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Let M be a compact manifold with boundary. If M is connected, let XC(M) be the
SL2(C)–character variety of M. If not, take XC(M) to be the cartesian product of the
character varieties of its components.

Throughout, S is a closed connected oriented hyperbolic surface, T(S) its Teich-
müller space. By the Uniformization Theorem, T(S) is both the space of marked con-
formal structures on S and the space of marked hyperbolic structures on S; we blur the
distinction between these two descriptions, letting context indicate the desired one.

The variety XC(S) contains the space AH(S) of hyperbolic structures on S×R. By
the work of A. Marden [20] and D. Sullivan [33], the interior of AH(S) is the space
of quasifuchsian groups QF(S), and QF(S) lies in the smooth part of XC(S)—though
AH(S) sits more naturally in the PSL2(C)–character variety of S, and has many lifts
to the variety XC(S), we content ourselves with XC(S), as our arguments apply to any
lift considered. We refer the reader to [14] for a detailed treatment of the PSL2(C)–
character variety. The quasifuchsian groups are parameterized by the product of Teich-
müller spaces T(S)×T(S), by the Simultaneous Uniformization Theorem of L. Bers
[2], and the Bers slice BY is the set

BY = T(S)×{Y} ⊂ XC(S).

As we will see, a Bers slice is cut out of XC(S) by an analytic subvariety of dimension
− 3

2 χ(S). It is never cut out by an algebraic subvariety:

Theorem 1. Let V⊂ XC(S) be a complex algebraic subvariety of dimension − 3
2 χ(S).

Then the Bers slice BY is not contained in V.

The proof of the theorem says nothing more about the Zariski closure of BY , and,
as it is a theorem of W. Goldman [11] that Hom

(
π1(S),SL2(C)

)
, and hence XC(S), is

irreducible, it is natural to wonder:

Question. Is BY Zariski–dense in XC(S)?

If we drop the requirement that S be closed, and instead ask only that S be of finite
volume, we suspect that Theorem 1 still holds, where XC(S) now denotes the variety
of SL2(C)–characters of representations that are parabolic on peripheral subgroups.
At a key point, our argument appeals to properness of the holonomy map Q(Y )→
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XC(S) from the space of quadratic differentials to XC(S), see section 2, which remains
unknown when S is noncompact, and so this becomes an obstacle when attempting to
generalize Theorem 1.

Let M be a compact oriented 3–manifold with connected incompressible boundary
whose interior admits a complete hyperbolic metric. The Simultaneous Uniformization
Theorem admits a generalization due to L. Ahlfors, Bers, Marden, and Sullivan, see [3]:
the minimally parabolic geometrically finite hyperbolic structures on M◦ compatible
with the orientation on M are parameterized by the Teichmüller space of ∂M. There is
a map

GF(M)∼= T(∂M)→ T(∂M)×T(∂M)∼= QF(∂M)

induced by inclusion and given by

X 7→ (X ,σM(X)).

The map σM : T(∂M)→ T(∂M) is W. Thurston’s skinning map, which arises in his
proof of the Geometrization Theorem for Haken Manifolds, see [17] and [22].

Theorem 1 has the following corollary.

Theorem 2. Let M be a compact oriented 3–manifold with incompressible boundary
of negative Euler characteristic whose interior admits a complete hyperbolic metric
without accidental parabolics. Then its skinning map σM is not constant.

A hyperbolic structure on the interior of a compact oriented 3–manifold M has
accidental parabolics if there is an element of the fundamental group of a nontorus
component of ∂M that is parabolic in the corresponding Kleinian group.

When the boundary of M is disconnected, the skinning map is defined as follows.
Let S1∪·· ·∪Sn be the union of the components of ∂M that are not tori. Each inclusion
S j→M induces a map

GF(M)∼= T(S1∪·· ·∪Sn) = T(S1)×·· ·×T(Sn)−→ QF(S j)

given by

X 7→ (X j,σ j(X)).

The hypothesis that the interior of M admits a hyperbolic metric without accidental
parabolics is needed to guarantee that the range of this map lies in QF(S j). The skin-
ning map

σM : T(S1∪·· ·∪Sn)−→ T(S1)×·· ·×T(Sn)

of M is then defined to be

σM(X) = (σ1(X), . . . ,σn(X)).

