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Abstract

We show that there is a type–preserving homomorphism from the fun-
damental group of the figure–eight knot complement to the mapping class
group of the thrice–punctured torus. As a corollary, we obtain infinitely
many commensurability classes of purely pseudo-Anosov surface subgroups
of mapping class groups of closed surfaces. This gives the first examples of
compact atoroidal surface bundles over surfaces.

1 Introduction
Mapping class groups of surfaces are often viewed in analogy with Kleinian
groups, with the Teichmüller space playing the role of H3 and the mapping class
group playing the role of a finite covolume lattice in PSL2(C). Finite covolume
Kleinian groups contain swarms of quasifuchsian closed surface subgroups. In the
noncocompact case, the existence of such subgroups is due to J. Masters and X.
Zhang [66] and M. Baker and D. Cooper [6], while their ubiquity was proved by
Cooper and D. Futer [18] and J. Kahn and A. Wright [43]. In the cocompact case,
existence and ubiquity is due to Kahn and V. Marković [42]. Such quasifuchsian
subgroups contain no parabolic elements, and so give examples of purely hyper-
bolic surface subgroups in every finite covolume Kleinian group.

At the turn of the century, B. Farb and L. Mosher [26] developed a theory of
convex cocompact subgroups of mapping class groups that has been refined and
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explored over the years—see [27], [47], [33], [48], [50], [46], [55], [23], [24],
[28], [64], [8], [60], and [80].

There are many equivalent definitions of convex cocompactness, see [47],
[48], and [8] for a few, but the simplest to state is that sending the subgroup
of Mod(S) to its orbit in the curve complex of S is a quasiisometric embedding.
This was proven equivalent to convex cocompactness by the authors [47] and,
independently, by U. Hamenstädt [33].

In [26], Farb and Mosher constructed convex cocompact free groups and asked
whether or not there are examples of convex cocompact subgroups of Mod(S) that
are not virtually free.

Question 1 (Questions 1.7 and 1.9 of [26]). Are there convex cocompact sub-
groups of Mod(S) that are not virtually free? Are there infinite convex cocompact
subgroups that are isomorphic to the fundamental group of a closed surface? Are
the surface group extensions of such subgroups δ–hyperbolic?

Any subgroup G of Mod(S) gives rise to a surface group extension

1→ π1(S)→ ΓG→ G→ 1

by pulling G back to Mod(S̊) in the Birman exact sequence [9]

1→ π1(S)→Mod(S̊)→Mod(S)→ 1.

Combining the work of Farb, Mosher, and Hamenstädt [26, 33] produces the
following theorem characterizing the hyperbolic extensions.

Theorem (Farb–Mosher [26], Hamenstädt [33]). Suppose that S is closed. Then
the extension ΓG is δ–hyperbolic if and only if G is a convex cocompact subgroup
of Mod(S).

When G is a cyclic subgroup generated by a pseudo-Anosov mapping class
g, the extension ΓG is the fundamental group of a hyperbolic 3–manifold, by
Thurston’s Hyperbolization theorem for fibered 3–manifolds [79, 71]. It is then
natural to wonder if there are closed surface bundles over surfaces that admit a
hyperbolic structure as well.

Question 2. Is there a compact surface bundle over a surface that admits a hyper-
bolic metric?
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Conjecturally, the answer to the first question is no, as it would violate cer-
tain conjectures about the Seiberg–Witten invariants of hyperbolic manifolds—see
[72]. However, a negative answer would not forbid surface bundles over surfaces
from having δ–hyperbolic fundamental groups, and so we focus our attention on
Question 1.◦ Note that convex cocompactness implies that the subgroup is virtu-
ally purely pseudo-Anosov [26], and so, implicit in Question 1 is the following
question.

Question 3. Is there a purely pseudo-Anosov closed surface group in some Mod(S)?

We give the first examples of such groups.

