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Abstract

We answer a question of J. Anderson’s by producing infinitely many

commensurability classes of fibered hyperbolic 3–manifolds whose funda-

mental groups contain subgroups that are locally free and not free. These

manifolds are obtained by performing 0–surgery on a collection of knots

with the same properties.
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In the case of these knots then, and of the several obstructions,

which, may it please your reverences, such knots cast in our way in

getting through life—every hasty man can whip out his penknife and

cut through them.—’Tis wrong. Believe me, Sirs, the most virtuous

way, and which both reason and conscience dictate—is to take our

teeth or our fingers to them.

Laurence Sterne, From The Life and Opinions of Tristram Shandy,

Gentleman

1 Introduction

A group is called locally free if all of its finitely generated subgroups are free.
Of course, free groups have this property, but there are locally free groups that
are not free. The additive group of rational numbers is such a group. To obtain a
nonabelian example, take a properly ascending union of nonabelian free groups,
all of rank less than some fixed bound. The union is locally free, infinitely
generated and Hopfian, see [10], 110–111. We will be interested in the following
example. Let G be the group defined by the presentation P = (a, b, t | tat−1 =
[b, a]). G admits a surjection to Z in which the images of b and t are zero and
one, respectively. The kernel of this homomorphism is locally free and not free,
see [6] and [11], VIII.E.9, for details.

Let P denote the presentation 2–complex associated to P and consider the
embedding of P into S3 portrayed in Figure 1. Let X be a regular neighborhood
of P . The boundary of X is a surface of genus two and, as we shall see below,
by carefully choosing another manifold with a genus two boundary component
and gluing it to X one can obtain hyperbolic manifolds of finite volume in which
X is π1–injective, see also [1].
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Figure 1: The 2-complex P

Thurston has asked if finite volume hyperbolic 3–manifolds have finite covers
that fiber over the circle [17]. So, if the property of having a locally free nonfree
subgroup is invariant under taking finite index subgroups, there would be bun-
dles with such subgroups. Now, it is a theorem of Serre that torsion free groups
and their finite index subgroups share the same cohomological dimension [12],
see also [4], 190-191, and it is a theorem of Stallings [14] and Swan [15] that the
only groups of cohomological dimension one are the free ones. So, if a group is
locally free and not free, then its finite index subgroups share these properties.
With this in mind, J. Anderson [3] has posed the following

Question. Can the fundamental group of a hyperbolic 3–manifold that fibers
over the circle contain a subgroup that is locally free and not free?

By the above remarks, a negative answer would provide hyperbolic 3–manifolds
that are not virtually fibered. Our purpose here is to prove the following theo-
rem, which answers this question in the affirmative.

Theorem 1. There are infinitely many commensurability classes of closed hy-
perbolic 3–manifolds that fiber over the circle whose fundamental groups contain
subgroups that are locally free and not free.

These manifolds are obtained by performing 0–surgery on the “handcuff”
knots pictured in Figure 2, for which we have the

Theorem 2. The knots pictured in Figure 2 are fibered, hyperbolic, represent
infinitely many commensurability classes, and their groups contain subgroups
that are locally free and not free.

The first theorem is obtained by establishing the second and demonstrating
that the desired properties survive surgery.
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Figure 2: The knot Km,n

2 Notation

If G is a group and g, h ∈ G, we denote the normal closure of g in G by ngp(g),
the word g−1h−1gh by [g, h]. We let 〈x1, . . . , xn | r1, . . . , rm〉 denote the group
defined by the presentation (x1, . . . , xn | r1, . . . , rm).

We shall suppress any mention of basepoints when considering the funda-
mental group of a space as we will only be concerned with properties that are
invariant under conjugation.

If M is an n–manifold and F is a properly embedded submanifold in M ,
we write M \ F = M − int nhd(F ). If F is a bicollared (n − 1)–manifold,
nhd(F ) ∼= [−1, 1] × F and we call the components of {−1} × F and {1} × F
the traces of F in M \F . For two transverse submanifolds F and F ′, we often
write F \ F ′ for F \ (F ∩ F ′).

