A short proof that composite twisted
unknots are singly twisted unknots
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Abstract

We present a short proof of a theorem of Hayashi and Motegi and
(independently) Goodman-Strauss that only singly twisted unknots are
composite.
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Let K’ be an unknotted circle in S3, and let D be a disk in 52 such that K’'UOD
is a link L and |[K’ N D| > 1 and minimal in the isotopy class of K’ in S® —dD.
Performing %7Dehn surgery on 0D yields a knot K. We will prove the following

Theorem (Hayashi and Motegi [4], Goodman-Strauss [1]). If K is com-
posite, then n = +1.

Proof. Let X1, denote the exterior of L. By X («) we shall mean the manifold
obtained from Xj by performing a—Dehn surgery on the component of 90X,
corresponding to 0D.

We assume the reader is familiar with the machinery surveyed in [2]. X1 (c0) is
a solid torus and so contains a nonseparating disk B. Assuming that K is com-
posite, X1, (1) contains an essential (non-boundary parallel) separating annulus

A whose boundary components are meridians of K. These two surfaces give
rise to two labeled graphs Gp and G4 in the usual way [2], and after suitable
isotopies we may assume the number of vertices in each minimal and each arc
component of AN B essential in both A and B. Let a be the number of vertices
of G 4, b the number of vertices of G. Note that the number of boundary edges
in each graph is at most two and that each boundary component of A is incident
to a boundary edge—since OB is a longitude of K'.

We claim that neither G4 nor G g represents all types.
Suppose that G 4 represents all types. Let D be a set of (interior) faces of G 4

representing all types. Since the edges of elements of D lie in B , Theorem 4.3
of [2] produces a summand M of S* with H; M finite and nonzero. So G 4 does
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not represent all types.

Suppose that G represents all types, and let D be a set of (interior) faces of
G p representing all types. The edges of the elements of D lie in E, and A lies in
a disk in S3—just cap off a boundary component with a meridional disk. Again,
Theorem 4.3 of [2]—using A capped off rather than A—produces a summand of
53 with torsion in its first homology group. So G does not represent all types.

Note that since a Scharlemann cycle represents all types, neither graph contains
a Scharlemann cycle.

Suppose that |n| > 2. Since neither graph represents all types, G4 contains a
(b—1)—web and G contains a great a—web, A—for G, the web is provided by
Corollary 3.4 of [3]; For G 4, the web is obtained by interchanging the roles of A
and B in the proof of Theorem 3.2 of [3]. Since Ais separating, a is even, hence
greater than or equal to two. So there is a label  such that for any vertex v in
A there is an edge in A labeled x at v. If @ > 4 or |n| > 3, there are two such
labels, x and y, say.

Suppose a > 4. If every label occurs at the endpoint (in A) of an edge not
belonging to A, then there is a third label z possessing the property stated for
x and y. If some label w does not occur in this fashion, then for every vertex
v of A there are two edges in A labeled w at v. In either case, the fact that
there are at most two boundary edges implies that there is a label u such that
for every vertex v in A, there is an interior edge of A labeled u at v. This yields
a great u—cycle, hence a Scharlemann cycle, in Gg. So a = 2.

Suppose that |n| > 3. In this case, one of the labels, x say, has the property
that every vertex v in A is incident to two edges in A labeled x at v. Again,
this gives rise to a Scharlemann cycle in Gg. So a =2 and |n| = 2.

The two vertices v and w of G 4 are of opposite sign since Ais separating, and so
the (b—1)—web in G 4 has a single vertex, v say. Since |n| > 2, there is a loop at v.

If this loop is inessential in 121\7 then it must bound a disk containing w. So, every
edge incident to w must be incident to v. Since there are 2b edges incident to
each vertex, there are 2b edges joining w and v. But this contradicts the fact
that G 4 contains a (b — 1)-web. Note: It is tempting to use the fact that there
are boundary edges in G4 to obtain a contradiction here, but note that we have
not bothered to exclude the possibility of a single boundary edge running from
one component of JA to the other.

So the loop at v separates A into two annuli, A; and Az. One of these, Az say,
contains w. Since A; contains a component of 0A, A; contains a single boundary
edge. If the other boundary edge of G 4 is incident to w, then G 4 must appear



Figure 1: A great s—cycle is forced.

as in Figure 1. But this forces a great s—cycle in G4, which must contain a
Scharlemann cycle, a contradiction. So the other boundary edge is incident to
v. But now cutting A along the union of v and the boundary edges leaves a disk
that contains w and all of its neighboring edges. So there are 2b edges joining v

and w, again contradicting the fact that G 4 contains a (b—1)—web. Son = +1.
O
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