Theorem 1 (Purely pseudo-Anosov surface groups). There are infinitely many
commensurability classes of purely pseudo-Anosov surface subgroups of Mod(Sg,0)
for all g≥ 4.

We obtain Theorem 1 as a corollary of the following theorem, appealing to a
branched cover construction.

Theorem 2 (Type preserving figure eight). There is a type–preserving represen-
tation of the fundamental group π1(M8) of the figure–eight knot complement to
the mapping class group of the thrice–punctured torus.

Here a type–preserving representation is one that takes peripheral elements (that
are parabolic in the associated Kleinian group) to reducible mapping classes and
hyperbolic elements to pseudo-Anosov mapping classes. Viewing reducible ele-
ments of the mapping class groups in analogy with parabolic elements gives us a
rather weak notion of type–preservation, as reducible elements may have positive
infimal translation length. A stronger version of type–preservation might require
that the parabolic elements pass to elements of zero translation length, which are,
in a sense, the true parabolic elements in the isometry group of Teichmüller space.
We note here that, while our representation does not have this stronger property,
its restriction to the fiber subgroup does.

The abundance of purely hyperbolic surface subgroups of π1(M8) then yields
Theorem 1, which in turn yields the following theorem.

Theorem 3 (Atoroidal surface bundles). There is a closed 4–manifold E with no
Z2 subgroups in π1(E) that fibers as a surface bundle over a surface S→ E→ B.

◦It is known that such a bundle cannot be a complex hyperbolic surface [45].
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We expect that our surface subgroups are convex cocompact, and plan to take up
that topic in a subsequent paper.

In light of Theorem 2, it is natural to ask which Kleinian groups admit such
type-preserving representations.

Question 4. Which hyperbolic n–manifold groups admit type-preserving repre-
sentations into a mapping class group?

One of the original motivations for the study of convex cocompactness in
mapping class groups was to approach the question of M. Gromov as to whether
groups G with finite K(G ,1)s are hyperbolic if and only if they contain no Baum-
slag–Solitar groups, as the extension ΓG is hyperbolic if and only if G is convex
cocompact, and has no Baumslag–Solitar subgroups if and only if G is purely
pseudo-Anosov. This question has been remarkably shown to have a negative
answer by G. Italiano, B. Martelli, and M. Migliorini [39], but whether or not
there are counterexamples of the form ΓG remains open. At any rate, we have the
following corollary of our work here.

Corollary 4. There is either a δ–hyperbolic surface-by-surface group or a non-
hyperbolic surface-by-surface group that has no Baumslag–Solitar subgroups.

Proof. See [46].

In the Kleinian setting, it is a theorem of Thurston [16, Theorem 5.2.18] that,
given a finitely generated Kleinian group Γ, and a number χ < 0, there are only
finitely many conjugacy classes of quasifuchsian surface subgroups of Γ whose
Euler characteristic is at least χ . B. Bowditch proved [13] the analogous statement
for purely pseudo-Anosov surface subgroups of mapping class groups.

Theorem 5 (Bowditch [13]). Given a number χ < 0, there are only finitely many
conjugacy classes of purely pseudo-Anosov subgroups isomorphic to π1(Σ), where
Σ is a closed surface of Euler characteristic at least χ .

Our main theorem provides a lower bound on the number of these conjugacy
classes.

Theorem 6. The number of commensurability classes of purely pseudo-Anosov
subgroups of Mod(Sg,0) and Mod(S1,3) that are isomorphic to the fundamental
group of a surface of genus at most h is bounded below by a strictly increasing
linear function of h.
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This estimate is likely a lot smaller than the number of all convex cocompact
quasifuchsian subgroups of π1(M8) of genus at most h, and one would expect the
number to grow exponentially, if not super exponentially, in h, as is the case in
the closed setting, where Kahn and Marković [41] show that there is a constant c
depending only on the injectivity radius so that the number of commensurability
classes of incompressible surfaces of genus h in a hyperbolic 3–manifold is at
least (ch)2h.