Let M be a 3–manifold with a single torus boundary component T . A slope

is an isotopy class of an essential embedded circle in T . If α is a slope, we write
M(α) to denote the manifold M ∪ Vα where Vα is a solid torus glued to M
via a homeomorphism T → ∂Vα taking an element of α to the boundary of a
meridian disk in Vα. If α and β are slopes, we let ∆(α, β) denote the minimal
geometric intersection number of elements of α and β.

A 3–manifold is said to be atoroidal if every one of its embedded incompress-
ible tori is boundary parallel. A properly embedded annulus in a 3–manifold
M is essential if it is incompressible and is not isotopic rel ∂ to an annulus in
∂M .

Given a topological space X , let |X | denote the number of path components
of X .
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Figure 3: The complement of int X

3 The Construction

Let X be as in the introduction. Note that since X ⊂ S3 and ∂X is connected,
X is irreducible.

F = ∂X is incompressible in X as follows. F cannot compress completely
for X would then be a handlebody—since X is irreducible—and π1(X) ∼= G
contains a nonfree subgroup. So, if F were compressible, X would contain an
incompressible torus—since F is a surface of genus two. In particular, G ∼=
π1(X) would contain a subgroup isomorphic to Z ⊕ Z. Now, in [11], VIII.E.9,
Maskit constructs a purely loxodromic discrete faithful representation of G into
PSL(2, C). This implies that G contains no subgroup isomorphic to Z⊕Z. So F
is incompressible. Note that int X need not be homeomorphic to the quotient
of H3 by the image of Maskit’s representation.

Up to an isotopy of S3, S3 − int X is the handlebody H of Figure 3. Fix m
and n odd (and positive), and let K = Km,n be the simple closed curve in H
shown in Figure 4, Y = H \ K. We fix throughout a homeomorphism between
the handlebody of Figure 4 and that of Figure 3 taking the curve K to the knot
shown in Figure 2.

We claim that F is incompressible in Y . To see this, note that if there were
a compressing disk D, H \D would be a disjoint union of one or two solid tori.
Supposing this to be the case, the core of each solid torus represents a primitive
element in π1(H). Since D ⊂ Y , K is contained in one of these solid tori and
so [K] must lie in a nontrivial free factor of π1(H). So, π1(H)/ngp([K]) is
either a nontrivial free product or infinite cyclic, neither of which occurs since
π1(H)/ngp([K]) is the Klein bottle group 〈x, y | x2y2〉. So F is incompressible
in Y .

Note also that Y is irreducible, for if S is a sphere in Y , it must bound a ball
in H , and since [K] 6= 1 in π1(H), K lies outside of this ball, and so S bounds
a ball in Y .

Let M = Mm,n = X ∪F Y = S3 \K. Since F is incompressible in X and Y ,
π1(M) ∼= π1(X)∗π1(F )π1(Y ) and so G ∼= π1(X) embeds in π1(M). In particular,
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Figure 4: The knot inside the handlebody

Figure 5: Square knot and fiber

π1(M) contains a subgroup that is locally free and not free.
�

4 Proof that K is fibered

We reconstruct K using the techniques of [13] in order to see the fibration.
We begin by considering the square knot L1 with fiber of Euler characteristic

−3 as shown in Figure 5.
We next form the (2, m + n) cable of L1 to obtain a link L2, Figure 6. L2

is again fibered, and we shall need to identify a fiber. The cable is fibered
in a solid torus as pictured in Figure 7. The Euler characteristic of this fiber
is −(m + n). Since the boundary of L1’s fiber is the longitude given by the
blackboard framing, we may assume that L2 appears as in Figure 6 and that its
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Figure 6: Cabled square knot and patch of fiber

fiber—consisting of two copies of L1’s fiber and one from the cable—is in the
position indicated in the highlighted region.

