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The possible ranks higher than the actual.
—common paraphrase of M. Heidegger.

1 Introduction
Let F be a free group. If H and K are subgroups of F , we let H ∨K = 〈H,K〉 denote
the join of H and K.

We study the relationship between the rank of H ∩K and that of H ∨K for a pair
of finitely generated subgroups H and K of F . In particular, we have the following
particular case of the Hanna Neumann Conjecture, which has also been obtained by
L. Louder [6] using his machinery for folding graphs of spaces [7, 8, 9]. For detailed
discussions of the Hanna Neumann Conjecture, see [11, 12, 13, 16, 4, 3].

Theorem 1 (Kent, Louder). Let H and K be nontrivial finitely generated subgroups of
a free group of ranks h and k, respectively. If

rank(H ∨K)−1≥ h+ k−1
2

then

rank(H ∩K)−1≤ (h−1)(k−1).

We also give a new proof of R. Burns’ theorem [1]:

Theorem (Burns). Let H and K be nontrivial finitely generated subgroups of a free
group with ranks h and k, respectively. Then

rank(H ∩K)−1≤ 2(h−1)(k−1)−min
{
(h−1),(k−1)

}
.

(In fact, we obtain W. Neumann’s form of this inequality [13], see Section 4.)
Our main theorem is the following strong form of Burns’ inequality:
∗Work supported by a Donald D. Harrington Dissertation Fellowship and a National Science Foundation

Postdoctoral Fellowship.
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Theorem 2. Let H and K be nontrivial finitely generated subgroups of F of ranks h
and k ≥ h, respectively, that intersect nontrivially. Then

rank(H ∩K)−1 ≤ 2(h−1)(k−1)− (h−1)
(
rank(H ∨K)−1

)
.

This theorem, with an additional hypothesis, is claimed by W. Imrich and T. Müller
in [5]. Unfortunately, their proof contains an error—see the end of the Section 2 for a
detailed discussion. Note that the hypothesis on the intersection cannot be dispensed
with entirely, for when h = k≥ 3, the inequality will fail if rank(H∨K) = 2k—but this
is the only situation in which it fails.

We were brought to Theorem 2 by the following question of M. Culler and P. Shalen.

Question. If H and K are two rank–2 subgroups of a free group and H ∩K has rank
two, must their join have rank two as well?

An affirmative answer follows immediately from Theorem 2, and we record this spe-
cial case as a theorem—this has also been derived using Louder’s folding machine by
Louder and D. B. McReynolds [6], independently of the work here.1

Theorem 3 (Kent, Louder–McReynolds). Let H and K be rank–2 subgroups of a free
group F. Then

rank(H ∩K)≤ 4− rank(H ∨K).

In [10], Louder and McReynolds also give a new proof of W. Dicks’ theorem [3] that
W. Neumann’s strong form of the Hanna Neumann Conjecture is equivalent to Dicks’
Amalgamated Graph Conjecture.

Theorem 3 allows Culler and Shalen to prove the following, see [2]. Recall that a
group is k–free if all of its k–generator subgroups are free.

Theorem (Culler–Shalen). Let G be a 4–free Kleinian group. Then there is a point p
in H3 and a cyclic subgroup C of G such that for any element g of G−C, the distance
between p and gp is at least log7.

This has the following consequence, see [2].

Theorem (Culler–Shalen). Let M be a closed orientable hyperbolic 3–manifold such
that π1(M) is 4–free. Then the volume of M is at least 3.44.

Theorem 3 is sharp in that, given nonnegative integers m and n with n ≥ 2 and
m≤ 4−n, there are H and K of rank two with rank(H ∩K) = m and rank(H ∨K) = n.

To see this, note that, by Burns’ theorem, the rank of H ∩K is at most two.
If H ∨K has rank four, then, since finitely generated free groups are Hopfian, we

have H ∨K = H ∗K, and hence H ∩K = 1.
If the join has rank two, H∩K may have rank zero, one, or two. For completeness,

we list examples. If H = K, then H∩K = H = H∨K. If H = 〈a,bab〉 and K = 〈b,a2〉,
1This theorem was proven by both parties before Theorems 1 and 2 were proven.
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the join is 〈a,b〉 and the intersection is 〈a2〉. If H = 〈a,bab〉 and K = 〈b,ab−1aba−1〉,
then H ∩K = 1 and the join is 〈a,b〉.

Finally, there are rank two H and K whose join has rank three and whose intersec-
tion is trivial. For example, consider the free group on

{
a,b,c} and let H = 〈c,a−1ba〉

and K = 〈a,b−1cb〉. Of course, there are rank two H and K whose intersection is in-
finite cyclic and whose join has rank three, like 〈a,b〉 and 〈b,c〉 in a free group on
{a,b,c}.

