
Pseudo-Anosov subgroups of fibered 3–manifold groups

Spencer Dowdall, Richard P. Kent IV, and Christopher J. Leininger∗

April 5, 2013

Abstract
Let S be a hyperbolic surface and let S̊ be the surface obtained from S by remov-

ing a point. The mapping class groups Mod(S) and Mod(S̊) fit into a short exact
sequence 1→ π1(S)→Mod(S̊)→Mod(S)→ 1. If M is a hyperbolic 3–manifold
that fibers over the circle with fiber S, then its fundamental group fits into a short
exact sequence 1→ π1(S)→ π1(M)→ Z→ 1 that injects into the one above.

We show that, when viewed as subgroups of Mod(S̊), finitely generated purely
pseudo-Anosov subgroups of π1(M) are convex cocompact in the sense of Farb and
Mosher. More generally, if we have a δ–hyperbolic surface group extension 1→
π1(S)→ ΓΘ → Θ→ 1, any quasiisometrically embedded purely pseudo-Anosov
subgroup of ΓΘ is convex cocompact in Mod(S̊). We also obtain a generalization
of a theorem of Scott and Swarup by showing that finitely generated subgroups of
π1(S) are quasiisometrically embedded in hyperbolic extensions ΓΘ.

1 Introduction
In [10], Farb and Mosher defined a notion of convex cocompactness for subgroups Θ <
Mod(S) of the mapping class group of a closed hyperbolic surface S by analogy with
convex cocompactness in the theory of Kleinian groups. This analogy was extended
by the second and third authors [15, 16]. Combining the results of Farb–Mosher [10]
and Hamenstädt [11], it follows that the associated π1(S)–extension ΓΘ of Θ<Mod(S)
given by

1 π1(S) ΓΘ Θ 1

is δ–hyperbolic for some δ if and only if Θ is convex cocompact. For punctured
surfaces, one has a similar statement for associated orbifold extensions [10], or one
can replace hyperbolicity with relative hyperbolicity [21]; see Section 2.6.

If Θ < Mod(S) is convex cocompact, then it must be finitely generated and purely
pseudo-Anosov, meaning that every infinite order element is pseudo-Anosov. Con-
versely, if Θ is purely pseudo-Anosov then the (orbifold) extension ΓΘ has no Baumslag–
Solitar subgroups. As such subgroups are the natural obstructions to being hyperbolic,
Farb and Mosher [10] asked
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Question 1. If Θ < Mod(S) is a purely pseudo-Anosov, finitely generated free group,
is Θ convex cocompact?

The hypotheses imply that ΓΘ has a 3–dimensional K(ΓΘ,1), and so this is a spe-
cial case of a question of Gromov, see [14]. More generally one can ask if every
finitely generated purely pseudo-Anosov subgroup is convex cocompact. These ques-
tions seem difficult in general as the class of purely pseudo-Anosov subgroups is some-
what mysterious.

We attack Question 1 for certain classes of purely pseudo-Anosov subgroups re-
lated to the Kleinian origins of convex cocompactness. Recall that if M = H3/Γ is an
orientable finite volume hyperbolic 3–manifold that fibers over S1 with fiber S, and S̊
denotes the surface equipped with a distinguished basepoint, then there is a natural in-
jection Γ→Mod(S̊); see sections 2.1 and 2.5. We may then view any subgroup G < Γ

as a subgroup of Mod(S̊).

Theorem 1.1. Let Γ be the fundamental group of hyperbolic 3–manifold that fibers
over the circle with fiber S, considered as a subgroup of Mod(S̊). If G is a finitely
generated purely pseudo-Anosov subgroup of Γ, then it is convex cocompact.

This is a generalization of the second and third authors’ work with Schleimer
[17], where the subgroup G was contained in the fiber group π1(S) < π1(M) ∼= Γ.
In that case, the group G could be naturally identified with a Fuchsian group, and
2–dimensional hyperbolic geometry could be used to provide the additional leverage
needed to prove convex cocompactness. In Theorem 1.1, G is naturally a Kleinian
group, and 3–dimensional geometric techniques can be applied in a similar way to
prove convex cocompactness, though there are a number of technical obstacles in the
generalization.

The ideas used to deal with these obstacles apply in a more general setting. Specif-
ically, given Θ < Mod(S), the extension ΓΘ also naturally injects into Mod(S̊).

Theorem 1.2. Suppose S is a closed surface, Θ < Mod(S) is a convex cocompact
subgroup and G < ΓΘ is a finitely generated quasiisometrically embedded subgroup.
If G is purely pseudo-Anosov as a subgroup of Mod(S̊), then it is convex cocompact.

In [25], Scott and Swarup prove that if Γ is the fundamental group of a hyperbolic
3–manifold fibered over the circle with fiber S, then any finitely generated infinite–
index subgroup of the fiber subgroup π1(S)< Γ is convex cocompact. A consequence
of our work is the following generalization of this to arbitrary hyperbolic extensions
ΓΘ. See [20] for a discussion of an analog for hyperbolic free–by–cyclic groups.

Theorem 1.3. Let

1 π1(S) ΓΘ Θ 1

be a δ–hyperbolic surface group extension. If H is a finitely generated infinite–index
subgroup of π1(S), then H is quasiisometrically embedded in ΓΘ.

This theorem follows from Proposition 8.1, and is proven in the final section.
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1.1 Outline of the proofs
As discussed above, both Theorems 1.1 and 1.2 follow the approach used in [17]. We
briefly describe the main ideas and technical results needed to carry out the proofs. See
Section 2 for definitions.

Suppose G < Γ is as in Theorem 1.1. According to [15] or [11], convex cocom-
pactness is equivalent to the orbit map G→ G · u to the curve complex C(S̊) being a
quasiisometric embedding for some vertex u ∈ C(0)(S̊). The difficulty establishing this
criterion is proving that distances in C(S̊) are coarsely bounded below by those in G
equipped with a word metric.

The first step is to prove that G is convex cocompact as a Kleinian group (see
Lemma 3.1). The corresponding step in [17] is straightforward, but here we need to
appeal to some fairly technical results in Kleinian groups (Tameness [1, 6] and the
Covering Theorem [8, 7]). It follows that distances in G are comparable to distances
between orbit points in H3, and, more importantly, in the convex hull Hull(G)⊂H3 of
the limit set for G.

It then suffices to bound the distance between orbit points in H3 by the distance
of the corresponding orbit points in C(S̊). We do this as follows. For any edge–path
between orbit points in C(S̊) of some length n, we construct a piecewise geodesic path
in H3 between corresponding orbit points in Hull(G), built from n+ 1 geodesic seg-
ments. Each of the geodesic segments is contained in a convex set Hull(u)⊂H3 canon-
ically associated to one of the vertices u of the path in C(S̊). Specifically, Hull(u) =
Hull(π1(S)u), where π1(S)u < π1(S) is the stabilizer of u under the action of π1(S) on
C(S̊) coming from the natural injection π1(S)< Γ→Mod(S̊).

The remaining step is to prove that, when this path is projected back to Hull(G),
each of the n+ 1 geodesic segments projects to a path of uniformly bounded length.
The key to this is Proposition 6.1, which states that for any simplex u ⊂ C(S̊), the set
Hull(u)∩Hull(G) has diameter bounded independently of u.

This in turn relies on Proposition 5.1. To briefly describe this, first observe that the
fibration M → S1 lifts to a fibration H3 → R of the universal cover whose fibers are
naturally viewed as hyperbolic planes. Roughly speaking, Proposition 5.1 states that
for any simplex u ⊂ C(S̊), there is a tu ∈ R so that the convex hull of the limit set of
π1(S)u in the fiber over tu is uniformly close to Hull(u). The proof of this uses recent
work of the second and third authors [13].

Theorem 1.2 follows the same basic approach. The abstraction from hyperbolic
3–space to a more general Gromov hyperbolic space is an obstacle that causes little
difficulty. However, the technical results in Kleinian groups are unavailable here, and
we must assume that G is quasiconvex to begin with. The proof then reduces to proving
the analogue of Proposition 5.1 in this setting, which is Proposition 8.1.

Acknowledgements. The authors would like to thank Ian Agol for helpful conversa-
tions. In particular, the proof of Lemma 3.1 was inspired by an idea of Ian Agol. The
authors would also like to thank the referee for several useful comments and sugges-
tions.
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2 Background

2.1 Hyperbolic geometry
An orientable hyperbolic n–manifold is the quotient of hyperbolic n–space Hn by a
discrete torsion–free subgroup of Isom+(Hn). We will be primarily interested in the
case of n = 2,3, where such a group is called a (torsion–free) Kleinian group. A
Kleinian group G is called a lattice if the volume of Hn/G is finite.

Hyperbolic space is compactified by adding a sphere at infinity ∂∞Hn to obtain a
ball Hn

= Hn ∪ ∂∞Hn. The limit set of a Kleinian group G is the set of accumulation
points of any orbit

ΛG = G · x\G · x⊂ ∂∞Hn.