Plumbing on the Hopf band as shown in Figure 8 yields a new fiber and the
knot K. The fiber has Euler characteristic 2(−3)−(m+n)−1 = −(6+m+n)−1
and so its genus is 4 + m+n

2 . So, the genera of the fibers go to infinity with m
and n, and the collection of knots is infinite.

�

5 Proof that int M admits a hyperbolic structure

By Thurston’s uniformization theorem for Haken manifolds [17, 9], to show that
K is hyperbolic, we need only demonstrate that M is irreducible, atoroidal, and
not Seifert fibered. M is a knot exterior and so irreducible.

If M admitted a Seifert fibering, then F (as in Section 3) would be isotopic
to a horizontal surface. If this were the case, M \F would be an I–bundle over
some surface. In particular, π1(X) would be a surface group. But every locally
free subgroup of a surface group is free. So M is not a Seifert fibered space.

The proof that M is atoroidal proceeds as follows. Let T ′ be an incompress-
ible torus in M . We may take T ′ ∩ F ⊂ T ′ to be a (possibly empty) collection
of simple closed curves. If any of these is inessential, then there is an innermost
such, say γ. The disk γ bounds, D say, is contained in X or Y and since F is
incompressible in both, γ must bound a disk D′ in F . Since M is irreducible,
D ∪ D′ bounds a ball B. We use B to isotope T ′ to a torus that intersects
F in fewer simple closed curves. Continuing in this manner we obtain a torus
T ′′ such that T ′′ ∩ F ⊂ T ′′ is a (possibly empty) collection of essential curves,
which must all be parallel. So, if T ′′ ∩ F is nonempty, T ′′ ∩ Y and T ′′ ∩ X
consist entirely of annuli. If any annulus in T ′′ ∩ X is boundary parallel, we
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Figure 7: Fibering the cable in a solid torus

Figure 8: Plumbing

may isotope T ′′ to reduce |T ′′ ∩ F |. So we may assume that every annulus in
T ′′ ∩ X is essential in X . We shall need the following

Lemma. The three annuli pictured in Figure 9 are the only essential annuli in
X (up to ambient isotopy).

We postpone the proof of the lemma and continue the proof of Theorem 2.
As in Section 3, let H = S3 − int X . In F = ∂H , each component of ∂Ai is

isotopic to one of the three curves in Figure 10. By the lemma, each component
of T ′′ ∩ X is one of the Ai, and as each of the Ai has an αj as a boundary
component, some αk must be a boundary component of some component C
of T ′′ ∩ Y . Since α1, α2 and β are pairwise non–homologous in H , the other
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A1 A2 A3

Figure 9: The three annuli

∂A2 ∂A3

α1

∂A1

α2 α1 β α2

β

Figure 10: The boundary components of the three annuli

boundary component of C is parallel to αk. So there is an annulus C ′ in ∂H
with ∂C ′ = ∂C. Now, any torus in a handlebody either bounds a solid torus
or is interior to a ball. Since αk is primitive in π1(H), C ∪ C ′ ⊂ H cannot be
interior to a ball. So C ∪ C ′ bounds a solid torus E ⊂ H . Note also that [αk]
being primitive in π1(H) implies that [αk] is primitive in π1(E)—otherwise [αk]
would be a proper power of the core of E. If K were contained in E, then [K]
would lie in 〈[αk]〉, a proper free factor of π1(H), contrary to the choice of K.
So, K is not contained in E and since [αk] is primitive in π1(E), C is isotopic
rel ∂ into X . So we may isotope T ′′ to a torus T ′′′ with |T ′′′ ∩ F | < |T ′′ ∩ F |.
Again we may arrange—by another isotopy—that every annulus in T ′′′ ∩ X is
essential in X . We continue this procedure until we have a torus T such that
every component of T ∩X is essential in X and no component of T∩F is isotopic
to α1 or α2. But the nature of the Ai demands that if this occurs, then we have
T ∩ F = ∅. Since X is atoroidal, T ⊂ Y .