Perspective
The heart of the work here lies in the study of a certain pushout and the restraints it
places on the rank of the intersection H ∩K. The pictures that emerge here and in
the work of Louder and McReynolds [10] share a common spirit, and both are akin to
the work of W. Dicks [3]. The arguments here are chiefly combinatorial; those of [10]
more purely topological. Whilst having the same theoretical kernel, the two discussions
each have their own merits, and the authors have decided to preserve them in separate
papers.

Acknowledgments. The author thanks Warren Dicks, Cameron Gordon, Wilfried Im-
rich, Lars Louder, Joe Masters, Ben McReynolds, Walter Neumann, and Alan Reid for
lending careful ears. He thanks Ben Klaff for bringing Culler and Shalen’s question
to his attention. The author also extends his thanks to the referee for many thoughtful
comments that have improved the exposition tremendously.

When the author first established Theorem 3, he used the pushout of ΓH and ΓK
along the component of GH∩K carrying the group H ∩K, rather than the pushout T

along the core ΓH∩K—the former is somewhat disagreeable, and may possess special
vertices. In correspondence with Louder, it was Louder’s use of the core ΓH∩K that
prompted the author’s adoption of the graph T. The author thus extends special thanks
to Louder.

2 Graphs, pullbacks, and pushouts
We may assume that F is free on the set {a,b}, and we do so. We identify F with the
fundamental group of a wedge X of two circles based at the wedge point, and we orient
the two edges of X.

We have distilled here the notions of [16] and [4] into a form that is convenient for
our purpose.

Given a subgroup H of F , there is a covering space X̃H corresponding to H. There
is a unique choice of basepoint ∗ in X̃H so that π1(X̃H ,∗) is identical to H. We let ΓH

denote the smallest subgraph of X̃H containing ∗ that carries H. The graph ΓH comes
naturally equipped with an oriented labeling, meaning that each edge is oriented and
labeled with an element of {a,b}. The orientation of a given edge e yields an initial
vertex ι(e) and a terminal vertex τ(e), which may or may not be distinct.

The graphs so far discussed are labeled properly, meaning that if edges e and f
have the same labeling and either ι(e) = ι( f ) or τ(e) = τ( f ), then the two edges agree.
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The star of a vertex v, written star(v), is the union of the edges incident to v
equipped with the induced oriented labeling. The valence of a vertex v is the num-
ber of edges incident to v counted with multiplicities. All of the above graphs are at
most 4–valent, meaning that their vertices have valence at most four. A vertex is a
branch vertex if its valence is at least 3. We say that a vertex is extremal if its valence
is less than or equal to one. We say that a graph is k–regular if all of its branch vertices
have valence k.

A map of graphs between two oriented graphs is a map that takes vertices to
vertices, edges to edges, and preserves orientations. A map of graphs is an immersion
if it is injective at the level of edges on all stars. A labeled map of graphs between two
labeled oriented graphs is a map of graphs that preserves labels. A labeled immersion
is a labeled map of graphs that is also an immersion.

Two k–valent vertices of labeled oriented graphs are of the same type if there is a
labeled immersion from the star of one to the star of the other.

J. Stallings’ category of oriented graphs is the category whose objects are oriented
graphs (without labelings), and whose morphisms are maps of graphs—S. Gersten’s
category has the same objects, but more maps [4]. The collection of all oriented graphs
with labels in {a,b} together with all labeled maps of graphs form a category that we
call the category of labeled oriented graphs—there is an obvious forgetful functor
into Stallings’ category.

We will also consider the category of properly labeled oriented graphs, whose
objects are properly labeled oriented graphs and whose morphisms are labeled immer-
sions.

Given a graph Γ, let V (Γ) be its set of vertices.
We define a graph GH∩K as follows. Its set of vertices is the product V (ΓH)×V (ΓK)

and there is an edge labeled x joining (a,b) to (c,d) oriented from (a,b) to (c,d) if and
only if there is an edge in ΓH labeled x joining a to c oriented from a to c and an edge in
ΓK labeled x joining b to d oriented from b to d. The graph GH∩K is the fiber product
of the maps ΓH → X and ΓK → X—in other words, the pullback of the diagram

ΓH

��
ΓK // X

in the category of oriented graphs—it is also the pullback in the category of properly
labeled oriented graphs, and in this category, it is in fact the direct product ΓH ×ΓK .

The graph ΓH∩K is a subgraph of GH∩K , and carries the fundamental group [16].
Note that there are projections ΠH : GH∩K → ΓH and ΠK : GH∩K → ΓK and that a

path γ from (∗,∗) to (u,v) in GH∩K projects to paths ΠH(γ) and ΠK(γ) with the same
labeling from ∗ to u and ∗ to v, respectively. Conversely, given two pointed paths γH
and γK with identical oriented labelings from ∗ to u and ∗ to v respectively, there is an
identically labeled path γ in GH∩K from (∗,∗) to (u,v) that projects to γH and γK .