1.1 Historical notes and other approaches
1.1.1 Historical comments

As far as we are aware, the first mentions of Questions 2 and 3 in the literature
occur in the 1990s, though we expect that Question 3 has been around longer than
that. For example, Misha Kapovich [44] attributes Question 2 to Geoff Mess in
1991, and noted that Question 3 arose naturally at the same time.

Question 2 appears as Question 15 of [45], published 1998, and was put to
W. J. Harvey in the 1990s by L. Potyagailo [31]—see also Question 4.1 of [72].

Question 3 was also put to Harvey by Potyagailo [31] sometime in the nineties,
and variants were asked by Mosher [68] in 1997 and Kapovich [45] in 1998, who
both asked if there are purely pseudo-Anosov groups that are not free. See also
Questions 1.1 of [72], Problem 4.1 of [69], and Question 1.3 of [59]. Kapovich
also asked [45] if there are δ–hyperbolic surface-by-surface groups, while Mosher
[68] and M. Mj [67] asked if there are hyperbolic extensions 1→K→ Γ→H→ 1
where K is nonelementary and H is not free.

A natural question between Questions 1 and 2 (asked to us by D. Fisher) is
whether there are surface bundles over surfaces that admit metrics of negative
sectional curvature. While we could not find this exact question in the literature,
Reznikov’s 1993 paper [73], particularly his Corollary F.3, makes it clear that this
question has also been around for a while.

A variant of Question 4 was posed by Reid (see Question 4.10 [72]). The type
preserving assumption here is important, as M. Bridson [14] showed that many
hyperbolic n–manifold groups embed into mapping class groups, including all
hyperbolic 3–manifold groups, and, more generally, all virtually special groups.
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1.1.2 Other surface groups

Representations of surface groups into mapping class groups arise naturally as
monodromies of families of Riemann surfaces, which arise naturally in topology
and algebraic geometry. See [5], [37], [56], [31], [15], and [75], for example.

The universal example of a family is the universal curve, which assigns to
each point of the moduli space the corresponding algebraic curve. This family
is a quotient of the Bers fibration over Teichmüller space [7], which is naturally
identified with the Teichmüller space of the one punctured surface. Furthermore,
the action of π1(S) on the fiber gives a faithful representation to the mapping
class group of the once–punctured surface whose image is the Birman kernel [9].
By a theorem of I. Kra [57], an element of π1(S) is pseudo-Anosov under this
representation if and only if it is a filling loop, and so these surface groups cannot
be purely pseudo-Anosov.

Even more examples arise from the universal curve, for if you take a pseudo-
Anosov g : S→ S, the fundamental group of the mapping torus injects into the
mapping class group of the once-punctured surface. By [66], [6], [42], [43], and
[18], these mapping tori contain many immersed incompressible surfaces, and we
obtain many surface groups in mapping class groups. I. Agol has observed [2]
that the only reducible elements arising from these representations must lie in the
fiber subgroup, where being pseudo-Anosov is equivalent to being filling [57]. As
shown in [23], any purely pseudo-Anosov, finitely generated subgroup arising in
this way will be convex cocompact. A similar convex cocompactness statement
holds when g is reducible [60], though all purely pseudo-Anosov subgroups are
free in this case. See [49] for a discussion of this approach and a geometric crite-
rion to be pseudo-Anosov that serves as an alternative to Kra’s [49] in this setting.

In addition to the surfaces guaranteed by [66], [6], [42], [43], and [18], there
are the “cut-and-cross–join” surfaces of Cooper, Long, and Reid [19], but it is
worth noting that, while it is conceivable that there is a cut-and-cross–join sur-
face that is purely pseudo-Anosov, one must be careful to distinguish between
the geometrically finite and geometrically infinite cases, as the latter cannot be
purely pseudo-Anosov—they are virtual fibers and must contain the commutator
subgroup, which contains many reducible elements.