Thurston’s Bounded Image Theorem gives global constraints on σM . Namely, if M
is acylindrical and satisfies the hypotheses of Theorem 2, the image of σM is bounded,
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see [17]. C. McMullen proved [22], under the same hypotheses, that there is a constant
c < 1 depending on M such that the Teichmüller operator norm satisfies ‖dσM‖ < c
over all of Teichmüller space. Aside from holomorphicity, McMullen’s theorem, and
the conclusion of Theorem 2, little is known concerning the local behavior of σM . For
instance, the following question remains unanswered.

Question. Are skinning maps always open?

Acknowledgments. The authors thank Dan Abramovich and Nathan Dunfield for help-
ful discussions on complex algebraic geometry.

1 The character variety
The construction of the character variety discussed here may be found in full detail in
[5], see also [31].

Let {x1, . . . ,xn} be a generating set for π1(M) and let

{w j}N
j=1 = {xi1xi2 . . . xik | 1≤ i1 < i2 < · · ·< ik ≤ n}.

For each j, we have the function

Iw j : Hom(π1(M),SL2(C))→ C

given by

Iw j(ρ) = trace(ρ(w j)).

We thus obtain a map

t : Hom(π1(M),SL2(C))→ CN

given by

t(ρ) =
(
Iw1(ρ), . . . , IwN (ρ)

)
,

and the image of t is a variety XC(M), called the character variety as it parameterizes
the characters of representations of π1(M) into SL2(C).

Note that the set XR(M) of real points of XC(M) contains the image of
Hom(π1(M),SL2(R)) under t. In fact, it is a theorem of H. Bass, J. Morgan, and
P. Shalen that any real character is the character of a representation into SL2(R) or
SU(2)—see Proposition III.1.1of [25]. The space QF(S) embeds into the smooth locus
of XC(S) and contains only characters of discrete faithful representations. Since the
Teichmüller space is properly embedded in XC(S), it follows that T(S) = QF(S)∩
XR(S) is a topological component of XR(S).

The variety XC(M) may be interpreted as the quotient

Hom(π1(M),SL2(C))//SL2(C)
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of geometric invariant theory, which means that XC(M) is an affine variety equipped
with a regular function

Hom(π1(M),SL2(C))→ XC(M)

that induces an isomorphism

C[XC(M)]→ C[Hom(π1(M),SL2(C))]SL2(C)

We warn the reader that defining the variety XC(M) via geometric invariant theory
only specifies XC(M) up to birational equivalence, and that we will always use the
representative constructed above.

2 Projective structures
We refer the reader to [12, 9, 34, 32] for more detailed discussions of complex projec-
tive structures on Riemann surfaces.

A marked complex projective structure on S is a marked conformal structure to-
gether with an atlas of conformal charts taking values in CP1 whose transition functions
are restrictions of Möbius transformations. Let P(S) denote the space of all marked
complex projective structures on S and let

π : P(S)→ T(S)

denote the map that forgets the projective structure.
The space π−1(Y ) of complex projective structures with underlying Riemann sur-

face Y may be parameterized by the space Q(Y ) of holomorphic quadratic differentials
ϕ on Y , which we think of as holomorphic cusp forms on the unit disk—a complex
projective structure P on Y has a developing map d : ∆→ CP1, and the Schwarzian
derivative Sd of d is the holomorphic quadratic differential associated to P.

There is a holomorphic embedding

hol : Q(Y )→ XC(S)

sending a projective structure to the character of its holonomy representation, see [19,
18]. As a quasifuchsian group in BY is the image of the holonomy representation of a
projective structure on Y , the image of hol contains BY .

We will need the following theorem of D. Gallo, M. Kapovich, and A. Marden,
Theorem 11.4.1 of [9].

Theorem 3 (Gallo–Kapovich–Marden). The map hol is proper.

Prior to the proof of this theorem, it was shown by H. Tanigawa that hol maps properly
into the subset of XC(S) consisting of the irreducible characters [35]. It is worth noting
that the map hol : P(S)→ XC(S) is not proper, see [13].