Given a graph Γ with an oriented (nonproper) labeling, a fold is the following
operation: if e1 and e2 are two edges of Γ with the same label and ι(e1) = ι(e2) or
τ(e1) = τ(e2), identify e1 and e2 to obtain a new graph.
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The properly labeled graph ΓH∨K is obtained from ΓH and ΓK by forming the wedge
product of ΓH and ΓK at their basepoints and folding until no more folding is possible.

In what follows, we identify ΓH and ΓK with their images in ΓH tΓK whenever
convenient.

The graph ΓH∨K is the pushout in the category of properly labeled oriented graphs
of the diagram

∗ //

��

ΓH

ΓK

where the single point ∗ maps to the basepoints in ΓH and ΓK . This category is some-
what odd in that ΓH∨K is also the pushout of

ΓH∩K //

��

ΓH

ΓK

We will make use of a labeled oriented graph that is not properly labeled. This is
the topological pushout T of the diagram

ΓH∩K //

��

ΓH

ΓK

The letters x and y will denote points in ΓH and ΓK , respectively. The graph T is the
quotient of ΓH tΓK by the equivalence relation R generated by the relations x ∼ y if
x ∈ΠH

(
ΠK
−1(y)

)
or y ∈ΠK

(
ΠH
−1(x)

)
.

So, points a,b∈ΓHtΓK map to the same point in T if and only if there is a sequence
{(xi,yi)}n

i=1 in ΓH∩K such that a is a coordinate of (x1,y1), b is a coordinate of (xn,yn),
and for each i either xi = xi+1 or yi = yi+1. We call such a sequence a sequence for
a and b. Note that a minimal sequence for x and y will not have xi = x j = xk or
yi = y j = yk for any pairwise distinct i, j, and k.

We warn the reader that the equivalence relation on ΓHtΓK whose quotient is ΓH∨K
is typically coarser than the one just described. For instance, in the example in Figure
1, ΓH∨K is X, but T is not.

The graph T is also the pushout in the category of labeled oriented graphs, but not
necessarily the pushout in the category of properly labeled oriented graphs—again, see
Figure 1.
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Figure 1: Above, the graph ΓK is at the bottom, ΓH at the
right. Their basepoints are encircled. White arrows corre-
spond to a, black arrows b. Writing xg = gxg−1, we have
K = 〈a2ba,(b2a2)ab2〉, H = 〈ab−2a,(ba−2)ab,aa−1b−1〉,
H ∩K = 〈ab2a−2b−4aba〉, and H∨K = 〈a,b〉. The graph
T is to the right. Notice that χ(T) =−3 <−1 = χ(ΓH∨K).

Though not equal to ΓH∨K in general, T does fit into the commutative diagram

ΓH∩K
ΠH //

ΠK
��

ΓH

��

��3
33

33
33

33
33

33
33

ΓK //

((RRRRRRRRRRRRRRRR T

""EE
EE

EE
EE

E

ΓH∨K

where the map T→ ΓH∨K factors into a series of folds. As a fold is surjective at the
level of fundamental groups, see [16], we have χ(T)≤ χ(ΓH∨K).

Confusing T and ΓH∨K can be hazardous, and we call T the topological pushout to
prevent such confusion. This is the source of the error in [5], which we now discuss.

The proof of the lemma on page 195 of [5] is incorrect. The error lies in the last
complete sentence of that page:

In order that both x and y be mapped onto z there must be a sequence

x = x0,x1,x2, . . . ,xn = y
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of vertices of Γ0 such that for every i xi and xi+1 have the same image in
either Γ1 or Γ2 (and all are mapped to z in ∆).

Here Γ0 is our graph ΓH∩K , the graphs Γ1 and Γ2 are our graphs ΓH and ΓK , and the
graph ∆ is our ΓH∨K . Here is a translation of this into our terminology:

Let z be a vertex in ΓH∨K and let a and b be vertices of ΓH tΓK that map to
z. In order that both a and b be mapped onto z, there must be a sequence
for a and b.

This statement is false. The example in Figure 1 is a counterexample: the graph ΓH∨K
is the wedge of two circles with a vertex z, say, and so all vertices in ΓH tΓK map to z
under the quotient map ΓH tΓK → ΓH∨K ; on the other hand, the basepoints for ΓH and
ΓK are the only vertices in their R–equivalence class—as is easily verified by sight.

The statement is correct once ΓH∨K has been replaced by T, but, unfortunately, the
arguments in [5] rely on the fact that ΓH∨K is 3–regular, a property that T does not
generally possess.