The limit set is independent of the choice of point x ∈ Hn used to define it. The con-
vex hull of the limit set is the smallest closed convex set in Hn whose closure in Hn

contains ΛG, and will be denoted

Hull(G)⊂Hn.

Since ΛG is G–invariant, so is Hull(G).
We say that a Kleinian group G is convex cocompact if Hull(G)/G is compact. If

G is convex cocompact, then it is purely hyperbolic, meaning that every infinite order
element is hyperbolic. In dimension 2, the converse is true for finitely generated G.

Theorem 2.1 (see [2, Theorem 10.1.2]). A torsion–free Kleinian group G< Isom+(H2)
(usually called a torsion–free Fuchsian group) is convex cocompact if and only if it is
finitely generated and contains no parabolics.

The situation is more complicated when G < Isom+(H3). For this case, we con-
sider a special situation. Suppose Γ < Isom+(H3) is a torsion–free lattice. Let M =
H3/Γ. Suppose that M fibers over the circle with fiber a surface S

S M S1.

Then the fundamental groups fit into a short exact sequence

1 π1(S) Γ Z 1,

where Γ = π1(M) and Z = π1(S1). In particular, the subgroup π1(S) < Γ is a finitely
generated, infinite–index, normal subgroup of Γ that we call a fiber group. By normal-
ity, we have equality of the limit sets Λπ1(S) = ΛΓ = S2

∞ and there is an infinite–sheeted
covering

Hull(π1(S))/π1(S) = Hull(Γ)/π1(S)→ Hull(Γ)/Γ.

By the Tameness Theorem [1, 6] and the Covering Theorem [8, 7], this is essentially
the only type of subgroup of Γ which fails to be convex cocompact:
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Theorem 2.2. Suppose Γ < Isom+(H3) is a torsion–free lattice, and G < Γ is a finitely
generated subgroup without parabolics. Then either G is convex cocompact, or else
there is a subgroup G̃ < G with index at most 2 and a finite index subgroup Γ̃ < Γ such
that G̃ < Γ̃ is a fiber subgroup.

2.2 Coarse geometry
Let δ ≥ 0. A geodesic triangle4 in a geodesic metric space X is δ–thin if each of its
sides lies in the δ–neighborhood of the union of the other two sides. A geodesic metric
space X is δ–hyperbolic if every geodesic triangle is δ–thin.

Let K and C be positive numbers. A map f : X → Y between metric spaces is a
(K,C)–quasiisometric embedding if

1
K

dX (a,b)−C ≤ dY ( f (a), f (b))≤ KdX (a,b)+C

for all a and b in X . A quasiisometric embedding f is a quasiisometry if its image is
D–dense for some D. A quasiisometric embedding G : I→ X from an interval I ⊆ R
into X is called a quasigeodesic.

If A> 0, a subset Y of a geodesic metric space X is A–quasiconvex if each geodesic
joining points of Y lies in the A–neighborhood of Y .

The Gromov boundary ∂∞X of a proper δ–hyperbolic space X is defined to be
the set of equivalence classes of quasigeodesic rays G : [0,∞)→ X , where two rays
are equivalent if they have finite Hausdorff distance. In this way each biinfinite quasi-
geodesic determines two distinct endpoints at infinity. The following consequence of
δ–hyperbolicity is well known; for a proof see [5, Theorem III.1.7].

Theorem 2.3 (Stability of quasigeodesics). Given K,C,δ > 0, there exists a stability
constant R > 0 with the following property: For any (K,C)–quasigeodesic G′ in a δ–
hyperbolic space X, every geodesic G in X with the same endpoints (possibly at infinity)
has Hausdorff distance at most R from G′.

A finitely generated group is made into a metric space by equipping its Cayley
graph with the path metric induced by declaring that edges have length one and giving
the group the subspace metric. Up to quasiisometry, this metric does not depend on the
finite generating set. The group is said to be δ–hyperbolic if there is a choice of finite
generating set such that its Cayley graph is δ–hyperbolic. We will make frequent use
of the following well–known fact; see [5, Proposition I.8.19] for a proof.

Theorem 2.4 (Švarc–Milnor lemma). If X is a proper geodesic metric space, and G
acts properly and cocompactly by isometries on X, then X and G are quasiisometric.
In fact, for any x in X, the orbit map G→ X given by g 7→ gx is a quasiisometry.

The following is a straightforward consequence of the stability of quasigeodesics.

Proposition 2.5. If Γ is δ–hyperbolic and G < Γ is finitely generated, then G is quasi-
isometrically embedded if and only if it is quasiconvex.

We conclude this section by noting that, for Kleinian groups, convex cocompact-
ness may be reformulated in terms of coarse geometry as follows.
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Theorem 2.6. A Kleinian group G < Isom+(Hn) is convex cocompact if and only if
the orbit map G→ G · x⊂Hn is a quasiisometric embedding.

2.3 Mapping class groups and the complex of curves
Let S be a finite–volume hyperbolic surface, we may then identify π1(S) with a lattice
in Isom(H2) and write S =H2/π1(S). The complexity of S is ξ (S) = 3g−3+n, where
g is the genus of S and n is the number of its punctures. We assume throughout that
ξ (S) ≥ 1, which means that S has negative Euler characteristic and is not a thrice–
punctured sphere. The mapping class group Mod(S) of S is the group of isotopy
classes of orientation–preserving homeomorphisms of S.

The mapping class group acts on a number of spaces, but for our purposes, the
most important one is the complex of curves C(S). This is a simplicial complex whose
vertices are isotopy classes of essential simple closed curves—these are precisely the
isotopy classes with simple closed geodesic representatives. When ξ (S) > 1, we say
that k+ 1 distinct isotopy classes span a k–simplex if and only if they can be realized
disjointly on the surface (equivalently, their geodesic representatives are all disjoint).
When ξ (S) = 1, the surface S is either a once–punctured torus or a four–times punc-
tured sphere. In these cases, k+1 isotopy classes are the vertices of a k–simplex if and
only if they pairwise intersect once or twice, respectively.

We view C(S) as either a combinatorial object or a geometric object. For the latter,
we declare each simplex to be isometric to a regular Euclidean simplex, and give C(S)
the induced path metric. We make extensive use of the following celebrated theorem
of Masur and Minsky [19].

Theorem 2.7 (Masur–Minsky [19]). For any S there is a δ > 0 such that C(S) is δ–
hyperbolic.

An element of Mod(S) is pseudo-Anosov if it has positive (asymptotic) translation
length on C(S). That is, the pseudo-Anosov elements are precisely the analogues of the
hyperbolic isometries of Hn.

2.4 Exact sequences
We will also be concerned with the marked surface S̊, which is simply the surface S
equipped with a distinguished basepoint (or an additional preferred puncture). In the
corresponding based mapping class group Mod(S̊), homeomorphisms and isotopies are
required to fix the basepoint. There is a natural surjection Mod(S̊)→Mod(S) obtained
by simply ‘forgetting’ the basepoint. Birman [3, 4] showed that the kernel of this map
may be identified with π1(S) thus giving an exact sequence

1 π1(S) Mod(S̊) Mod(S) 1. (1)
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The injective homomorphism Mod(S)→Out(π1(S)) naturally gives rise to an inclusion
of short exact sequences

1 π1(S) Mod(S̊) Mod(S) 1

1 π1(S) Aut(π1(S)) Out(π1(S)) 1

(2)

The following result of Kra [18] provides many pseudo-Anosov elements. Recall
that a loop γ ∈ π1(S) is filling if the geodesic representative of the free homotopy class
cuts S into disks and once–punctured disks.

Theorem 2.8 (Kra [18]). An element γ ∈ π1(S) is pseudo-Anosov as an element of
Mod(S̊) if and only if γ is filling as an element of π1(S).

2.5 Surface and orbifold group extensions
Given Θ < Mod(S), the exact sequence (1) can be used to describe a π1(S)–extension
ΓΘ. Specifically, we can define ΓΘ as the preimage of Θ in Mod(S̊), which gives rise
to an inclusion of short exact sequences

1 π1(S) ΓΘ Θ 1

1 π1(S) Mod(S̊) Mod(S) 1

(3)

When Θ = 〈ϕ〉, and ϕ is pseudo-Anosov, then ΓΘ = π1(M), where

Mϕ = S× [0,1]/(x,1)∼ (ϕ(x),0)

is the mapping torus of ϕ . By Thurston’s Geometrization Theorem [22, 23, 24, 12], we
have M = H3/Γ with ΓΘ

∼= π1(M) ∼= Γ < Isom+(H3). In particular, this allows us to
view Γ and its subgroups as both Kleinian groups and subgroups of Mod(S̊).