Let D̂1 and D̂2 be the two meridional disks in H pictured in Figure 11,
Di = D̂i ∩ Y for i ∈ {1, 2}. Let Z = Y \ (D1 ∪ D2). By an innermost disk
argument employing the irreducibility of Y , we may assume that T ∩ Z is a
collection of incompressible annuli. Let A be such an annulus. Each component
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Figure 11: Knot, handlebody, and meridional disks

Figure 12: The handlebody Z

of ∂A is contained in one of the traces of the Di. It is easy to see that a pair of
simple closed curves contained in the traces of the Di are homologous in Z if and
only if for some j ∈ {1, 2, 3, 4}, they are both isotopic to a boundary component
of aj , where the aj are the annuli pictured in Figure 12. If ∂A is contained in
a single trace of the Di, then ∂A is the boundary of an annulus A′ contained in
that trace. As in the argument of the previous paragraph concerning C ∪ C ′,
A∪A′ bounds a solid torus in Z that we may use to isotope A to A′ relative to
its boundary. This yields an isotopy of T that reduces |T ∩ (D1 ∪ D2)|. So we
may assume that either T ∩(D1∪D2) = ∅, in which case T ⊂ Z, or that for each
component A of T ∩ Z, the two components of ∂A lie in different traces of the
Di. The first case is impossible since T is incompressible and Z is a handlebody.
So, since the cores of the ai are primitive in π1(Z), A is parallel to aj and we
conclude that T is boundary parallel.

So, M is atoroidal. Note that the above includes a proof that Y is atoroidal.
We will need this fact in Section 6.

To obtain infinitely many commensurability classes, we simply observe that
all of the Mm,n can be obtained by performing surgery on the link L pictured
in Figure 13 and so

Vol(Mm,n) ≤ v3 || [S3 \ L, ∂(S3 \ L)] ||
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Figure 13: The link L

γa

γ[b,a]

Figure 14: The curves γa and γ[b,a]

where || [ · , ∂ · ] || denotes the relative Gromov norm, and v3 is the volume
of a regular ideal 3–simplex [16]. Theorem 0.1 of [2] states that any such col-
lection of hyperbolic 3–manifolds contains representatives from infinitely many
commensurability classes. This completes the proof of Theorem 2 modulo the
lemma.

As the proof of the lemma is somewhat involved, we draw an outline before
proceeding.

Note that W = X\A1 is homeomorphic to P×[−1, 1] where P is a punctured
torus. We choose generators a and b for π1(W ) so that the curves γa ⊂ P ×{1}
and γ[b,a] = ∂P × {0} pictured in Figure 14 represent a and [b, a] respectively.
Note that the traces of A1 are regular neighborhoods of γa and γ[b,a], see Figures
14 and 9. Note also that ∂W \ (γa∪γ[b,a]) is the disjoint union of a pair of pants
P+ = (P × {1}) \ γa and a punctured torus P− = P × {−1}, see Figure 14.

We consider an arbitrary essential annulus A ⊂ X . The first step of the
proof is concerned with constructing an isotopy (rel ∂) that pushes A off of A1.
An innermost disk argument allows us to assume that A ∩ A1 is a collection
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of arcs and essential closed curves. An outermost disk argument eliminates all
arcs of intersection that are boundary parallel in A. The fact that the cores of
the traces of A1 in ∂W are γa and γ[b,a] and the complement of these curves in
∂W is of a special sort allows us to eliminate essential arcs and essential closed
curves.

Once A has been isotoped clear of A1, we consider it as an annulus in W and
show that its boundary components lie in opposite ends of the product structure
on W . This implies that A is isotopic to a vertical annulus that misses γa and
the only such annuli are pictured in Figure 9.

Proof of the lemma. First of all note that the Ai are indeed essential as all
three are nonseparating. In the following we will assume that A and A1 are
transverse and that the intersection of A with nhd(A1) ∼= [−1, 1]× A1 is of the
form [−1, 1]× (A ∩ A1).