The lemma in [5] would be quite useful, and though its proof is incorrect, we do
not know if the lemma actually fails.2

3 Estimating the Euler characteristic of T

Let H and K be subgroups of F of ranks h and k. Suppose that H ∩K 6= 1.
For simplicity, we reembed H ∨K into F so that all branch vertices in ΓH∨K are 3–

valent and of the same type: we replace H∨K with its image under the endomorphism
ϕ of F defined by ϕ(a) = a2, and ϕ(b) = [a,b] = aba−1b−1. Note that this implies that
all branch vertices of ΓH and ΓK are 3–valent and of the same type.

If a restriction of a covering map of graphs fails to be injective on an edge, then
the edge must descend to a cycle of length one. So our normalization above guarantees
that the restriction of the quotient ΓH tΓK→ ΓH∨K to any edge is an embedding (as the
target has no unit cycles), and hence the restriction of the quotient ΓH tΓK → T to any
edge is an embedding.

We claim that it suffices to consider the case where neither ΓH nor ΓK possess
extremal vertices. It is easy to see that by conjugating H∨K in F , one may assume that
ΓH has no extremal vertices, and we assume that this is the case. Let p and q be the
basepoints of ΓH and ΓK , respectively. Suppose that q is extremal. Let γ be the shortest
path in ΓK starting at q and ending at a branch vertex. Suppose that γ is labeled with
a word w in F . Since H ∩K is not trivial, the graph ΓH∩K contains a nontrivial loop
based at (p,q), and so there is a path δ in GH∩K starting at (p,q) labeled w. Now δ

projects to a path in ΓH starting at p that is labeled w. This means that if we conjugate
H ∨K by v = w−1, the graphs ΓHv and ΓKv have no extremal vertices, and of course,
rank

(
Hv∩Kv

)
= rank

(
(H ∩K)v

)
= rank(H ∩K), and rank

(
(H ∨K)v

)
= rank(H ∨K).

2History of the error: In the Fall of 2005, the author produced a faulty proof of Theorem 3. Following
this, he discovered the paper [5], from which Theorem 3 would follow. Unable to prove the existence of the
sequence x = x0,x1,x2, . . . ,xn = y in the quoted passage, the author contacted Imrich. Amidst the resulting
correspondence, the author found the example in Figure 1.
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We assume these normalizations throughout. Note that since ΓH and ΓK have no
extremal vertices, neither does ΓH∩K .

3.1 Stars
If Γ is a graph, let b(Γ) denote the number of branch vertices in Γ. If Γ is 3–regular,
then −χ(Γ) = rank

(
π1(Γ)

)
−1 = b(Γ)/2.

Consider the topological pushout T of ΓH and ΓK along ΓH∩K , and the equivalence
relation R on ΓH tΓK that defines it. Again, −χ(T)≥ rank(H ∨K)−1.

This section is devoted to the proof of the following theorem—compare Lemma 5.3
of [9]. We estimate the Euler characteristic of T by studying the set of R–equivalence
classes of stars. The equivalence class of the star of a vertex b in ΓH tΓK is denoted by
[star(b)]R. If X is a set, #X will denote its cardinality.

Theorem 4.

−χ(T)≤ 1
2

#
{
[star(b)]R

∣∣ b ∈ ΓH tΓK and valence(b) = 3
}
. (1)

In the following, we will denote the type of a 2–valent vertex in ΓH , ΓK , or ΓH∩K
by a Roman capital.

We say that a vertex z is special if it is a branch vertex of T that is not the image of
a branch vertex in ΓH or ΓK—we will show that there are no such vertices.

Lemma 5. Let z be a special vertex of T. Then there are vertices a and b in ΓH tΓK
that have different types and get carried to z.

Proof. Suppose to the contrary that any a and b that get carried to z have the same type.
Let a and b be such a pair and let {(xi,yi)} be a sequence for a and b. Since z is

special, all of the xi and yi are 2–valent. By our assumption, all of the xi and yi have the
same type. But this means that the (xi,yi) are all 2–valent and of the same type. This
means, in turn, that the stars of all the xi and yi get identified in T.

This contradicts the fact that z was a branch vertex.

Corollary 6. There are no special vertices in T.

Proof. Let z be a special vertex.
By Lemma 5, there are vertices a and b of types A and B 6= A that map to z.
Let {vi}n

i=1 be a sequence for a and b. The vertex v1 has type A, and vn has type B.
Somewhere in between, the types must switch, and by the definition of sequence, we
find a v j with a coordinate of type A, and a coordinate of type X 6= A. This implies that
v j is extremal. But ΓH∩K has no extremal vertices.