When S has punctures, there are other extensions of Θ. Namely, replacing each
puncture of S with a cone point of some order, we consider S as a hyperbolic orbifold.
There is an inclusion Mod(S)→ Out(π1(S)orb), and we build an extension Γorb

Θ
as the

preimage in Aut(π1(S)orb)

1 π1(S)orb Γorb
Θ

Θ 1

1 π1(S)orb Aut(π1(S)orb) Out(π1(S)orb) 1

2.6 Convex cocompactness
Farb and Mosher defined convex cocompactness for G < Mod(S) in terms of the action
of Mod(S) on Teichmüller space. An equivalent formulation mirroring Theorem 2.6
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is that G is convex cocompact if and only if G is finitely generated and the orbit map
G→ G · v ⊂ C(S) is a quasiisometric embedding (for any v ∈ C(S)), see [15] or [11].
Analogous to the Kleinian group setting, if G is convex cocompact, it is δ–hyperbolic
and purely pseudo-Anosov.

The following provides the link with the coarse geometry of surface group exten-
sions and combines the results of Farb–Mosher [10] and Hamenstädt [11].

Theorem 2.9 (Farb–Hamenstädt–Mosher [10, 11]). Suppose S is a closed surface and
Θ < Mod(S) is a subgroup. Then Θ is convex cocompact if and only if ΓΘ is δ–
hyperbolic.

Although we will not need it, this theorem is also true when S has punctures, pro-
vided we replace ΓΘ with Γorb

Θ
. More recently, Mj–Sardar [21] proved that Θ is convex

cocompact if and only if ΓΘ is hyperbolic relative to the peripheral subgroups.

3 Convex cocompactness as a Kleinian group.
We now embark on the proof of Theorem 1.1, letting Γ be the fundamental group of a
hyperbolic 3–manifold M fibering over the circle with fiber S, considered as a subgroup
of Mod(S̊). Let G be a finitely generated purely pseudo-Anosov subgroup of Γ.

Lemma 3.1. G is a convex cocompact Kleinian group.

Proof. By replacing G with a subgroup of index at most two (which does not change
the conclusion), Theorem 2.2 implies that either G is convex cocompact, or G contains
a parabolic, or G is a fiber subgroup of a finite index subgroup Γ̃ < Γ.

We begin by observing that any element of Γ which is pseudo-Anosov in Mod(S̊)
must be hyperbolic. For if not, it would be parabolic and hence contained in a maxi-
mal parabolic subgroup which is isomorphic to Z2. Since the centralizer of a pseudo-
Anosov element is virtually cyclic (contains a cyclic subgroup of finite index), it cannot
be contained in any subgroup isomorphic to Z2, and therefore cannot be parabolic in
Γ.

Therefore we must show that G is not a fiber group of some Γ̃ < Γ. We assume that
it is and derive a contradiction.

To this end, we let M̃ → M denote a finite cover that fibers over S1 with a fiber
subgroup G, and let Γ̃ < Γ denote the corresponding subgroup of the fundamental
group. Then G is a normal subgroup of Γ̃ with Γ̃/G∼= Z. Since Γ̃/(Γ̃∩π1(S))∼= Z, it
follows that

[Γ̃, Γ̃]< G∩π1(S)∩ Γ̃

where [Γ̃, Γ̃] is the commutator subgroup.
Now consider any strict essential subsurface Σ⊂ S, and let Σ0 be any component of

the preimage of Σ in the (finite–sheeted) covering S̃→ S, corresponding to π1(S)∩ Γ̃ <
π1(S). Any nontrivial commutator in π1(Σ0)< π1(S) has infinite order (since all groups
in question are torsion–free) and lies in [Γ̃, Γ̃], hence also in G. On the other hand, every
element of π1(Σ0) projects to a loop in Σ, and hence a nonfilling loop in S. It follows
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that G contains an infinite order element which is not pseudo-Anosov. This contradicts
the assumption that G is purely pseudo-Anosov and completes the proof.

4 Metrics and covers.
The 3–manifold M is a quotient of H3 by Γ, and so has a quotient hyperbolic metric
we denote by d. We will want to consider an auxiliary metric d̂ constructed as follows.
The manifold M is the mapping torus of ϕ : S→ S, and we choose a suspension flow
ϕt . That is, ϕt is a flow transverse to the fibers such that ϕt sends fibers to fibers for
all t, and ϕ1 is the first return map on each fiber. We choose a Riemannian metric so
that the induced metric on each fiber is a hyperbolic metric, and so that ϕt is a flow
along flow lines that are orthogonal to the fibers. We let d̂ denote the metric induced by
this Riemannian metric. We also assume that the Riemannian metrics defining d̂ and
d agree on some horoball neighborhoods of the cusps when M is noncompact. This is
possible since the fibration can be chosen so that in the hyperbolic metric d, the fibers
intersect the cusps in totally geodesic surfaces, and so that the integral curves of the
suspension flow are horocycles orthogonal to the fibers.

By compactness of the complement of the horoball cusp neighborhoods, the iden-
tity (M,d)→ (M, d̂) is bilipschitz. It follows that the same is true for any cover of M
if we pull back the metrics d and d̂.

We let MS →M be the cover corresponding to π1(S), which fibers over R by lift-
ing the fibration M→ S1. We record this, together with the homeomorphisms of the
universal cover H3 ∼=H2×R and MS ∼= S×R in the following commutative diagram:

H3 MS M

H2×R S×R

R R S1

We pull the metric d̂ on M → S1 back to H3 and MS. We let H2
t = H2 ×{t} and

St = S×{t} denote the fibers of the fibrations H3→ R and MS→ R, respectively. We
equip these fibers with their path metrics induced by d̂.

Let η : Γ→ Z denote the homomorphism induced by the fibration M → S1. We
assume that in addition to being purely pseudo-Anosov and finitely generated, G < Γ

is not contained in π1(S): if G < π1(S) then we can apply [17], and G is convex
cocompact in Mod(S̊). Let G0 = G∩π1(S), which is the kernel of η |G : G→ Z.

1 G0 G Z 1
η |G

By replacing Γ with a finite index subgroup (namely the preimage in Γ of the image of
G in Z), we can assume without loss of generality that G→ Z is surjective. We also
let g ∈ G be an element that maps to 1 in Z. If G0 is trivial, then G is cyclic and we’re
done, so we assume G0 is nontrivial.
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We consider the covers MG0 → MG → M corresponding to G0 < G < Γ, as well
as the cover SG0 → S corresponding to G0 < π1(S). We can add this to the previous
diagram to get

MG

H3 MG0 MS M

H2×R SG0 ×R S×R

R R R S1

Keeping with the same notation, we write SG0,t = SG0×{t} with its induced hyper-
bolic metric.

Notation. The metrics d and d̂ both pull back to metrics on all the covers, and we
denote these by the same names d and d̂.

For any of the spaces that fiber over R, we write dt for the path metric on the fiber
over t ∈ R induced by d̂. By construction, dt is a hyperbolic metric on each fiber.
For metric–dependent constructions we will add a prefix to the name to signify what
metric is being used in the construction. For example, we will refer to dt–geodesics,
dt–diameter, dt–Hausdorff distance, et cetera. If there is no prefix this signifies that the
metric d is being used, though we will sometimes include the d for clarification.

5 Simplex hulls

For any simplex u ⊂ C(S̊), we consider the stabilizer of u in π1(S) < Mod(S̊). This
is the fundamental group of the subsurface determined by u, see [17] for a detailed
discussion. Since the stabilizer π1(S)u acts on H3 as well as each H2

t for every t, we can
consider the convex hull of its limit set in any one of these spaces. We write Hull(u)⊂
H3 for the d–convex hull in H3 and Hullt(u)⊂H2

t for the dt–convex hull in H2
t . By the

main theorem of [25], the limit set of Hullt(u) in ∂∞H2
t maps homeomorphically onto

the limit set of Hull(u) in ∂∞H3.
Given any γ ∈ Γ we have γ(Hull(u)) = Hull(γ · u), where γ acts on C(S̊) via the

inclusion Γ < Mod(S̊) from (3). Recall also that η : Γ→ Z is the homomorphism of
fundamental groups induced by the fibration M =H3/Γ→ S1.

Proposition 5.1. There exist K,C,R > 0 with the following property. For any simplex
u⊂ C(S̊) there exists a tu ∈ Z satisfying tγ·u = tu +η(γ) for all γ ∈ Γ, and such that the
following holds.

1. The inclusion Hulltu(u)→H3 is a (K,C)–quasiisometric embedding.

2. For any z,w ∈ Hull(u), there exists z′,w′ ∈ Hulltu(u) such that

d(z,z′),d(w,w′)≤ R
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and the dtu–geodesic [z′,w′]tu ⊂ Hulltu(u) and the d–geodesic [z,w] ⊂ Hull(u)
have d–Hausdorff distance at most R.

One of the key ingredients in the proof of this proposition is the following result
from [13], which shows that the convex hull Hull(u)⊂H3 =H2×R is not too wide.