As mentioned in the introduction, it is not known if this theorem holds whenever S
has finite volume.
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3 Grafting
Let X be a point in T(S). We let ML2πZ(S) denote the set of multicurves on S with
weights in 2πN. Let λ be in this set, realized geodesically in X , and let λ1, . . . , λn be
the components of λ with weights w1, . . . , wn. We create a Riemann surface grλ (X)
by cutting X open along λ and inserting the union of flat annuli

n⋃
i=1

λn× [0,wn]

and say that we have grafted X along λ .
We need the following theorem of Tanigawa.

Theorem 4 (Tanigawa [34]). Let λ be an element of ML2πZ(S). The map

grλ : T(S)→ T(S)

is a diffeomorphism.

There is a projective version of the grafting procedure due to B. Maskit [21] that
begins with the data X in T(S) and λ in ML2πZ(S) and produces a projective structure
Grλ (X) on S, see [15, 34]. This procedure is natural in the sense that the following
diagram commutes.

T(S)

id

""

grλ ""EE
EE

EE
EE

Grλ // P(S)

π

��

hol // XC(S)

T(S)

(1)

More generally, both types of grafting may be performed along any measured geodesic
lamination, as shown by Thurston, though we warn the reader that in the general setting
the identity map in the diagram becomes the “λ–bending map,” see [23] and [7].

There are special projective structures—the ones with Fuchsian holonomy—called
Fuchsian centers. W. Goldman has characterized these in terms of grafting.

Theorem 5 (Goldman [10]). Every Fuchsian center is Grλ (X) for some λ in ML2πZ(S)
and X in T(S).

The picture in Figure 1, drawn by the first author, shows us some of the Fuchsian
centers in a particular Q(Y ).

To enumerate the Fuchsian centers in Q(Y ), one proceeds as follows.
Tanigawa’s theorem provides a map

Φ : ML2πZ(S)→ Q(Y )
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Figure 1: Part of the space of quadratic differentials on a square punctured torus Y ,
with hol−1(QF(S)) in gray, and Fuchsian centers in black.

defined by

Φ(λ ) = Grλ (gr−1
λ

(Y )),

and Goldman’s theorem with Tanigawa’s and the diagram (1) implies that

hol(Q(Y ))∩T(S) = hol◦Φ(ML2πZ(S)). (2)

To see this, note that hol(Q(Y ))∩T(S) ⊂ XC(S) is precisely the set of holonomy rep-
resentations of Fuchsian centers in Q(Y ). Goldman’s theorem says that any Fuchsian
center is Grλ (X) for some λ and X , and if Grλ (X) is a projective structure on Y , then
X = gr−1

λ
(Y ), by (1), and (2) follows.

Proposition 6. The set hol(Q(Y ))∩T(S) contains infinitely many points.

Proof. By (2), it suffices to show that the image of hol◦Φ is infinite.
Let {n} be a strictly increasing sequence in 2πN. Let γ be an essential simple

closed curve and consider the sequence of projective structures Φ(nγ). Let γn be the
geodesic representative of γ in Xn = gr−1

nγ (Y ).
The hyperbolic length `Xn(γn) of γn in Xn is tending to infinity. To see this, note that

if `Xn(γn) were bounded, the conformal moduli of the annuli

γn× [0,2πn]⊂ Y = grnγ(Xn)

would be unbounded (see chapter one of [1]), implying that the extremal length of γ in
Y is zero, which is absurd.

So the Xn are leaving the Teichmüller space. Since hol ◦Grnγ(Xn) = Xn, the proof
is complete.

In fact, by Thurston’s theorem that Gr : ML(S)×T(S)→ P(S) is a homeomor-
phism [15], the function Φ is injective, see [6], though we will not need this here.

6



4 Algebraic versus analytic geometry
Let D be a domain in CPn. A set A⊂D is a locally analytic set if each point a in A

has a neighborhood U such that A∩U is the common set of zeros of a finite collection
of holomorphic functions on U. A locally analytic set in D is an analytic set in D if it
is closed there.

The following theorem is well known.