We begin by showing that any essential annulus A can be taken to miss A1

entirely. If A ∩ A1 is empty, we are done. If not, then an innermost disk argu-
ment shows that A∩A1 ⊂ A can be taken to be a collection of arcs and essential
simple closed curves. Suppose there is a boundary parallel arc component and
let D be an outermost disk in A \ A1. Let τ denote the arc of ∂D interior to
A. If τ is boundary parallel in A1, it is part of the boundary of a disk D′ ⊂ A1

and ∂(D∪D′) lies in F and so bounds a disk D′′ in F . So, D∪D′ ∪D′′ bounds
a ball that we may use to isotope D across A1. If τ is an essential arc in A1,
D would allow a boundary compression of A1, leaving a disk B. Now, B is
boundary parallel and so A1 must be separating. But A1 is nonseparating. So
all arc components may be taken to run from one component of ∂A to the other.

Suppose that A∩A1 contains such an arc. Consider the traces {−1}×
A1 and {1} × A1 in W = X \ A1, which are regular neighborhoods of γa and
γ[b,a] respectively, say. A \ A1 is a collection of disks in the handlebody W
that we will consider as 2–dimensional 1–handles h = [−1, 1] × [−1, 1], where
∂−h = {−1} × [−1, 1] and ∂+h = {1} × [−1, 1] lie in the traces of A1. Let
δ−h = [−1, 1]× {−1} and δ+h = [−1, 1]× {1}.

If such a 1–handle h has ∂−h and ∂+h lying in different traces, then h is a
properly embedded disk in W that intersects γ[b,a] in a single point, which is
impossible since γ[b,a] is separating in ∂W . So each 1–handle h in A\A1 has both
∂−h and ∂+h lying in a single trace of A1. Since A∩nhd(A1) = [−1, 1]×(A∩A1),
some 1–handle h[b,a] in this collection must intersect γ[b,a] and some other 1–
handle ha must intersect γa.

Suppose that δ−h[b,a], say, lies in the pair of pants P+.
If δ−h[b,a] separates the two traces of γa in P+, then δ−ha and δ+ha are

both isotopic into γa. This implies that ∂ha either bounds a disk D in ∂W or
is isotopic to γa. The latter case is impossible since a is primitive in π1(W ). In
the former, we may use the ball bounded by ha ∪ D to isotope A to decrease
|A ∩ A1| by two.

If δ−h[b,a] does not separate the two traces of γa in the pair of pants, then it
is isotopic into γ[b,a]. Therefore ∂h[b,a] is isotopic into the punctured torus P−.
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Now, P− is π1–injective in W and so ∂h[b,a] bounds a disk D ⊂ P−. Just as
above, h[b,a]∪D bounds a ball that we may use to isotope A in order to decrease
|A ∩ A1| by two.

If δ−h[b,a] and δ+h[b,a] both lie in P−, then ∂h[b,a] is isotopic into P−, and
so bounds a disk in ∂W as before and we may isotope A to decrease |A ∩ A1|.

Continuing in this fashion, we may assume that there are no arcs in A∩A1.

Suppose there is an essential closed curve in A∩A1 ⊂ A. If there is
more than one such curve, we may choose an innermost annulus A′ in A \ A1.
This annulus cobounds a solid torus E in W with some annulus A′′ in ∂W—
since A′ ∪A′′ is not interior to a ball in W . The core of A′′ is freely homotopic
to γa or γ[b,a] and since neither of these represents a proper power in π1(W ),
the core of A′′—hence the core of A′—is primitive in π1(E). This allows us to
isotope A′ across E to A′′ and reduce |A∩A1|. Continuing this process, we may
assume that A ∩ A1 is empty or a single curve.