Proposition 5.2 (Kent–Leininger [13]). There exists W > 0 such that for any simplex
u ⊂ C(S̊), the image of Hull(u) in R under the projection H3 = H2×R→ R onto the
second coordinate has diameter at most W.

Given this Proposition, we now sketch the proof of Proposition 5.1 before proceed-
ing to the details.

Sketch of Proposition 5.1. We will choose tu uniformly close to the image of Hull(u)
in R under the projection H3→R. According to Proposition 5.2, the image of Hull(u)
in R is contained in an interval Iu centered on tu of uniformly bounded diameter. Since
Iu has bounded diameter, it follows that the inclusion H2

tu →H2× Iu is uniformly bilip-
schitz provided we give H2

tu the hyperbolic metric dtu and H2× Iu the induced path
metric from d̂ or from the hyperbolic metric d. Since Hulltu(u) ⊂ H2

tu is convex, the
same is true for the inclusion Hulltu(u)→ H2× Iu, and in particular, Hulltu(u) is uni-
formly quasi-convex in the Gromov hyperbolic space H2× Iu.

Next we observe that Hull(u) ⊂ H2× Iu. Since Hull(u) is convex, the path metric
on Hull(u) induced by d is precisely the restriction of the hyperbolic metric d. Since
Hull(u) and Hulltu(u) have the same limit set, and both are quasi-convex, they are
uniformly close to each other inside H2× Iu. From this and the fact that both spaces
are uniformly quasi-isometrically embedded in H2× Iu, we see that distances between
points in Hulltu(u) are uniformly comparable to distances in Hull(u). On the other
hand, distances in Hull(u) are precisely distances in H3, as required.

With this sketch in mind, we proceed to the actual proof of Proposition 5.1. It turns
out that comparing distances in Hulltu(u) and Hull(u) as just described is a bit messy.
The following Lemma allows us to restrict attention to the points which lie on biinfinite
geodesics contained in the respective hulls.

Lemma 5.3. There exists δ > 0 such that for n = 2 or 3 the following holds. Let Z be
a closed subset of ∂∞Hn. Then any geodesic segment [z,w] in the convex hull Hull(Z)
in Hn has Hausdorff distance at most δ from a geodesic segment [z0,w0] which is
contained in a biinfinite geodesic in Hull(Z).

Proof. Extend [z,w] as far as possible in both directions. If it extends indefinitely
in both directions in Hull(Z), then [z,w] is itself contained in a biinfinite geodesic in
Hull(Z) and we are done. If not, then [z,w] is contained in G, a geodesic segment or ray
that terminates in the boundary of the convex hull. By moving G a uniformly bounded
amount to some G′ if necessary, we can assume that each endpoint lies on a biinfinite
geodesic in the boundary of Hull(Z), and that G′ has length at least 10, say. This follows
from the fact that if Hull(Z) has dimension 2, then the boundary of Hull(Z) is a union
of biinfinite geodesics, and if Hull(Z) has dimension 3, its boundary is a hyperbolic
surface bent along a geodesic lamination [9]. To each endpoint of G′, append a ray of
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the biinfinite geodesic in the direction that makes the larger of the two angles with G′

(which is at least π/2). The resulting broken geodesic is a uniformly bounded distance
from a biinfinite geodesic, and this geodesic contains [z,w] in a uniformly bounded
neighborhood, as required.

Proof of Proposition 5.1. Let W ≥ 1/2 be as in Proposition 5.2. Therefore, for each u
there exists an integer t ∈ R such that

Hull(u)⊂H2× [t−W, t +W ]. (4)

The action of Γ on H2×R descends to an action on R given by translation under
η . Therefore, the projection of

Hull(γ ·u) = γHull(u)

to R is the image of Hull(u) under the projection, after translating by η(γ). It follows
that if t is an integer satisfying (4) for u, then

Hull(γ ·u)⊂H2× [tu +η(γ)−W, tu +η(γ)+W ]. (5)

Let T be a transversal for the action of Γ on the set of simplices in C(S̊), that is,
a choice of simplex from each Γ orbit. For any u ∈ T , pick tu = t satisfying (4), then
define tγ·u = tu +η(γ) for any u ∈ T and γ ∈ Γ. From (5), it follows that

Hull(u)⊂H2× [tu−W, tu +W ]

for every u ∈ C(S̊). Since η is a homomorphism, tγ·u = tu +η(γ) holds for every γ ∈ Γ

and u⊂ C(S̊).
Given any integer t, let d×t denote the path metric on H2× [t−W, t +W ] induced

by the hyperbolic metric d.

Claim. There exists K > 0 such that the inclusion

H2
t →H2× [t−W, t +W ]

is a K–bilipschitz embedding (with respect to dt and d×t ).

Proof of Claim. Let d̂×t denote the path metric on H2× [t −W, t +W ] induced by d̂.
Let K0 be the bilipschitz constant for the identity map between d×t and d̂×t . It follows
that the inclusion

H2
t →H2× [t−W, t +W ]

with respect to dt and d×t is K0–Lipschitz.
There is a K1 > 1 such that the suspension flow ϕt is Kt

1–bilipschitz with respect to
d̂. This follows from compactness of the complement of the cusp neighborhoods and
the fact that the flow is by isometries on the cusp neighborhoods. Lifting this flow to
H3, we can use it to define a projection

H2× [t−W, t +W ]→H2
t
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by projecting out the flow lines. This is KW
1 –Lipschitz with respect to d̂×t and dt , and

hence K0KW
1 –Lipschitz with respect to d×t and dt . Setting K = K0KW

1 > K0, it follows
that the inclusion

H2
t →H2× [t−W, t +W ]

is K–bilipschitz.

Let R′ > 0 be the stability constant for (K,0)-quasigeodesics in the Gromov hy-
perbolic metric space (H2× [tu−W, tu +W ],d×t ), see Theorem 2.3. Let δ > 0 be the
constant from Lemma 5.3 and set

C = 4K(Kδ +R′).

The next claim will prove the first part of the proposition.

Claim. For any u⊂ C(S̊) the inclusion

Hulltu(u)→H3

is a (K,C)–quasiisometric embedding.

Proof of Claim. Since Hulltu(u) ⊂ H2
tu is isometrically embedded, it follows that the

inclusion

Hulltu(u)→H2× [tu−W, tu +W ]

is a K–bilipschitz embedding.
Now let z′,w′ ∈ Hulltu(u) be any two points. According to Lemma 5.3 there are

points z′0,w
′
0 ∈ Hulltu(u) such that

dtu(z
′,z′0),dtu(w

′,w′0)≤ δ (6)

and such that the geodesic segment [z′0,w
′
0] extends to a biinfinite dtu –geodesic G′ ⊂

Hulltu(u).
Since the limit set of Hulltu(u) in ∂∞H2

tu embeds in ∂∞H3, the path G′ has two
endpoints in ∂∞H3. Let G be the d–geodesic with these endpoints, which is necessarily
contained in Hull(u)⊂H2× [tu−W, tu +W ]. In particular, G is a d×tu –geodesic. Since
the dtu–geodesic G′ is a (K,0)–quasigeodesic with respect to d×tu , Theorem 2.3 implies
that G and G′ have d×tu –Hausdorff distance at most R′.

Let z,w ∈ G be points with

d×tu (z
′
0,z),d

×
tu (w

′
0,w)≤ R′.

Since d is less than d×tu , appealing to this and (6) we have

d(z′,z)≤ d×tu (z
′,z)≤ d×tu (z

′,z′0)+d×tu (z
′
0,z)≤ Kδ +R′, (7)

and likewise

d(w′,w)≤ d×tu (w
′,w)≤ Kδ +R′. (8)

13



Combining (7) and (8) with the triangle inequality, the fact that

Hulltu(u)→H2× [tu−W, tu +W ]

is a K–bilipschitz embedding, and the fact that d = d×tu on Hull(u) (since Hull(u) is
convex) we find

dtu(z
′,w′)≤ Kd×tu (z

′,w′)

≤ K(d×tu (z,w)+d×tu (z
′,z)+d×tu (w,w

′))

≤ Kd(z,w)+K(2(Kδ +R′))

≤ K(d(z′,w′)+d(z,z′)+d(w′,w))+2K(Kδ +R′)

≤ Kd(z′,w′)+2K(Kδ +R′)+2K(Kδ +R′)

= Kd(z′,w′)+C.

On the other hand, since d ≤ d×tu on H2× [tu−W, tu +W ] it follows that

d(z′,w′)≤ d×tu (z
′,w′)≤ Kdtu(z

′,w′)+C.

Therefore, the inclusion Hulltu(u)→ H3 is a (K,C)–quasiisometric embedding, prov-
ing the claim.

To finish the proof of the proposition, let R = R′+δ > 0, where R′ is as in the proof
of the claim. By increasing R′ > 0 if necessary, we can assume that if G′ is a (K,0)–
quasigeodesic in H2 × [t −W, t +W ] and G is the unique geodesic a d×t –Hausdorff
distance at most R′ away, then for any segment [z,w] ⊂ G there is a segment [z′,w′] ⊂
G′ for which the d×t –Hausdorff distance between [z,w] and [z′,w′] is at most R′ and
d×t (z,z′),d×t (w,w′)≤ R′.

