we will show that dS(µ, gµ) is larger than some
linear function of |g|, and then apply Proposition 1.4. The proof is by contradic-
tion, and so we will need to know what happens in an undistorted subgroup when
dS(µ, gµ) is not linear in |g|. The main technical proposition we will use is the
following.

Proposition 4.1 (Linearly summing projections). Given G < Mod(S), an undis-
torted subgroup with a fixed finite generating set, and a marking µ, there exist
K,C > 0 with the following property.

For all g ∈ G with |g| > C, either |g| ≤ KdS(µ, gµ) or else there exist proper
subsurfaces Z1, . . . , Zk ⊂ S and g1, . . . , gk ∈ G such that

(i) dS(µ, gµ) ≥ k,
(ii) g = g1g2 · · · gk with |g| = |g1|+ · · ·+ |gk|,

(iii) |g| ≤ K
k∑
j=1

dM(Zj)(µ, gjµ), and

(iv) dM(Zj)(µ, gjµ) ≤ K|gj |, for all j = 1, . . . , k.

According to Proposition 2.3 (Lipschitz projection), (iv) is automatic as soon
as K is sufficiently large, and so we focus on (i) - (iii). The proof requires two
constructions and several lemmas. Fix an undistorted subgroup G < Mod(S), a
finite generating set, and a marking µ for the remainder of this section.

Lemma 4.2. For β > 0 sufficiently large, there exists K ′, C ′ > 0 such that if g ∈ G
with |g| > C ′ then

|g| ≤ K ′
∑
Y ∈Y

{{dY (µ, gµ)}}β

for some BBF factor Y.

Proof. The factors form a finite partition of the set of subsurfaces, so is is immediate
from Theorem 2.7 (Distance Formula). �
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By Proposition 2.3 (Lipschitz projection), there exists b > 0 so that for any
subsurface Z we have

dM(Z)(µ, xµ) ≤ b and dZ(µ, xµ) ≤ b

for each of our finitely many generators x of G. We assume (as we may) that b ≥ B
from Propositions 2.5 (Behrstock Inequality) and 2.6 (Subsurface Order). Fix any
β > 5b + M + 3δ > 2B, where M is the constant from Proposition 2.4 (Bounded
Geodesic Image) and δ is the constant from Proposition 2.2 (Bounded Diameter
Projections), and set β0 = β + 5b.

For any g ∈ G and factor Y 6= {S}, let Y1, . . . , Yn be the set of all subsurfaces in
Y such that dYi

(µ, gµ) ≥ β0. Further assume they are ordered as in Proposition 2.6
(Subsurface Order) with Yi < Yj for all i < j (see also Proposition 2.9 (Overlapping
factors)). Consider a geodesic in (the Cayley graph of) G from id ∈ G to g ∈ G.
Consecutive group elements along the geodesic differ by one of the generators, and
applying these elements to µ gives a discrete path of markings in M(S), which in
turn project to discrete paths in each curve graph C(Yi), starting at πYi(µ) and
ending at πYi

(gµ).
Roughly speaking, the next lemma says the paths in C(Yi) respect the ordering

Y1 < Y2 < · · · < Yn, meaning that the projection to C(Yi) cannot make progress
from πYi

(µ) toward πYi
(gµ) until the projection to C(Yi−1) is sufficiently close to

πYi−1(gµ). This is a straightforward consequence of Propositions 2.5 (Behrstock
Inequality) and 2.6 (Subsurface Order), and is reflected in the quasi-tree behavior
proved in [BBF15].

To make this precise, we first define a prefix of g ∈ G to be an element g′ ∈ G so
that g = g′g′′ and |g| = |g′|+ |g′′|. If g′ is a prefix of g, we write g′ � g (and g′ ≺ g
if g′ 6= g). Note that � is a partial order on the prefixes of g, and any maximally
ordered chain of prefixes are the vertices of a geodesic in G. Fix such a geodesic,
and for each 1 ≤ j < n, let g′j be the longest prefix of that geodesic such that

dYj (g′jµ, gµ) ≥ 2b.

To avoid special cases, we also let g′0 = id and g′n = g.

Lemma 4.3. For all 0 ≤ i < j ≤ n, we have g′i ≺ g′j and if i < ` ≤ j, then

|dY`
(µ, gµ)− dY`

(g′iµ, g
′
jµ)| < 5b.

Proof. For any 1 ≤ i < n, if x is a generator so that g′ix is also a prefix of the
geodesic for g, then by maximality of the length of g′i, we have dYi

(g′ixµ, gµ) < 2b.
On the other hand,

dYi(g
′
iµ, g

′
ixµ) = d(g′i)−1Yi

(µ, xµ) ≤ b.

Thus,

(2) dYi
(g′iµ, gµ) ≤ dYi

(g′iµ, g
′
ixµ) + dYi

(g′ixµ, gµ) < b+ 2b = 3b.