Suppose that we are in the latter case. If a component of ∂A lies in the pair
of pants P+, then it is isotopic in ∂W to γa or γ[b,a]. This yields an isotopy
in ∂X of this boundary component across a component of ∂A1. This increases
|A ∩ A1| to two and the above argument allows us to isotope A off of A1. So
both boundary components may be assumed to lie in the punctured torus. If
one of these is isotopic in ∂W to γ[b,a], then we may again increase |A ∩ A1|
to two. If neither of the two curves is isotopic to γ[b,a], then they are parallel
in P+, hence parallel in ∂X − ∂A1. Note that this is true of any two disjoint
non–boundary parallel simple closed curves in a punctured torus—simply cut
along one of the curves to obtain a pair of pants. Since any torus in X is either
interior to a ball or bounds a solid torus, and [A ∩ A1] ∈ π1(X) is conjugate to
a 6= 1, A cobounds a solid torus E ⊂ X with some annulus A′ ⊂ ∂X − ∂A1.
Since |A ∩ A1| = 1, one boundary component of A1 lies in A′. This contradicts
the fact that A′ ⊂ ∂X − ∂A1.

So we may assume that A ∩ A1 = ∅. In particular, ∂A ⊂ P+ ∪ P−.

Note that any annulus in ∂W whose boundary misses the traces of A1 and
is essential in X is isotopic to one of the traces of A1 and is hence isotopic to
A1 in X . So we may assume that our annulus is non–boundary parallel in W .

We now claim that the two components of ∂A lie in opposite ends of W =
P × [−1, 1].

Suppose that ∂A lies in the pair of pants P+. Then both components are
parallel in P+ and so A cobounds a solid torus E with some annulus A′ ⊂ P+.
Every simple closed curve in P+ is isotopic to γa or γ[b,a] in ∂W and since neither
of these is a proper power in π1(W ), the core of A is primitive in π1(E) and so
A is boundary parallel in X .

Suppose that ∂A lies in the punctured torus P−. Note that any essential
simple closed curve in P− is either primitive in π1(P−) or boundary parallel.
If neither component of ∂A is parallel to γ[b,a], then the two components are
parallel to each other. If one component is parallel to γ[b,a], then they both
are—since [b, a] is not primitive. In either case, A cobounds a solid torus E
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with an annulus A′ ⊂ P−. The core of A′ does not represent a proper power
in π1(P−) ∼= π1(W ) and so represents a primitive element of π1(E). So A is
parallel to A′ ⊂ ∂X .

We conclude that the two components of ∂A lie in opposite ends of P×[−1, 1].
Such an annulus is isotopic to one that is vertical. Since one component of ∂A
lies in the pair of pants P+ = (P × {1}) \ γa, A must be one of γ[b,a] × [−1, 1],
γ+

a × [−1, 1], or γ−

a × [−1, 1], where γ+
a and γ−

a denote the traces of γa in P+.
These are the annuli A1, A2, and A3, respectively.

This completes the proof of the lemma and so the proof of Theorem 2.
�

6 Closed examples

Proof of Theorem 1. Fix m and n odd and let K = Km,n be the knot in Figure
2. As before, let M = Mm,n denote the exterior of K in S3. We will show
that performing 0–surgery on M yields a manifold that is irreducible, atoroidal,
and not Seifert fibered. An application of Thurston’s uniformization theorem
demonstrates that these manifolds admit a hyperbolic structure. Of course,
these manifolds are again fibered and the genera of the fibers tell us that the
collection {Mm,n(0)} is infinite.

There is an annulus A running from the surface F to ∂M . To see this,
consider the curve K in the handlebody of Figure 4. If we consider the bound-
ary of this handlebody as the standard Heegaard surface for S3, then K is a
pretzel knot and there is an isotopy (inside the handlebody) carrying K into
the boundary. The curve obtained by this isotopy is pictured in Figure 15.
Inspection reveals that the coannular slope α is m + n + 2 relative to the black-
board framing of Figure 2, see Figure 15. Inspection again reveals that the
longitude of K has slope γ = −(m + n) relative to this framing, Figure 16. So
∆ = ∆(α, γ) = 2(m + n + 1) > 1 and so F remains incompressible in M(γ) by
Theorem 2.4.3 of [5]. In particular, G injects into π1(M(γ)).