Lemma 7. Let z be a branch vertex in T. Let Gz be the subgraph of T obtained by
taking the union of the images of the stars of all branch vertices in ΓH tΓK mapping to
z. If valenceGz(z) is the valence of z in Gz, then

valenceGz(z)≤ 2+#
{
[star(b)]R

∣∣ b ∈ ΓH tΓK , valence(b) = 3, and b 7→ z
}
.
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Proof. Let

n = #
{
[star(b)]R

∣∣ b ∈ ΓH tΓK , valence(b) = 3, and b 7→ z
}

and let b1, . . . ,bn be a set of branch vertices whose stars form a set of representatives
for the set

{
[star(b)]R

∣∣ b ∈ ΓH tΓK , valence(b) = 3, and b 7→ z
}
.

For 1≤ j ≤ n, let G j be the union of the images in T of the stars of b1, . . . ,b j. So,
Gn = Gz.

Since the restriction of ΓH tΓK → T to any edge is an embedding, the valence of z
in G1 is 2+1 = 3.

Now let m ≥ 1 and assume that the valence of z in Gm−1 is less than or equal to
2+m−1.

After rechoosing our representatives and reordering the vertices b1, . . . ,bm−1, as
well as the bm, . . . ,bn, we may assume that there is a sequence {vi}`i=1 for bm−1 and
bm where bm−1 and bm are the only branch vertices appearing as coordinates in the
sequence and each appears only once. To see this, take {vi} to be a sequence shortest
among all sequences between vertices a and b such that star(a) is identified with the
star of one of b1, . . . ,bm−1 and star(b) is identified with the star of one of bm, . . . ,bn.

Now, all of the vi are 2–valent and of the same type. It is now easy to see that z is at
most 4–valent in the image of star(bm−1)∪ star(bm) in Gm—again we are using the fact
that each edge of ΓH tΓK embeds in T. This means that z is at most (2+m)–valent in
Gm, and we are done by induction.

Proof of Theorem 4. Suppose that there is a 2–valent vertex a in ΓH tΓK carried to a
branch vertex in T whose star is not carried into the star of any branch vertex.

Let {vi}n
i=1 be a sequence for a and a branch vertex x that is minimal among all

sequences for a and branch vertices—such a sequence exists by Corollary 6. So x is
the only branch vertex that appears as a coordinate in the sequence and it only appears
once, in vn.

Let A be the type of a. If there were a 2–valent vertex of type B 6= A appearing
as a coordinate in the sequence, then there would be a term in the sequence with a
coordinate of type A and a 2–valent coordinate of type X 6= A, making this term in the
sequence extremal, which is impossible. So every 2–valent coordinate in the sequence
is of type A. It follows that the stars of all of the 2–valent coordinates in the sequence
are identified in T.

But vn is a 2–valent vertex of ΓH∩K , as only one of its coordinates is a branch vertex.
So the star of the 2–valent coordinate of vn is carried into the image of the star of x. We
conclude that the star of a is carried into the image of the star of x, a contradiction.

It follows from this and Corollary 6 that for each branch vertex z in T, we have

valenceT(z) = valenceGz(z).

So, by Lemma 7, we have

valenceT(z)≤ 2+#
{
[star(b)]R

∣∣ b ∈ ΓH tΓK , valence(b) = 3, and b 7→ z
}
.
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We conclude that

−χ(T) =
1
2 ∑

z vertex
(valenceT(z)−2)

≤ 1
2

#
{
[star(b)]R

∣∣ b ∈ ΓH tΓK and valence(b) = 3
}
.

3.2 Matrices
Let X = {x1, . . . ,x2h−2} and Y = {y1, . . . ,y2k−2} be the sets of branch vertices of ΓH
and ΓK , respectively. Define a function f : X×Y →{0,1} by declaring f (xi,y j) = 1 if
(xi,y j) is a branch vertex of ΓH∩K , zero if not.

Consider the (2h−2)× (2k−2)–matrix M =
(

f (xi,y j)
)
. Note that ∑i, j f (xi,y j) =

b(ΓH∩K). In particular, H. Neumann’s inequality [11, 12]

rank(H ∩K)−1≤ 2(h−1)(k−1)

becomes the simple statement that the entry–sum of M is no more than (2h−2)(2k−2).

Lemma 8. After permuting its rows and columns, we may assume that M is in the
block form

M1
. . .

M`

0p×q

 (2)

where every row and every column of every Mi has a nonzero entry and

`+ p+q = #
{
[star(b)]R

∣∣ b ∈ ΓH tΓK and valence(b) = 3
}
.

When p or q is zero, the notation means that M possesses q zero–columns at the right
or p zero–rows at the bottom, respectively.