It seems likely that many of these quasi-Fuchsian surface subgroups pass over
to purely pseudo-Anosov surface groups, but as of writing there are no known
examples arising this way.

Prior to Theorem 1, the record for the “fewest” reducible elements of a sur-
face subgroup of a mapping class group was given by the combination theorem
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of Leininger and A. Reid [59], where it is shown that one may combine Veech
groups along parabolic subgroups to obtain closed surface groups in mapping
class groups whose reducible elements are all conjugate into a single cyclic sub-
group.

Another approach to construct purely pseudo-Anosov surface subgroups was
given by Agol (see [72, Section 4.3]) who observed that certain small complexity
compactified moduli spaces are in fact complex hyperbolic orbifolds, and that
one may attempt to construct purely pseudo-Anosov surface subgroups by finding
geodesic surfaces dodging the singularities.

Embeddings of right-angled Artin groups into mapping class groups (consid-
ered in [20], [17], [54], [74], and [76]) provide another source of surface sub-
groups. Many of these groups (as well as more general Artin and Coxeter groups)
contain surface subgroups. See, for example [78], [1], [32], [22], [21], [52], and
[51]. In [22], J. Crisp and B. Wiest construct undistorted surface subgroups of
right-angled Artin groups, which when applied to the embeddings constructed by
M. Clay, Leininger, and J. Mangahas in [17] (and extended by I. Runnels in [74]
and D. Seo in [76]) produce undistorted surface subgroups of the mapping class
group. On the other hand, it was also observed in [17] that a surface subgroup
that factors through an embedding of a right-angled Artin group is never purely
pseudo-Anosov.

The authors’s [47] and Hamenstädt’s [33] characterization of convex cocom-
pactness implies that a convex cocompact surface group gives rise to an equiv-
ariant quasiisometric embedding of the hyperbolic plane into the curve complex.
Such a quasiisometric embedding extends continuously to an embedding of the
circle at infinity into the Gromov boundary of the curve complex, which may be
identified with the space of ending laminations [53]. This provides some potential
obstructions to the existence of convex cocompact surface groups. Path connectiv-
ity of the boundary of the curve complex was proved for most surfaces by Gabai
[29] (see also [58], [35], [30], and [84]), effectively ruling out this obstruction.
Leininger and S. Schleimer [61] further proved the existence of quasiisometric-
ally embedded hyperbolic planes (in fact, hyperbolic n–spaces for all n) in curve
complexes, ruling out that obstruction as well.

At the 2007 Cornell Topology Festival, W. Thurston proposed yet another
approach to the second author, similar in spirit to the constructions in [5], [56],
and [31]. Thurston suggested finding a “sufficiently complicated” multisection of
the trivial bundle S× S, which produces a map of the base into the configuration
space of several points on S, and hence a representation of the fundamental group
into the mapping class group. While this is not too far from the ideas of the authors
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and Wright discussed below, the authors could never crystallize Thurston’s ideas
into a theorem.

Finally we note that one might hope to make the Kahn–Marković/Kahn–Wright
strategy work in the moduli space, and that Kahn and Wright’s work [43] was mo-
tivated by this.

1.2 Sketch of the proof of Theorem 2
Wright has posed [85] the following question, which arose in relation to conver-
sations between him and Kahn.

Question 5 (Wright [85]). Does there exist a fixed–point-free homeomorphism
f : S→ S of a closed hyperbolic surface S with the property that every essential
simple closed curve γ on S fills with its image f (γ)?

Wright’s motivation for asking this question was his observation that, if there
is such a homeomorphism, then we have a π1–injective map x 7→ {x, f (x)} of S
into the configuration space of two points on S, and, moreover, that the image of
the fundamental group would be purely pseudo-Anosov in the fundamental group
of the configuration space (viewed as a subgroup of the mapping class group of
the twice–punctured S), via an analogue of Kra’s Theorem [57] due to Imayoshi,
Ito, and Yamamoto [38]. See Lemma 9 below.