Let u⊂ C(S̊) be any simplex. Given z,w ∈Hull(u), let G be a biinfinite geodesic in
Hull(u) containing points z0,w0 ⊂ G such that

d(z,z0),d(w,w0)≤ δ ,

as given by Lemma 5.3.
Let G′ be the unique dtu–geodesic in Hulltu(u) with the same endpoints as G. Since

G′ is a (K,0)–quasigeodesic for d×tu , it has d×tu –Hausdorff distance at most R′ from G.
Let z′,w′ ∈ G′ be any points such that the d×tu –Hausdorff distance between [z0,w0] and
[z′,w′] is at most R′ and

d×tu (z0,z′),d×tu (w0,w′)≤ R′.

Since d×tu ≥ d, it follows from the triangle inequality that d(z,z′),d(w,w′)≤R′ and [z,w]
and [z′,w′] have d–Hausdorff distance at most R′+δ = R, completing the proof.

6 Hull intersections
Let C(MG0) = Hull(G0)/G0 and C(MG) = Hull(G)/G. Since G0 / G is an infinite
normal subgroup, the limit sets are equal so Hull(G0) = Hull(G), and hence there is an

14



induced covering map C(MG0)→C(MG)—in fact it is a Z–covering. The same is true
for the r–neighborhoods, for any r > 0,

Nr(C(MG0))→ Nr(C(MG)).

We can compose the fibration M → S1 with the map Nr(C(MG))→ M obtained
by restricting the covering map MG→M. This produces a map f : Nr(C(MG))→ S1.
This lifts to f̃ : Nr(C(MG0))→ R which is simply the restriction to Nr(C(MG0)) of the
projection onto the second coordinate of the product structure MG0

∼= SG0 ×R. Let
SG0,0 = SG0 ×{0}.

Nr(C(MG0)) Nr(C(MG))

MG0 MG M

R S1 S1

Because η : G→ Z is surjective, the fibers of f̃ project homeomorphically to the
fibers of f by the covering map Nr(C(MG0))→ Nr(C(MG)). In particular, because f
has compact fibers, so does f̃ , and hence

f̃−1(0) = Nr(C(MG0))∩SG0,0 ⊂ SG0,0

is compact. We will assume, without loss of generality, that for whatever choice of r we
investigate, 0 is a regular value for f̃ restricted to the boundary of Nr(C(MG0)). Then
f̃−1(0)⊂ SG0,0 is a compact submanifold, hence has only finitely many components.

The next Proposition is the key ingredient needed to adapt the arguments from [17].

Proposition 6.1. There exists D > 0 such that for any simplex u ∈ C(S̊), the diameter
of Hull(u)∩N1(Hull(G)) is at most D.

Before we launch into the proof we give a brief sketch.

Sketch of Proposition 6.1. Given two points of Hull(u)∩N1(Hull(G)), the geodesic
between these points is contained in the intersection by convexity. According to Propo-
sition 5.1 any geodesic segment contained in Hull(u) is within a distance R of a dtu–
geodesic segment in Hulltu(u). Thus, it suffices to find a uniform bound on the length
of a dtu–geodesic segment in the intersection

Hulltu(u)∩NR+1(Hull(G)) = Hulltu(u)∩NR+1(Hull(G0)).

Furthermore, replacing u by its image under an element of G, we can assume tu = 0.
Now suppose we have a d0–geodesic segment in Hulltu(u)∩NR+1(Hull(G0)). Tak-

ing the quotient by G0 we obtain a d0–geodesic segment inside f̃−1(0)⊂ SG0,0. Since
f̃−1(0) is compact, the fundamental group is finitely generated, G1 < G0. The com-
pact subsurface f̃−1(0) and the d0–geodesic segment lift to the cover SG1,0 → SG0,0

15



corresponding to G1. Now we observe that G1 < π1(S) is a finitely generated Fuchsian
group, and is purely pseudo-Anosov as a subgroup of Mod(S̊). Thus, we can appeal
directly to the arguments of [17] to bound the length of the d0–geodesic segment.

The proof of Proposition 6.1 requires the following result from [17].

Proposition 6.2 (Corollary 5.2 of [17]). Let G′ < π1(S) be a finitely generated sub-
group which is purely pseudo-Anosov when considered as a subgroup of Mod(S̊). Then
for each t ∈ R, there exists D′t > 0 such that for any simplex u ∈ C(S̊), the dt–diameter
of Hullt(u)∩N1(Hullt(G′)) is at most D′t .

We also need the following lemma.

Lemma 6.3. Let R> 0 be the constant from Proposition 5.1. There exists a D′ > 0 with
the following property. Given any u ∈ C(S̊), let tu ∈ Z be the integer from Proposition
5.1. Then any dtu–geodesic segment

[z′,w′]⊂ NR+1(Hull(G0))∩Hulltu(u)

has dtu –length at most D′.

Proof of Lemma 6.3. Recall that we have chosen g ∈G with η(g) = 1. Given u ∈ C(S̊)
and any dtu–geodesic segment

[z′,w′]⊂ NR+1(Hull(G0))∩Hulltu(u),

Proposition 5.1 implies

tg−tu ·u = tu +η(g−tu) = tu− tu = 0.

Combining this with the fact that g−tu is an isometry on all of H3, as well as from H2
tu

to H2
0, and the fact that it preserves Hull(G0) = Hull(G), it follows that

[g−tuz′,g−tuw′] = g−tu([z′,w′])

⊂ g−tu
(
NR+1(Hull(G0))∩Hulltu(u)

)
= NR+1(Hull(G0))∩g−tu(Hulltu(u))

= NR+1(Hull(G0))∩Hull0(g−tu ·u)

Therefore, it suffices to prove the lemma for the case that tu = 0.
By compactness, there are only finitely many components of

f̃−1(0) = NR+1(C(G0))∩SG0,0.

To prove the lemma we must bound the length of a segment in NR+1(Hull(G0))∩
Hull0(u). Since such a segment must project to one of the components X0 ⊂ f̃−1(0),
it suffices to find a constant D′0 > 0 such that the conclusion of the lemma is satisfied
for segments that project to X0. Taking the maximum of the constants over the finitely
many components of f̃−1(0) will complete the proof.
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Let p0 : H2
0 → SG0,0 be the covering projection and X̃0 ⊂ p−1

0 (X0) a component
of the preimage. Since G0 acts transitively on the components of p−1

0 (X0), given a
d0–geodesic segment

[z′,w′]⊂ p−1
0 (X0)∩Hull0(u)

there exists an element g0 ∈ G0 such that

[g0(z′),g0(w′)] = g0([z′,w′])⊂ X̃0∩Hull0(g0 ·u).

Therefore, it suffices to find a constant D′0 > 0 such that for all u ∈ C(S̊) with tu = 0,
any geodesic segment

[z′,w′]⊂ X̃0∩Hull0(u)

has d0–length at most D′0. This follows from the next claim.

Claim. There exists D′0 > 0 such that for any u ∈ C(S̊) with tu = 0, the d0–diameter of
X̃0∩Hull0(u) is at most D′0.

Proof of claim. Since X0 is a compact manifold, π1(X0) is finitely generated, and hence
the image in G0 is a finitely generated subgroup G1 < G0. A conjugate of G1 acts
cocompactly on X̃0, and without loss of generality, assume it is G1 itself. It follows that
there exists r > 0 such that Nr(C0(G1)), the r–neighborhood of the d0–convex core of
G1, contains X0. Consequently we have

X̃0 ⊂ Nr(Hull0(G1)).

By Proposition 6.2, since G1 is finitely generated and purely pseudo-Anosov there
exists D′0 > 0 such that Nr(Hull0(G1))∩Hull0(u) has diameter at most D′0. Therefore,
so does X̃0∩Hull0(u).

This completes the proof.

Proof of Proposition 6.1. Let D′ > 0 be as in Lemma 6.3 and set D = 2R+KD′+C,
where K,C,R are as in Proposition 5.1. Now suppose u⊂ C(S̊) is a simplex and

z,w ∈ N1(Hull(G))∩Hull(u).

Since this is the intersection of two convex sets in H3, the geodesic [z,w] also lies in
this intersection. By Proposition 5.1 there exists a dtu–geodesic [z′,w′]⊂Hulltu(u) with
d–Hausdorff distance at most R from [z,w].

It follows that

[z′,w′]⊂ NR+1(Hull(G))∩Hulltu(u),

and hence has dtu–length at most D′ by Lemma 6.3. Combining this with Proposition
5.1 and the triangle inequality we see that the d–distance between z,w is at most

d(z,w)≤ d(z,z′)+d(z′,w′)+d(w′,w)

≤ R+Kdtu(z
′,w′)+C+R

≤ 2R+KD′+C = D

as required.
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7 End of the proof
We remark that this is formally just like the proof of Theorem 6.3 in [17].