Proof. Let

{e1, . . . ,es}=
{
[star(b)]R

∣∣ b ∈ ΓH tΓK and valence(b) = 3
}
,

let {ri, j}mi
j=1 be the set of rows corresponding to branch vertices in ΓH of class ei, and

let {ci,t}ni
t=1 be the set of columns corresponding to branch vertices in ΓK of class ei.

By permuting the rows we may assume that the r1, j are the first m1 rows, the r2, j
the next m2 rows, and so on. Now, by permuting columns, we may assume that the
c1,k are the first n1 columns, the r2,k the next n2 columns, and so forth. Moving all of
the zero–rows to the bottom, and all of the zero–columns to the right, we obtain our
normal form (2).

To see that the stated equality holds, first notice that the normal form and the def-
inition of the equivalence relation R together imply that: there are precisely p branch
vertices in ΓH whose stars are not R–equivalent to that of any other branch vertex in
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ΓH tΓK , corresponding to the the p zero–rows at the bottom; and there are precisely q
branch vertices in ΓK whose stars are not R–equivalent to that of any other branch ver-
tex in ΓH tΓK , corresponding to the the q zero–columns at the right. After reordering
the R–equivalence classes, we may thus list them as

e1, . . . ,eL; eL+1, . . . ,eL+p; eL+p+1, . . . ,eL+p+q

where eL+1, . . . ,eL+p are the classes of the branches corresponding to the last p rows,
and eL+p+1, . . . ,eL+p+q are the classes corresponding to the last q columns.

By construction of the normal form M, each block represents an R–equivalence
class of stars: if the entries (a,b) and (c,d) of M lie in a block Mi, then the vertices xa,
yb, xc, and yd all represent the same R–equivalence class. Furthermore, distinct blocks
represent distinct classes. So the number L is at least `.

Finally, as an equivalence class either corresponds to a block (the equivalence class
has representatives in ΓH and ΓK), a zero–row (the equivalence class has a unique rep-
resentative in ΓH ), or a zero–column (the equivalence class has a unique representative
in ΓK), we conclude that L = `.

We will make repeated use of the following lemma.

Lemma 9. The entry–sum of M is less than or equal to the entry–sum of the (2h−2)×
(2k−2)–matrix

1m×n

1 . . . 1
0p×q


where m = 2h−2− p− (`−1), n = 2k−2−q− (`−1), and 1m×n is the m×n–matrix
all of whose entries are 1.

Proof. We perform a sequence of operations to M that do not decrease the entry–sum
and which result in the matrix displayed in the lemma.

First replace each block in M with a block of the same dimensions and whose
entries are all 1. Of course, this does not decrease the entry–sum.

Now, reorder the blocks in order of nonincreasing entry–sum. If there are only
1×1–blocks, we are done. If all but one of the blocks are 1×1, we are again done. So
we may assume that at least two blocks have more than one entry.

Let Mt be the last block with more than one entry. Say that Mt−1 and Mt are a×b
and c×d matrices, respectively. We now replace Mt−1 with an (a+c−1)×(b+d−1)–
block all of whose entries are 1, and replace Mt with a 1× 1–block whose entry is 1.
That this does not decrease the entry–sum is best understood using a diagram, which
we have provided in Figure 2.

Repeating this procedure eventually terminates in the matrix displayed in the lemma,
and the proof is complete.
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b

a

d

c
1

1

1

b+d−1 1

a
+

c−
1

Figure 2: At left are the blocks Mt−1 and Mt . The shaded regions represent nonzero
entries. By the ordering of the blocks, cd ≤ ab, and so we may assume without loss of
generality that c≤ a. At right we have cut and rearranged these regions to demonstrate
that the entry–sum is not decreased by our move.

4 Burns’ theorem
We record here a proof of Burns’ theorem that requires only the matrix M and a simple
count—we recommend B. Servatius’ [15] and P. Nickolas’ [14] proof of this theorem,
which involves a clever consideration of a minimal counterexample, as do we recom-
mend the discussion of said argument in [13]. To our knowledge, the argument here is
new.

Lemma 10. If p = q = 0, then ` > 1.

Proof. If p = q = 0 and ` = 1, then T has a single branch vertex of valence 3, which is
impossible, as it has no extremal vertices.

Theorem 11 (Burns). Let H and K be nontrivial finitely generated subgroups of a free
group with ranks h and k, respectively. Then

rank(H ∩K)−1≤ 2(h−1)(k−1)−min
{
(h−1),(k−1)

}
.

Proof. Let h and k be the ranks of H and K with h≤ k.
If one of p or q is nonzero, then M has a zero–row or a zero–column, by (2). Since

M is a (2h− 2)× (2k− 2)–matrix with entries in {0,1} and entry–sum b(ΓH∩K) =
−2χ(ΓH∩K), we are done.