Theorem 7. The set of smooth points of an irreducible complex affine or projective
algebraic variety is connected in the classical topology.

Proof. By passing to projective completions, it suffices to prove the theorem in the
projective case.

Suppose to the contrary that V is an irreducible projective variety whose set of
smooth points Vs is disconnected and write Vs = UtW with U and W nonempty open
sets.

The sets U and W are locally analytic sets. Since the singular locus of V is an
analytic set of dimension less than that of V (see Chapter II.1.4 of [29], for example) it
follows from a theorem of R. Remmert and K. Stein [27] (see also Chapter III of [8])
that the closures U and W of U and W in the classical topology are analytic sets.

A theorem of W.-L. Chow states that analytic sets in projective space are in fact
algebraic sets [4], and so V = U∪W is a nontrivial union of proper algebraic subsets,
contradicting the irreducibility of V.

The use of Chow’s theorem in the proof may be replaced with an application of the
much stronger GAGA Principle of J.-P. Serre [28].

5 Slicing
Proof of Theorem 1. Suppose to the contrary that V⊂XC(S) is a subvariety of dimen-
sion − 3

2 χ(Y ) containing BY , and let Vs denote the smooth part of V.
The complex dimension of Q(Y ) is that of V, and since hol(Q(Y )) contains BY ,

holomorphicity implies that hol(Q(Y )) ⊂ V. In fact, this demonstrates that hol(Q(Y ))
must lie in an irreducible component of V, and so we assume that V is irreducible.

Since hol is proper and holomorphic, the intersection hol(Q(Y ))∩Vs is a prop-
erly embedded codimension–zero submanifold of Vs. Theorem 7 tells us that Vs is
connected, and so

hol(Q(Y ))∩Vs = Vs.

Properness implies that hol(Q(Y )) is closed and since Vs is dense in V (see page 124
of [30]), we have

hol(Q(Y )) = V.

By proposition 6,

V∩T(S) = hol(Q(Y ))∩T(S)⊂ XR(S)
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is a countable set of infinitely many points. Since T(S) is a topological component of
XR(S), we conclude that V∩XR(S) has infinitely many topological components. But
V∩XR(S) is a real algebraic set, which is permitted only a finite number of compo-
nents, thanks to a theorem of H. Whitney [36].

Note that the same argument shows that for any open set U in Q(Y ), the set hol(U)
is not contained in any subvariety of dimension − 3

2 χ(Y ).

6 Skinning
Proof of Theorem 2. Let Y0

C(M) denote an irreducible component of XC(M) contain-
ing a complete hyperbolic structure on the interior of M. Let X0

C(M) ⊂ Y0
C(M) be the

subvariety obtained by demanding all Z⊕Z–subgroups to be parabolic.
Let ∂0M be the union of the nontorus components of ∂M. Then the complex di-

mension of X0
C(M) is − 3

2 χ(∂0M).
First suppose that ∂0M is connected. The inclusion ∂0M → M induces a regular

function

ι : X0
C(M)→ XC(∂0M).

Since regular functions are closed with respect to the Zariski topology, the image
ι(X0

C(M)) is an algebraic subvariety of XC(∂0M). If σM were a function identically
equal to Y , then the Bers slice BY would be contained in ι(X0

C(M)), contradicting
Theorem 1.

Suppose now that ∂0M is disconnected with components S0, . . . ,Sn. For each i≥ 1,
let Mi be a compact orientable irreducible atoroidal acylindrical 3–manifold with in-
compressible boundary homeomorphic to Si, and attach the Mi to the Si along their
boundaries to obtain a manifold N. This manifold is orientable, irreducible, atoroidal,
and any properly embedded essential cylinder is disjoint from the tori in ∂N. By
Thurston’s Geometrization Theorem for Haken manifolds, see [24, 26, 16], its inte-
rior admits a hyperbolic structure without accidental parabolics.

The skinning map of N factors

T(∂0N)

��

σN // T(∂0N)

T(∂0M)
σM

// T(∂0M)

OO

where the vertical map on the left is the map GF(N)→ GF(M) induced by inclusion;
the one on the right simply projection. We have shown that the skinning map of N is
not constant, and it follows that σM is nonconstant.
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