Proof of Theorem 1.1. Fix a vertex u ∈ C0(S̊) and a point x ∈ Hull(u)∩Hull(G). Let
dC denote the path metric on the curve complex C(S̊) and equip G with the metric
defined by

dG(g,h) := dHull(G)(g · x,h · x) = d(g · x,h · x).

Since G acts cocompactly on Hull(G), the Švarc–Milnor lemma (Theorem 2.4) implies
that dG is quasiisometric to any (finitely generated) word metric on G.

We need to show that the orbit map (G,dG)→ (C(S̊),dC) defined by g 7→ g ·u is a
quasiisometric embedding, so we must find constants K ≥ 1 and C ≥ 0 such that

1
K

dG(1,g)−C ≤ dC(u,g ·u)≤ KdG(1,g)+C

for all g ∈ G. Such an upper bound follows immediately from the triangle inequality
and the fact that dG is quasiisometric to the word metric on G, and we therefore focus
on the lower bound.

Let (u0,u1, . . . ,un) be a geodesic path in C(S̊) from u = u0 to g · u = un, where
n = dC(u,g · u). We will use this to construct a path from x to g · x in Hull(G) whose
length is bounded in terms of n. Let ωi = [ui−1,ui] ⊂ C(S̊), 1 ≤ i ≤ n, denote the 1–
simplices comprising our C–geodesic from u to g ·u. For a simplex v⊂ C(S̊), recall that
Hull(v) ⊂ H3 is defined to be the convex hull of the limit set of the stabilizer π1(S)v
of v in π1(S) < Γ. Since ui−1,ui ⊂ ωi, the corresponding stabilizers are related by
π1(S)ωi ⊂ π1(S)ui−1 ∩π1(S)ui . So the corresponding hulls satisfy

Hull(ωi)⊂ Hull(ui−1)∩Hull(ui).

In particular, for each 1≤ i < n we have that

Hull(ωi),Hull(ωi+1)⊂ Hull(ui). (9)

We now construct a piecewise geodesic path γ ⊂H3 connecting x to g ·x as follows.
For each 1≤ i≤ n choose any point xi ∈ Hull(ωi); we also set x0 = x and xn+1 = g · x.
Recall that, by choice of x, we have x0 = x ∈ Hull(u) = Hull(u0) and therefore also
that xn+1 = g · x ∈ Hull(g · u) = Hull(un). For each 0 ≤ i ≤ n we let let γi denote the
d–geodesic [xi,xi+1]; since Hull(ui) is convex, equation (9) and the above implies that
γi ⊂ Hull(ui). The concatenation γ = γ0γ1 . . .γn now gives a piecewise geodesic path
from x to g · x.

The path γ may be arbitrarily long and is furthermore not necessarily contained in
Hull(G).

Let τ : H3 → Hull(G) be the closest point projection. It is a well known fact in
hyperbolic geometry that τ is a contraction and that, furthermore, there exists a constant
T > 0 such that for any d–geodesic segment σ outside of N1(Hull(G)), the projection
τ(σ) has length at most l(τ(σ)) ≤ T . Now, since Hull(ui)∩N1(Hull(G)) is convex,
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it cuts γi into at most three geodesic segments: at most one in Hull(ui)∩N1(Hull(G)),
which, by Proposition 6.1, has length at most D, and at most two which are disjoint
from Hull(ui)∩N1(Hull(G)). By the contraction properties of τ , it follows that

l(τ(γi))≤ 2T +D

for each 0 ≤ i ≤ n. Since τ(γ) is a path in Hull(G) connecting x to g · x, we conclude
that

dG(1,g) = dHull(G)(x,g · x)≤ l(τ(γ))≤ (2T +D)(n+1).

Isolating n = dC(u,g ·u), we find that

dC(u,g ·u) = n≥ 1
2T +D

dG(1,g)−1.

8 Generalizations
We now modify the proof of Theorem 1.1 to prove Theorem 1.2. Suppose that S is a
closed surface and Θ < Mod(S) is a subgroup of Mod(S). Section 2.5 explains that
there is an associated π1(S) extension which includes into the Birman Exact Sequence
as in Equation (3):

1 π1(S) ΓΘ Θ 1

1 π1(S) Mod(S̊) Mod(S) 1

According to Theorem 2.9, the group ΓΘ is δ–hyperbolic if and only if Θ is convex
cocompact; see also [21].

Theorem 1.2. Suppose S is a closed surface, Θ < Mod(S) is a convex cocompact
subgroup and G < ΓΘ is a finitely generated quasiisometrically embedded subgroup.
If G is purely pseudo-Anosov as a subgroup of Mod(S̊), then it is convex cocompact.

Remark. We note that although we are able to replace the Γ from Theorem 1.1 with a
more general class of groups, we do need the assumption on the subgroup G<ΓΘ. This
is due to the fact that a generalization of Lemma 3.1 seems quite difficult, or perhaps
false, in this more general setting.

To simplify notation, we henceforth write Γ = ΓΘ.
We start by describing a geometric model for Γ that will be most useful for the

proof. By passing to finite index subgroups, we assume Θ is torsion–free. Let B̃ denote
the Cayley graph of Θ with respect to some finite generating set, and B = B̃/Θ the quo-
tient wedge of circles. Choose any continuous map B̃→ Teich(S) which is equivariant
with respect to the actions of Θ on B̃ by covering transformations and on Teich(S) via
the action induced by the inclusion Θ→Mod(S). The Bers fibration

H2 Teich(S̊) Teich(S)
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is equivariant with respect to the Birman Exact Sequence, and we can pull back the
bundle to B̃ so that all maps are equivariant:

1 π1(S) Γ Θ 1

H2 X̃ B̃

1 π1(S) Mod(S̊) Mod(S) 1

H2 Teich(S̊) Teich(S)

ϕ
	 	 	

	 	 	

(10)

We give X̃ a Γ–invariant geodesic metric d for which the induced path metric on
the fiber ϕ−1(t) = H2

t for t ∈ B̃ is the hyperbolic metric dt . Each quotient by the
corresponding group is compact, and this produces an S–bundle over B:

S X B.

By the Švarc–Milnor lemma (Theorem 2.4), any orbit map Γ→ X̃ is a quasiisometry
with respect to the word metric on Γ for any fixed finite generating set.

The analogue of Proposition 5.1 we need is the following. Here Γ acts on B̃ via
the homomorphism Γ→Θ and on C(S̊) by the homomorphism Γ→Mod(S̊). We write
Hullt(u) to denote the convex hull in H2

t of the stabilizer π1(S)u of u in π1(S), as before.

Proposition 8.1. Suppose that we are in the situation of Diagram (10) and X̃ is δ–
hyperbolic. There exist K,C > 0 with the following property. For any simplex u⊂ C(S̊)
there exists a vertex tu ∈ B̃(0) satisfying tγ·u = γ · tu for all γ ∈ Γ, and such that the
inclusion

Hulltu(u)→ X̃

is a (K,C)–quasiisometric embedding.

In Section 9, we derive Theorem 1.3 from this Proposition.
The proof of Proposition 8.1 requires the following analogue of Proposition 5.2

which is proven in [13]. Given any simplex u⊂ C(S̊), we let Hull(u) denote the union
of all quasiinvariant geodesic axes in X̃ of elements in π1(S)u.

Proposition 8.2. Suppose that we are in the situation of Diagram (10) and X̃ is δ–
hyperbolic. Then there exists W > 0 such that for any simplex u⊂ C(S̊), the set Hull(u)
has diamB̃(ϕ(Hull(u)))<W.

With this Proposition, the proof of Proposition 8.1 is similar to that of Proposition
5.1. The key idea is again to pick tu ∈ B̃(0) lying within a uniformly bounded distance of
the image of Hull(u) in B̃ so that ϕ−1(BR(tu)) will play the role of H2

tu× [tu−W, tu+W ].
As before, we will see that the inclusion H2

tu → ϕ−1(BR(tu)) is uniformly bilipschitz
and, using the fact that Hull(u) ⊂ ϕ−1(BR(tu)) is convex, we will show that distances
in Hulltu(u) are comparable to those in Hull(u) and thus also in X̃ .

We also need the following minor modification of Lemma 5.3.
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Lemma 8.3. There exists δ ′ > 0 such that for any convex cocompact Fuchsian group
H < PSL(2,R), any geodesic segment [z,w] in Hull(ΛH)⊂H2 has Hausdorff distance
at most δ ′ from a geodesic segment [z0,w0] which is contained in a biinfinite periodic
geodesic in Hull(ΛH).