So, by Lemma 10, we may assume that ` ≥ 2, and the comparison of entry–sums
in Lemma 9 yields

b(ΓH∩K)≤ `−1+
(
2h−2− (`−1)

)(
2k−2− (`−1)

)
= `−1+(2h−2)(2k−2)− (`−1)(2h−2)− (`−1)(2k−2)+(`−1)2

≤ 4(h−1)(k−1)− (2h−2)+
(
`− (2k−2)

)
(`−1)

≤ 4(h−1)(k−1)− (2h−2),

as desired—the inequality is again more easily understood using a diagram, which we
have provided in Figure 3.
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1

1

1

1 2h
−

2

1 1

`−1 2h
−

2

Figure 3: At left is a graphical representation of the matrix in Lemma 9. The shaded
regions represent nonzero entries. When ` ≥ 2, we may rearrange these regions as
shown at the right, establishing the desired inequality.

Notice that nothing prevents us from considering pushouts along disconnected graphs,
and so we in fact obtain W. Neumann’s [13] strong form of Burns’ inequality:

∑
g∈H\F/K
H∩Kg 6=1

(
rank(H ∩Kg)−1

)
≤ 2(h−1)(k−1)−min

{
(h−1),(k−1)

}
.

5 Strengthening Burns’ inequality
Theorem 12. Let H and K be nontrivial finitely generated subgroups of F of ranks h
and k ≥ h that intersect nontrivially. Then

rank(H ∩K)−1≤ 2(h−1)(k−1)− (h−1)
(
rank(H ∨K)−1

)
.

Proof. First suppose that rank(H ∩K) = 1. The desired inequality is then

0≤ (h−1)
(
2k− rank(H ∨K)−1

)
.

If

2k− rank(H ∨K)−1≥ 0,

then we are done. If this is not the case, then we must have rank(H∨K) = 2k, and hence
h = k, since rank(H ∨K)≤ h+k. Since finitely generated free groups are Hopfian, we
must conclude that rank(H ∩K) = 0, which contradicts our assumption.

So we assume as we may that rank(H ∩K)≥ 2. As every branch vertex of ΓH∩K is
associated to a block of our normal form M, this implies that `≥ 1.
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1
1

1
1 `

−
1

p

`−1
1

p
+

`
−

1

2k−2

Figure 4: Again we have the matrix of Lemma 9 at the left, shaded regions representing
nonzero entries. Provided `≥ 1, we may rearrange these regions as shown at the right,
establishing (3).

First note that 2h−2 > p+ `−1 and 2k−2 > q+ `−1. By Lemma 9, we have

b(ΓH∩K)≤ `−1+
(
2h−2− (p+ `−1)

)(
2k−2− (q+ `−1)

)
= `−1+(2h−2)(2k−2)− (p+ `−1)(2k−2)

+
[
(p+ `−1)(q+ `−1)− (2h−2)(q+ `−1)

]
≤ `−1+(2h−2)(2k−2)− (p+ `−1)(2k−2)

− [`−1]
= (2h−2)(2k−2)− (p+ `−1)(2k−2). (3)

The proof of the inequality is illustrated in Figure 4. Similarly,

b(ΓH∩K)≤ (2h−2)(2k−2)− (q+ `−1)(2h−2). (4)

Since `≥ 1, the inequality (4) provides the theorem unless

q < rank(H ∨K)−1≤−χ(T).

So we assume that q≤−χ(T)−1, the rest of the argument proceeding as in [5].
By Theorem 4 and Lemma 8, we also have `+ p+q≥−2χ(T) and so

`+ p≥−χ(T)+1≥ rank(H ∨K).

By (3), we now have

b(ΓH∩K)≤ (2h−2)(2k−2)−
(
rank(H ∨K)−1

)
(2k−2),

and since k ≥ h, the proof is complete.

6 A particular case of the Hanna Neumann Conjecture
Theorem 13 (Kent, Louder). Let H and K be nontrivial finitely generated subgroups
of a free group of ranks h and k, respectively. If

rank(H ∨K)−1≥ h+ k−1
2
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then

rank(H ∩K)−1≤ (h−1)(k−1).

Proof. Note that if q ≥ k, then the (2h− 2)× (2k− 2)–matrix M has at least k zero–
columns. As b(ΓH∩K) is the entry–sum of M, we have

b(ΓH∩K)≤ (2k−2− k)(2h−2) = (k−2)(2h−2),

and so

rank(H ∩K)−1≤ (h−1)(k−2),

which is better than desired.
So assume that q≤ k−1. Then, by assumption, Theorem 4, Lemma 8, and the fact

that −χ(T)≥ rank(H ∨K)−1, we have

`−1+ p+q≥ h+ k−2. (5)

Note that 2h−2 > p+ `−1. So, by Lemma 9 and (5), we have

b(ΓH∩K)≤ `−1+
(
2h−2− (p+ `−1)

)(
2k−2− (q+ `−1)

)
= `−1+(2h−2)(2k−2)− (p+ `−1)(2k−2)

+
[
(p+ `−1)(q+ `−1)− (2h−2)(q+ `−1)

]
≤ `−1+(2h−2)(2k−2)− (h+ k−2−q)(2k−2)

− [`−1]
≤ (2h−2)(2k−2)− (h−1)(2k−2)
= 2(h−1)(k−1).