Now consider Y (γ). By the above, F = ∂Y (γ) is incompressible in Y (γ).
Note that F compresses in Y (α). In fact, it is not difficult to see that Y (α) is
a boundary sum of a solid torus and a twisted I–bundle over the Klein bottle.
In particular, Y (α) admits no hyperbolic structure. Since Y is atoroidal and
∆ = 2(m + n + 1) ≥ 6, Theorem 1.3 of [7] implies that int Y (γ) admits a
hyperbolic structure. In particular, Y (γ) is irreducible and atoroidal. Note that
M(γ) is hence irreducible. Also note that since F is incompressible in M(γ), the
argument of Section 5 demonstrating that M does not admit a Seifert fibering
applies to show that M(γ) does not either.

Suppose that M(γ) contains an incompressible torus T . Now, just as in the
proof of Theorem 2, we may assume that T ∩ X and T ∩ Y (γ) are collections
of annuli. We may also assume, as in the proof of Theorem 2, that the annuli
in T ∩X are essential. Again, every boundary component of such an annulus is
one of the curves α1, α2, or β in F pictured in Figure 10. Let P̂ be a component
of T ∩ Y (γ). Since the boundary component of A that lies in F necessarily
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Figure 15: A parallel pushoff of the coannular slope α

Figure 16: A parallel pushoff of the 0–slope β

intersects α1, α2, and β, P̂ ∩ A is necessarily nonempty. Furthermore, we may
assume that P̂ intersects the core of the filling torus Vγ , for if not, P̂ may be
isotoped into Y and the arguments in the proof of Theorem 2 show that we
may isotope P̂ into X . We may isotope P̂ so that P̂ ∩ Vγ ⊂ Vγ is a collection

of meridional disks. Let P = P̂ ∩ Y and let ∂+Y denote the torus component
of ∂Y . The components of ∂P lying in ∂+Y have slope γ. An isotopy of P
now ensures that each boundary component of P lying in ∂+Y intersects the
boundary of A in exactly ∆ points. Yet another isotopy of P ensures that each
arc component of P ∩ A is essential in both P and A.

The intersection of P and A gives rise to two labeled graphs GA and GP in
the usual way, see [8], where we consider the component of ∂A lying in the torus
boundary component of Y as the only vertex in GA. Since ∆ > 2, the valence
of every vertex in GP is at least three, and so for some vertex v in GP and
some component S of ∂P ∩ F , there must be a pair of edges in GP each having
an endpoint in v and the other in S. So, there is a disk D1 in GP incident
to v with the property that (int D1) ∩ A = ∅, see Figure 17. Without loss of
generality, we assume that the label of v is 1. The two arcs of ∂D1 interior to P
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Figure 17: The graphs GA and GP

are also edges in GA, where they are part of the boundary of a disk D2, Figure
17. Note that Q = D1 ∪ D2 is an annulus. The boundary component of Q
lying in ∂+Y , call it ∂+Q, is pictured (after a small isotopy) in Figure 18, and
apparently intersects α in a single point. So A∩Q is a single arc. Let ∂−A and
∂−Q be the boundary components of these annuli lying in F . These two curves
intersect in a single point. Since F is incompressible in Y , the commutator of
these curves is nontrivial in π1(Y ). But, [α, ∂+Q] is trivial in π1(Y ) and we
may use the annuli A and Q to freely homotope [∂−A, ∂−Q] to [α, ∂+Q], which
is impossible. We must conclude that P does not exist and so neither does T .
So M(γ) is atoroidal.

Again,

Vol(Mm,n(γ)) ≤ v3 || [S3 \ L, ∂(S3 \ L)] ||

and so we obtain infinitely many commensurability classes as in Theorem 2.
This completes the proof of Theorem 1.
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