Inequality (2) also clearly holds for i = n since g′n = g.
Now suppose 1 ≤ i < j ≤ n. Since Yi < Yj , we have dYi(gµ, ∂Yj) < B ≤ b and

dYj (µ, ∂Yi) < B ≤ b. Therefore

dYi
(g′iµ, ∂Yj) ≥ dYi

(g′iµ, gµ)− dYi
(gµ, ∂Yj) > 2b− b = b ≥ B,
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and by Proposition 2.5 (Behrstock Inequality), we have dYj
(g′iµ, ∂Yi) < B ≤ b.

Hence

(3) dYj
(µ, g′iµ) ≤ dYj

(µ, ∂Yi) + dYj
(∂Yi, g

′
iµ) < 2b,

and so

dYj (g′iµ, gµ) ≥ dYj (µ, gµ)− dYj (µ, g′iµ) ≥ β0 − 2b > β ≥ 5b.

If x is a generator so g′ix is a prefix of the geodesic for g, then

dYj
(g′ixµ, gµ) ≥ dYj

(g′iµ, gµ)− dYj
(g′ixµ, g

′
iµ) ≥ 5b− b ≥ 4b.

It follows that g′i ≺ g′j . Furthermore, by the maximality of the length of g′i,
dYi

(g′jµ, gµ) < 2b. From this and (2), we see that if 1 ≤ i ≤ j ≤ n, then

dYi
(g′jµ, gµ) ≤ 3b.

Now assuming 1 ≤ i < ` ≤ j ≤ n, this inequality and (3) implies

|dY`
(µ, gµ)− dY`

(g′iµ, g
′
jµ)| ≤ dY`

(µ, g′iµ) + dY`
(g′jµ, gµ) < 2b+ 3b = 5b.

This also clearly holds for i = 0. �

We continue to assume Y1, . . . , Yn are the subsurfaces in a BBF factor Y 6= {S}
with dYi(µ, gµ) ≥ β0 = β + 5b. For all 1 ≤ i ≤ j ≤ n, let Yij be the subsurface
filled by Yi, . . . , Yj . We then choose 0 = i0 < i1 < · · · < ik = n such that
Z ′j = Y(ij−1+1)(ij) is a proper subsurface of S, but Y(ij−1+1)(ij+1) = S.

Lemma 4.4. If Z ′1, . . . , Z
′
k are as above, then dS(µ, gµ) ≥ k.

Proof. Fix a geodesic γ in C(S) between α ∈ µ and α′ ∈ gµ so that α t Y1 and
α′ t Yn. For all 1 ≤ i ≤ n, one deduces from Proposition 2.6 (Subsurface Order)
that α, α′ t Yi, and from Proposition 2.2 (Bounded Diameter Projection), that
dYi(α, α

′) ≥ β0 − 2δ. By Proposition 2.4 (Bounded Geodesic Image), there is at
least one curve in γ that is disjoint from Yi, and we let αi be the largest, as ordered
by the appearance in γ from α to α′.

We claim that if i < j, then αi ≤ αj . To see this, suppose αj < αi. Then
by Proposition 2.4 (Bounded Geodesic Image), dYj

(αi, α
′) ≤ M while Proposi-

tion 2.6 (Subsurface Order), guarantees that dYj (α, ∂Yi) < B, and hence

dYj (αi, ∂Yi) ≥ dYj (α, α′)− dYj (α, ∂Yi)− dYj (αi, α
′)

> β0 − 2δ −M −B ≥ δ
But then ∂Yi and αi must intersect (otherwise their projections would have distance
at most δ by Proposition 2.2 (Bounded Diameter Projection)) a contradiction.

It follows that if i < j and αi = αj then for all i < ` < j we have αi = α` = αj .
Since the surfaces Yij−1+1, . . . , Yij+1 fill S this implies that for all j = 1, . . . , k − 1,
αij−1+1 6= αij+1 so there must be at least k− 1 distinct αi. Since αi 6= α, α′ for all
i, dS(µ, gµ) ≥ dS(α, α′) ≥ k. �

Proof of Proposition 4.1. Continue to assume that dZ(µ, xµ), dM(Z)(µ, xµ) ≤ b for
each generator x and suppose β > 5b + M + 3δ > 2B is sufficiently large for
Theorem 2.7 (Distance Formula) to hold and set β0 = β + 5b. Let κ > 0 be
the constant from that theorem applied to β. Let C ′,K ′ be the constants from
Lemma 4.2, and let C = C ′ and K = 2κK ′.

For any |g| > C = C ′, if |g| ≤ K ′dS(µ, gµ), then |g| ≤ KdS(µ, gµ). Since this
is one of the possible conclusions of the proposition, for the remainder of the proof



12 M. BESTVINA, K. BROMBERG, A. E. KENT, AND C. J. LEININGER

we only consider elements g ∈ G with |g| > K ′dS(µ, gµ) and |g| > C ′. For such an
element, let Y1, . . . , Yn be the subsurfaces in the factor Y provided by Lemma 4.2
with dYi(µ, gµ) ≥ β0 = β + 5b so that

(4) |g| ≤ K ′
n∑
i=1

dYi(µ, gµ).