We do not obtain the stronger inequality

∑
g∈H\F/K
H∩Kg 6=1

(
rank(H ∩Kg)−1

)
≤ (h−1)(k−1)

here, nor the analogous inequality in Theorem 12, as the pushout along a larger graph
could have Euler characteristic dramatically smaller in absolute value than −χ(ΓH∨K).
For example, it is easy to find H and K and u and v such that the pushouts T uv and T

of ΓH and ΓK along ΓHu∩Kv and ΓH∩K , respectively, satisfy−χ(T uv)≥−χ(ΓHu∨Kv)�
−χ(T). As a consequence, the pushout along ΓH∩K tΓHu∩Kv will have Euler charac-
teristic much smaller in absolute value than −χ(ΓHu∨Kv).

If the reader would like a particular example of this phenomenon, she may produce
one as follows.

Begin with subgroups A and B of large rank so that the topological pushout of ΓA
and ΓB is the wedge of two circles: take A and B to be of finite index in F , the subgroup
A containing a, the subgroup B containing b.

Now consider the endomorphism F → F that takes a and b to their squares. Let H
and K be the images of A and B under this endomorphism, respectively. It is a simple
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exercise to see that the pushout T of ΓH and ΓK along ΓH∩K is homeomorphic to that
of ΓA and ΓB along ΓA∩B—it is a wedge of two circles labeled a2 and b2. It is also easy
to see that the pullback GH∩K contains an isolated vertex (x,y), where x is the 2–valent
center of a segment labeled a2 and y is the 2–valent center of a segment labeled b2.

We may conjugate H and K by elements u and v in F , respectively, so that ΓHu = ΓH ,
ΓKv = ΓK , and ΓHu∩Kv is our isolated point. So the pushout T uv of ΓHu and ΓKv along
ΓHu∩Kv is the wedge of ΓHu and ΓKv . In fact, by our choice of isolated point, the pushout
T uv will be equal to ΓHu∨Kv , as the former admits no folds.

In such a case, the pushout of ΓHu and ΓKv along ΓHu∩Kv tΓH∩K has Euler charac-
teristic small in absolute value (being a quotient of T, it has no more than four edges),
despite the fact that the graph ΓHu∨Kv has Euler characteristic very large in absolute
value.

See Section 7.2 for what can be said about the general situation.

7 Remarks.

7.1 A bipartite graph
Estimating −χ(T) may be done from a different point of view, suggested to us by W.
Dicks—compare [3].

Given our subgroups H and K, define a bipartite graph ∆ with 2h−2 black vertices
x1, . . . ,x2h−2 and 2k−2 white vertices y1, . . . ,y2k−2 where xi is joined to y j by an edge
if and only if the i, j–entry of M is 1. It is easy to see that the number c of components
of ∆ is equal to `+ p+q, and that its edges are 2rank(H ∩K)−2 in number.

One may estimate the number of edges of ∆, and hence rank(H ∩K), by counting
the maximum number of edges possible in a bipartite graph with 2h−2 black vertices
and 2k−2 white vertices whose number of components is equal to c.

It may be that a direct study of ∆ would produce the inequalities given here, but we
have not investigated this.

7.2 Walter Neumann inequalities
Let X be a set of representatives for the double coset space H\F/K and let Y be the
subset of X consisting of those g such that H ∩Kg is nontrivial. As mentioned at the
end of Section 6, other than in our treatment of Burns’ theorem, we have not estimated
the sum

∑
g∈Y

(
rank(H ∩Kg)−1

)
using hypotheses on rank(H ∨K). However, we are free to replace rank(H ∩K)− 1
with this sum throughout provided we replace rank(H ∨K) with rank〈H,K,Y 〉.
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To see this, note that we may replace T with the pushout S of the diagram

⊔
ΓH∩Kg //

g∈Y

��

ΓH

ΓK

to obtain a diagram

⊔
ΓH∩Kg //

g∈Y

��

ΓH

��

��3
33

33
33

33
33

33
33

3

ΓK //

))SSSSSSSSSSSSSSSSS S

##GGGGGGGGG

Γ〈H,K,Y 〉

where the map S→ Γ〈H,K,Y 〉 factors into a series of folds.
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