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Abstract

We present a short proof of a theorem of Hayashi and Motegi and
(independently) Goodman-Strauss that only singly twisted unknots are
composite.
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Let K ′ be an unknotted circle in S3, and let D be a disk in S3 such that K ′∪∂D

is a link L and |K ′ ∩D| > 1 and minimal in the isotopy class of K ′ in S3 − ∂D.
Performing 1

n
–Dehn surgery on ∂D yields a knot K. We will prove the following

Theorem (Hayashi and Motegi [4], Goodman-Strauss [1]). If K is com-

posite, then n = ±1.

Proof. Let XL denote the exterior of L. By XL(α) we shall mean the manifold
obtained from XL by performing α–Dehn surgery on the component of ∂XL

corresponding to ∂D.

We assume the reader is familiar with the machinery surveyed in [2]. XL(∞) is

a solid torus and so contains a nonseparating disk B̂. Assuming that K is com-
posite, XL( 1

n
) contains an essential (non–boundary parallel) separating annulus

Â whose boundary components are meridians of K. These two surfaces give
rise to two labeled graphs GB and GA in the usual way [2], and after suitable
isotopies we may assume the number of vertices in each minimal and each arc
component of A∩B essential in both A and B. Let a be the number of vertices
of GA, b the number of vertices of GB . Note that the number of boundary edges
in each graph is at most two and that each boundary component of Â is incident
to a boundary edge—since ∂B̂ is a longitude of K ′.

We claim that neither GA nor GB represents all types.

Suppose that GA represents all types. Let D be a set of (interior) faces of GA

representing all types. Since the edges of elements of D lie in B̂, Theorem 4.3
of [2] produces a summand M of S3 with H1M finite and nonzero. So GA does
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not represent all types.

Suppose that GB represents all types, and let D be a set of (interior) faces of

GB representing all types. The edges of the elements of D lie in Â, and Â lies in
a disk in S3—just cap off a boundary component with a meridional disk. Again,
Theorem 4.3 of [2]—using Â capped off rather than Â—produces a summand of
S3 with torsion in its first homology group. So GB does not represent all types.

Note that since a Scharlemann cycle represents all types, neither graph contains
a Scharlemann cycle.

Suppose that |n| ≥ 2. Since neither graph represents all types, GA contains a
(b− 1)–web and GB contains a great a–web, Λ—for GB , the web is provided by
Corollary 3.4 of [3]; For GA, the web is obtained by interchanging the roles of A

and B in the proof of Theorem 3.2 of [3]. Since Â is separating, a is even, hence
greater than or equal to two. So there is a label x such that for any vertex v in
Λ there is an edge in Λ labeled x at v. If a ≥ 4 or |n| ≥ 3, there are two such
labels, x and y, say.

Suppose a ≥ 4. If every label occurs at the endpoint (in Λ) of an edge not
belonging to Λ, then there is a third label z possessing the property stated for
x and y. If some label w does not occur in this fashion, then for every vertex
v of Λ there are two edges in Λ labeled w at v. In either case, the fact that
there are at most two boundary edges implies that there is a label u such that
for every vertex v in Λ, there is an interior edge of Λ labeled u at v. This yields
a great u–cycle, hence a Scharlemann cycle, in GB . So a = 2.

Suppose that |n| ≥ 3. In this case, one of the labels, x say, has the property
that every vertex v in Λ is incident to two edges in Λ labeled x at v. Again,
this gives rise to a Scharlemann cycle in GB . So a = 2 and |n| = 2.

The two vertices v and w of GA are of opposite sign since Â is separating, and so
the (b−1)–web in GA has a single vertex, v say. Since |n| ≥ 2, there is a loop at v.

If this loop is inessential in Â, then it must bound a disk containing w. So, every
edge incident to w must be incident to v. Since there are 2b edges incident to
each vertex, there are 2b edges joining w and v. But this contradicts the fact
that GA contains a (b− 1)–web. Note: It is tempting to use the fact that there
are boundary edges in GA to obtain a contradiction here, but note that we have
not bothered to exclude the possibility of a single boundary edge running from
one component of ∂Â to the other.

So the loop at v separates Â into two annuli, A1 and A2. One of these, A2 say,
contains w. Since A1 contains a component of ∂Â, A1 contains a single boundary
edge. If the other boundary edge of GA is incident to w, then GA must appear
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Figure 1: A great s–cycle is forced.

as in Figure 1. But this forces a great s–cycle in GA, which must contain a
Scharlemann cycle, a contradiction. So the other boundary edge is incident to
v. But now cutting Â along the union of v and the boundary edges leaves a disk
that contains w and all of its neighboring edges. So there are 2b edges joining v

and w, again contradicting the fact that GA contains a (b−1)–web. So n = ±1.
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