Proof. Since the fixed points of hyperbolic elements is dense in ΛH ×ΛH , it follows
that any biinfinite geodesic in Hull(ΛH) is a limit of periodic geodesics. So we may ap-
ply Lemma 5.3 to first find a segment [z′0,w

′
0] in some biinfinite geodesic in Hull(ΛH),

then approximate this as close as we like by a segment [z0,w0] contained in a periodic
geodesic.

Proof of Proposition 8.1. For any simplex u ⊂ C(S̊) we choose a vertex tu within a
distance at most 1 from ϕ(Hull(u)), subject to the equivariance condition tγ·u = γ · tu
(compare the proof of Proposition 5.1). We now prove that tu has the required proper-
ties.

Let R = W + 1, let t ∈ B̃(0), and consider the preimage ϕ−1(BR(t)) of the closed
ball BR(t). Equip ϕ−1(BR(t)) with the induced path metric d×t . Since π1(S) acts co-
compactly on H2

t and ϕ−1(BR(t)), the Švarc–Milnor lemma (Theorem 2.4) implies
that this inclusion is a (K,C′)–quasiisometry for some K,C′ > 1. In particular, the
space ϕ−1(BR(t)) is Gromov hyperbolic. Since Θ acts transitively by isometries on
B̃(0) (because B has only one vertex), K and C′ are independent of t. Given any sim-
plex u ⊂ C(S̊), we have Hulltu(u) ⊂ ϕ−1(BR(tu)) by assumption. Since the inclusion
Hulltu(u)→H2

tu is an isometric embedding, the inclusion

Hulltu(u)→ ϕ
−1(BR(tu))

is a (K,C′)–quasiisometric embedding.
Let R′ > 0 be the stability constant for (K,C′)-quasigeodesics in the Gromov hy-

perbolic metric space ϕ−1(BR(tu)) given by Theorem 2.3. Let δ ′ > 0 be the constant
from Lemma 8.3 and set

C = 4K(δ ′+R′)+C′.

The next claim will prove the proposition.

Claim. For any u⊂ C(S̊) the inclusion

Hulltu(u)→ X̃

is a (K,C)–quasiisometric embedding.

Proof of Claim. Let z′,w′ ∈ Hulltu(u) be any two points. Observe that π1(S)u is a
finitely generated subgroup of the closed surface group π1(S), so it is a convex co-
compact Fuchsian group. By Lemma 8.3 there are points z′0,w

′
0 ∈ Hulltu(u) such that

dtu(z
′,z′0),dtu(w

′,w′0)≤ δ
′ (11)

and such that the geodesic segment [z′0,w
′
0] extends to a biinfinite periodic dtu–geodesic

G′ ⊂ Hulltu(u) invariant under an element h ∈ π1(S)u.
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Let G be a quasiinvariant d–geodesic axis for h; thus G ⊂ Hull(u) ⊂ ϕ−1(BR(tu)).
In particular, G is a d×tu –geodesic. Since the dtu–geodesic G′ is a (K,C′)–quasigeodesic
with respect to d×tu , the d×tu –Hausdorff distance between G and G′ is at most R′.

Let z,w ∈ G be points with

d×tu (z
′
0,z),d

×
tu (w

′
0,w)≤ R′.

Notice that d(z,w) = d×tu (z,w) because z,w ∈ G⊂ Hull(u). Appealing to this and (11),
we have

d(z′,z)≤ d×tu (z
′,z)≤ d×tu (z

′,z′0)+d×tu (z
′
0,z)≤ δ

′+R′, (12)

since d is less than d×tu , and likewise

d(w′,w)≤ d×tu (w
′,w)≤ δ

′+R′. (13)

Combining (12) and (13) with the triangle inequality, the fact that Hulltu(u)→
ϕ−1(BR(tu)) is a (K,C′)–quasiisometric embedding, and the fact that d(z,w)= d×tu (z,w),
we find

dtu(z
′,w′)≤ Kd×tu (z

′,w′)+C′

≤ K(d×tu (z,w)+d×tu (z
′,z)+d×tu (w,w

′))+C′

≤ Kd(z,w)+2K(δ ′+R′)+C′

≤ K(d(z′,w′)+d(z,z′)+d(w′,w))+2K(δ ′+R′)+C′

≤ Kd(z′,w′)+2K(δ ′+R′)+2K(δ ′+R′)+C′

= Kd(z′,w′)+C.

On the other hand, since d ≤ d×tu ≤ dtu on Hulltu(u), it follows that

d(z′,w′)≤ d×tu (z
′,w′)≤ dtu(z

′,w′)≤ Kdtu(z
′,w′)+C.

Therefore, the inclusion Hulltu(u)→ X̃ is a (K,C)–quasiisometric embedding, proving
the claim.

This claim completes the proof of the proposition.

We have the following corollary which will be used to prove Theorem 1.2.

Corollary 8.4. Suppose that we are in the situation of Diagram (10) and X̃ is δ–
hyperbolic. Then there exists D0 > 0 such that for any pair of adjacent vertices u1,u2 ∈
C(0)(S̊), there are points x′ ∈Hulltu1

([u1,u2]) and x′′ ∈Hulltu2
([u1,u2]) with d(x′,x′′)<

D0.

Proof. First observe that the inclusions

Hulltu1
([u1,u2])⊂ Hulltu1

(u1) and Hulltu2
([u1,u2])⊂ Hulltu2

(u2)

are isometric embeddings, and hence Hulltu1
([u1,u2]) and Hulltu2

([u1,u2]) are (K,C)–
quasiisometrically embedded in X̃ . A quasiinvariant d–geodesic axis for any ele-
ment of π1(S)[u1,u2] is contained in a uniformly bounded neighborhood of each of
Hulltu1

([u1,u2]) and Hulltu2
([u1,u2]), and hence there are points in these hulls within

some uniform distance D0 > 0 of each other.
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Let G0 = G∩π1(S) and Ĝ < Θ denote the image of G under the homomorphism
Γ→ Θ. Denote the quotients of X̃ by the actions of G0, G, and π1(S) by XG0 , XG, and
XS, respectively. Denote the quotient of H2 by the action of G0 by SG0 , and the quotient
of B̃ by the action of Ĝ by BG. We arrange all these quotient maps and all previous maps
into the following diagram, labeling those we will need to refer to explicitly.

H2 SG0

S

H2× B̃ SG0 × B̃ S× B̃ XG

X̃

XG0 XS X

B̃ BG B

f

p

p1
p0

f̃

q

(14)

The fact that each of the spaces X̃ , XG0 , and XS are products follows from the fact
that XS is a product, which in turn follows from the fact that the quotient of Teich(S̊) by
π1(S) is an S–bundle over the contractible space Teich(S). We also note that XG0 and
XG are SG0–bundles over B̃ and BG, respectively, with the latter bundle the quotient of
the former by the action of G/G0 = Ĝ by bundle transformations.

For any vertex t ∈ B̃(0) we let H2
t , SG0,t , and St denote the fibers over t in X̃ , XG0 ,

and XS, respectively. We equip these with their induced path metrics, all of which we
denote dt . Similarly, given v ∈ B(0)

G , let SG0,v denote the fiber over v in XG with its path
metric dv. Observe that if q(t) = v, then the restriction of p0 to (SG0,t ,dt) is an isometry
to (SG0,v,dv).

Lemma 8.5. Suppose that we are in the situation of Diagram (10), the space X̃ is δ–
hyperbolic, and G < Γ. Given x ∈ X̃ and R > 0 there exists D′ > 0 with the following
property. If u is a simplex of C(S̊), then any dtu–geodesic segment

[z,w]tu ⊂ NR(G · x)∩Hulltu(u)

has length at most D′.

Proof. The reader may wish to refer to Diagram (14) throughout the proof.
For any x ∈ X̃ and R > 0 we consider the closed R–neighborhood NR(G · x) of the

G–orbit of x. Observe that p(G ·x) = p(x), and so p(NR(G ·x)) = BR(p(x)), the closed
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ball of radius R about p(x), which is compact. Since f is continuous, it follows that
f (BR(p(x)))⊂ BG is compact, and hence contains only finitely many vertices

V = {v1, . . . ,vn}= f (BR(p(x)))∩B(0)
G .

Also, for each i = 1, . . . ,n, pick ti with q(ti) = vi and set

T = {t1, . . . , tn} ⊂ B̃(0)

so that G ·T = q−1(V ) (where G is acting on T ⊂ B̃ by the quotient G→ Ĝ). Then,
given any t ∈ B̃(0) we have

H2
t ∩NR(G · x) 6= /0 ⇔ SG0,t ∩ p1(NR(G · x)) 6= /0

⇔ ∃g ∈ G such that g · t ∈ T.
(15)

For each i = 1, . . . ,n, the map p0 takes (SG0,ti ,dti) isometrically to (SG0,vi ,dvi), and
restricts to a homeomorphism on the intersections

SG0,ti ∩ p1(NR(G · x)) SG0,vi ∩BR(p(x)).p0

∼=

Since the target of this restriction is compact, so is the domain. So there is a compact
connected subsurface Σi ⊂ SG0,ti with

SG0,ti ∩ p1(NR(G · x))⊂ Σi.