Let id = g′0 ≺ g′1 ≺ . . . ≺ g′n = g be the prefixes of a geodesic for g so that
Lemma 4.3 holds. We also let 0 = i0 < i1 < i2 < . . . < ik = n and Z ′1, . . . , Z

′
k be

the subsurfaces constructed from Y1, . . . , Yn as above, so that Yij−1+1, . . . , Yij ⊂ Z ′j ,
for all 1 ≤ j ≤ k.

Since β > 5b, and dYi(µ, gµ) ≥ β0 = β+5b, we have dYi(µ, gµ)−5b ≥ 1
2dYi(µ, gµ),

for all i. Combining this with Lemma 4.3 we conclude

(5)

ij∑
i=ij−1+1

dYi
(g′ij−1

µ, g′ijµ) ≥
ij∑

i=ij−1+1

(dYi
(µ, gµ)− 5b) ≥ 1

2

ij∑
i=ij−1+1

dYi
(µ, gµ).

Set g0 = id = g′0, and for any 1 ≤ j ≤ k, define gj = (g′ij−1
)−1g′ij and Zj =

(g0 · · · gj−1)−1(Z ′j). By Lemma 4.4, (i) holds. Furthermore, by induction, g′ij =

g1 · · · gj , g = g1g2 · · · gk, and |g| = |g1|+ · · ·+ |gk|. Therefore, part (ii) follows.
Observe that for ij−1 + 1 ≤ i ≤ ij , we have (g0 · · · gj−1)−1(Yi) ⊂ Zj and

d(g0···gj−1)−1Yi
(µ, gjµ) = dYi

(g0 · · · gj−1µ, g0 · · · gjµ) = dYi
(g′ij−1

µ, g′ijµ) ≥ β.

Combining this, (5), and Theorem 2.7 (Distance Formula), we have

κdM(Zj)(µ, gjµ) ≥
∑
Y⊆Zj

{{dY (µ, gjµ)}}β

≥
ij∑

i=ij−1+1

d(g0···gj−1)−1Yi
(µ, gjµ)

≥
ij∑

i=ij−1+1

dYi
(g1 · · · gj−1µ, g1 · · · gjµ)

≥ 1
2

ij∑
i=ij−1+1

dYi
(µ, gµ).

Recall that K = 2κK ′. By summing this inequality over j, (4) implies

K

k∑
j=1

dM(Zj)(µ, gjµ) = 2κK ′
k∑
j=1

dM(Zj)(µ, gjµ) ≥ K ′
n∑
i=1

dYi(µ, gµ) ≥ |g|.

This proves (iii), and completes the proof of the proposition. �

5. Proof of the Main Theorem

We are now ready for the proof of the

Main Theorem. A subgroup G < Mod(S) is convex cocompact if and only if it is
finitely generated, undistorted, and purely pseudo-Anosov.
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Proof. If G is convex cocompact, then, by Proposition 1.4, G is finitely generated
and any orbit map G→ C(S) is a quasi-isometric embedding. Combining this with
Proposition 2.3 (Lipschitz projection), we see that the orbit map to M(S) is a
quasi-isometric embedding. By Proposition 2.1, G is undistorted.

Now suppose that G < Mod(S) is a finitely generated, undistorted, purely
pseudo-Anosov subgroup and let K,C be as in Proposition 4.1 (Linearly summing
projections). Without loss of generality, we may assume G is torsion free. Choose
c < 1

2K and let R > 1 be as in Proposition 3.1 (Linear projection reducibility).

If, for all g ∈ G − {id}, dS(µ,gµ)
|g| is uniformly bounded below, then G is convex

cocompact, and we are done. Therefore, we assume that this quotient can be made
arbitrarily small, and derive a contradiction. Specifically, we assume that there
exists g ∈ G with |g| ≥ max{R,C} such that

dS(µ, gµ)

|g|
<

1

2K2R
≤ 1

K
.

Observe that |g| > KdS(µ, gµ), so that the second conclusion of Proposition 4.1
(Linearly summing projections) holds. Let Z1, . . . , Zk and g1, . . . , gk be as in that
proposition and set

Js = {j | dM(Zj)(µ, gjµ) < c|gj |},
and

J` = {j | dM(Zj)(µ, gjµ) ≥ c|gj |}.
If for any j ∈ J`, |gj | ≥ R, then by Proposition 3.1 (Linear projection reducibility),
G contains a reducible element, a contradiction. Therefore, we may assume that
|gj | < R for all j ∈ J`. By Proposition 4.1 (Linearly summing projections), we have

|g| ≤ K

k∑
j=1

dM(Zj)(µ, gjµ)

= K

∑
j∈Js

dM(Zj)(µ, gjµ) +
∑
j∈J`

dM(Zj)(µ, gjµ)


< K

∑
j∈Js

c|gj |+
∑
j∈J`

KR


≤ K(c|g|+ kKR)

≤ K(c|g|+ dS(µ, gµ)KR)

Dividing both sides by |g|, we find

1 ≤ cK +
dS(µ, gµ)K2R

|g|
<

K

2K
+

K2R

2K2R
=

1

2
+

1

2
= 1.

This is a contradiction, which completes the proof. �
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