We may assume Σi is π1–injective, and we let Gi = π1(Σi)<G0 be the finitely generated
image.

Let Σ̃i denote the component of p−1
1 (Σi) ⊂ H2

ti stabilized by Gi and let ri > 0 be
such that

Σ̃i ⊂ Nri(Hullti(Gi)).

Observe that any geodesic segment [z,w]ti ⊂ H2
ti ∩NR(G · x) projects by p1 to be con-

tained in SG0,ti ∩ p1(NR(G · x))⊂ Σi. Therefore [z,w]ti is contained in a G0 translate of
Σ̃i, and hence a G0–translate of Nri(Hullti(Gi)).

Now, let u ⊂ C(S̊) denote any simplex. Given any geodesic segment in the inter-
section

[z,w]tu ⊂ Hulltu(u)∩NR(G · x),

we may apply an element g ∈ G with g · tu = ti to this, by (15). By Proposition 8.1, we
have g · tu = tg·u, and so

[g · z,g ·w]tg·u = [g · z,g ·w]ti ⊂Hullti(g ·u)∩NR(G ·x) = Hulltg·u(g ·u)∩NR(G ·x).

Since g acts by isometries, it follows that

diam([z,w]tu) = diam([g · z,g ·w]tg·u).
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So it suffices to prove the lemma for segments [z,w]tu where tu = ti for some i. As noted
above, all such segments are contained in a G0 translate of Nri(Hullti(Gi)). Therefore,
appealing to Proposition 8.1 again, it suffices to prove the lemma for segments

[z,w]ti ⊂ Nri(Hullti(Gi))∩Hulltu(u)

where tu = ti.
By Proposition 6.2, we again see that there exists a Di which bounds the length

of such a segment, depending on Gi and ri, but not u. Setting D′ = max{D1, . . . ,Dn}
completes the proof.

Given a subset Y ⊂ X̃ , let π : X̃ → Y denote a closest point projection map. The
following is a consequence of quasiconvexity and hyperbolicity.

Lemma 8.6. Suppose that we are in the situation of Diagram (10), the space X̃ is
δ–hyperbolic, and Y ⊂ X̃ an A–quasiconvex subset. There is a λ > 0 such that π is
(λ ,λ )–coarsely Lipschitz.

Moreover, given K,C > 0 there exists R0 > 0 such that for any R > R0 and any
(K,C)–quasigeodesic γ ⊂ X̃ ,

diam(π(γ))≤ diam((γ ∩NR(Y ))0)+R0

where (γ ∩NR(Y ))0 is the longest segment of γ contained in NR(Y ).

Proof. The first part is well–known. To prove the second part, we observe that a quasi-
geodesic γ = [z,w] can be decomposed into three segments [z,w] = [z,z′][z′,w′][w′,w]
(some of which may be empty), where [z′,w′] remains a bounded distance from Y and
[z,z′] remains a bounded distance from a geodesic joining z to π(z) (and therefore has
uniformly bounded projection diameter). Similarly, the path [w′,w] remains a bounded
distance from a geodesic joining π(w) to w.

The next proposition follows by simply assembling the results above.

Proposition 8.7. Suppose that we are in the situation of Diagram (10), the space X̃
is δ–hyperbolic, and G < Γ quasiisometrically embedded. Given x ∈ X̃ and letting
π : X̃ →G ·x denote a closest point projection map, there exists D > 0 with the follow-
ing property. Given any simplex u⊂ C(S̊) and tu–geodesic segment [z,w]tu ⊂ Hulltu(u)
we have diam(π([z,w]tu))< D.

Proof. Let K,C be as in Proposition 8.1. Since G < Γ is quasiisometrically embedded,
G · x is also, and hence is A–quasiconvex for some A > 0. Let R0 > 0 be given by
Lemma 8.6, and fix R ≥ R0. Finally, let D′ > 0 be as given by Lemma 8.5 and set
D = D′+R0.

Now [z,w]tu ⊂ Hulltu(u) is (K,C)–quasigeodesic by Proposition 8.1. By Lemma
8.5 and the second part of Lemma 8.6, it follows that

diam(π([z,w]tu))≤ diam(([z,w]tu ∩NR(G · x))0)+R0 ≤ D′+R0 = D,

where ([z,w]tu ∩NR(G · x))0 is the longest segment in the intersection

[z,w]tu ∩NR(G · x)⊂ Hulltu(u)∩NR(G · x).

This completes the proof.
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Proof of Theorem 1.2. This now follows a similar outline to the proof of Theorem 1.1.
We choose any vertex u ∈ C(S̊) and let x ∈ Hulltu(u) ⊂ X̃ be any point. Let D > 0

be as in Proposition 8.7. Since G < Γ is quasiisometrically embedded, distances in G
are comparable to those in G · x ⊂ X̃ . As in the proof of Theorem 1.1, it suffices to
prove that there exist constants K0,C0 > such that

d(x,g · x)≤ K0dC(u,g ·u)+C0.

Let D0 > 0 be as in Corollary 8.4 and λ > 0 as in Lemma 8.6. We claim that C0 =
max{λ (D0 +1),D} and K0 = 2C0 suffices.

Let u = u0, . . . ,un = g ·u denote the vertices of a geodesic [u,g ·u]⊂ C(S̊) connect-
ing u to g ·u, so that n = dC(u,g ·u). For each 1≤ i≤ n, choose points

x′i ∈ Hulltui−1
([ui−1,ui]) and x′′i ∈ Hulltui

([ui−1,ui])

which are a distance D0 apart, which is possible by Corollary 8.4.
Now consider the path γ connecting x and g · x given by

γ = [x,x′1]tu0
[x′1,x

′′
1 ][x
′′
1 ,x
′
2]tu1

[x′2,x
′′
2 ] · · · [x′′n−1,x

′
n]tun−1

[x′n,x
′′
n ][x
′′
n ,g · x]tun .

Here [z,w] denotes a d–geodesic from z to w in X̃ and [z,w]t denotes a dt–geodesic
from z to w in H2

t . Since

x′′i ∈ Hulltui
([ui−1,ui])⊂ Hulltui

(ui)

and

x′i+1 ∈ Hulltui
([ui,ui+1])⊂ Hulltui

(ui),

it follows that [x′′i ,x
′
i+1]tui

⊂ Hulltui
(ui) for every 1 ≤ i ≤ n− 1. In particular, the path

γ alternates between geodesic segments in hulls Hulltui
(ui) and segments of the form

[x′i,x
′′
i ] (note that x,x′1 ∈ Hullt0(u0) and x′′n ,g · x ∈ Hulltun (un)).

Let π : X̃ → G · x denote a closest point projection. By Proposition 8.7, for every
i = 0, . . . ,n−1 we have

d(π(x′′i ),π(x
′
i+1))≤ diam(π([x′′i ,x

′
i+1]tui

))≤ D

and

d(x,π(x′1)),d(π(x
′′
n),g · x)≤ D.

Since π is (λ ,λ )–coarsely Lipschitz, we also have

d(π(x′i),π(x
′′
i ))≤ λd(x′i,x

′′
i )+λ ≤ λ (D0 +1).
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Therefore, since C0 = max{λ (D0 +1),D}, K0 = 2C0, and dC(u,g ·u) = n we have

d(x,g · x)≤ d(x,π(x′1))+
n

∑
i=1

d(π(x′i),π(x
′′
i ))

+
n−1

∑
i=1

d(π(x′′i ),π(x
′
i+1))+d(π(x′′n),g · x)

≤ (n+1)D+n(λ (D0 +1))
≤ (2n+1)C0

= (2dC(u,g ·u)+1)C0

= K0dC(u,g ·u)+C0

as required.

9 On a theorem of Scott and Swarup
We now prove our generalization of Scott and Swarup’s Theorem [25].

Theorem 1.3. Let

1 π1(S) ΓΘ Θ 1

be a δ–hyperbolic surface group extension. If H is a finitely generated infinite–index
subgroup of π1(S), then H is quasiisometrically embedded in ΓΘ.

Proof. It suffices to show that a finite–index subgroup H ′ of H is quasiisometrically
embedded.

By a theorem of Scott [26, 27], there is a finite cover S′ of S in which the subgroup
H represents the fundamental group of a subsurface of S′. Let S′′ be the finite cover of
S such that

π1(S′′) =
⋂

θ∈Θ

θ(π1(S′)).

Then Θ lifts to Mod(S′′), and so there is a finite–index subgroup Γ′
Θ

of ΓΘ of the form

1 π1(S′′) Γ′
Θ

Θ 1.

It follows immediately from Proposition 8.1 that H ′ = H∩π1(S′′) is quasiisometrically
embedded in Γ′

Θ
. As the latter is finite–index in ΓΘ, it is quasiisometrically embedded

there, and so H ′ is quasiisometrically embedded in ΓΘ.
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