In [5] and [56], M. Atiyah and K. Kodaira do something similar, though rather
than requiring that curves fill with their image, the homeomorphism is taken to be
holomorphic—see also G. González-Díez and Harvey [31]. Note that a mapping
class represented by a holomorphic map is necessarily of finite order, and that,
conversely, any finite order mapping class may be realized by a holomorphic map
(in fact an isometry of some hyperbolic metric), by J. Nielsen’s realization theo-
rem [70]. It is conceivable that an irreducible periodic mapping class could have
the second property in Wright’s question, taking essential curves to mutually fill-
ing curves, and, by Nielsen realization, this would yield a holomorphic atoroidal
surface bundle over a surface. Furthermore, since the moduli space of curves is
a quasiprojective variety, the map from the base to the moduli space could be
taken to be algebraic—by the GAGA principle [77]—and thus as in Atiyah’s and
Kodaira’s construction, the bundle would be a complex algebraic family.

To illustrate the difficulty of Wright’s question, note that T. Aougab, Futer,
and S. Taylor [3] have recently shown that the number of fixed points of a pseudo-
Anosov homeomorphism is coarsely bounded below by its curve complex trans-
lation length, which must be at least three if essential curves fill with their image.
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One of our key innovations here is our observation that fixed–point free home-
omorphisms of surfaces not only give us representations of the associated surface
groups into mapping class groups, but representations of the fundamental groups
of the mapping tori—see Corollary 13. This implies that if Wright’s question has
an affirmative answer for some pseudo-Anosov f , the resulting purely pseudo-
Anosov surface subgroup would have infinite index in its normalizer, forbidding
it from being convex cocompact.†

While we are unable to answer Wright’s question, we do have available a
fixed–point-free homeomorphism f of a noncompact surface S with the property
that every essential loop fills with its image. This f is the homeomorphism of the
once–punctured torus induced by the action of the matrix[

2 1
1 1

]
on R2, which happens to be the monodromy of the fibration of the figure–eight
knot complement. The argument works just as well for any affine homeomor-
phism of trace 3 and determinant 1 or trace 1 and determinant −1.

The point z = 0.2[1,2]T is fixed by f 2, and is a natural choice for the basepoint
of π1(S). The representation ∆ f takes π1(M f ,z) into the mapping class group of
the thrice punctured torus T 2−{0,z, f (z)}, and the image of π1(M f 2 ,z) lies in the
pure mapping class group.

A simple check shows that every essential loop in S = T 2− 0 fills with its
image under f . If γ is an essential simple closed curve, it represents a nontrivial
homology class, and γ and f γ fill since the matrix above is hyperbolic. This
argument also shows that γ and f−1γ fill. In any case, if γ and f γ don’t fill, then,
after some isotopies, there is an essential simple closed curve β that lies in their
complement. But since γ and f γ are disjoint from β , we have that γ is disjoint
from β and f−1(β ). Since γ is essential, this means that β and f−1(β ) don’t fill,
contradicting the first case. It follows that every essential (nonperipheral) element
of the fundamental group of S is sent to a pseudo-Anosov mapping class of the
thrice–punctured torus.

Then, if we have a reducible element R in ∆ f (π1(M f 2)) with nontrivial expo-
nent sum in f , the reducing system in the thrice–punctured torus must contain a
curve bounding a disk in T 2, since f 2 is Anosov on T 2, and this disk must contain
at least two of our three punctures 0, z, and f z. This disk produces a solid torus in

†Wright was also aware of this normalizing behavior and its implication for non-convex co-
compactness.
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the mapping torus of the extension f of f to the closed torus T 2 (the Sol–manifold
associated to the matrix). It follows that we may fill in one of the three punctures
so that R descends to a reducible mapping class.

If we forget z or f z, the resulting representation of π1(M f 2) is the usual rep-
resentation into the pure mapping class group of the twice–punctured torus given
by the Birman exact sequence, and any reducible element here with nontrivial
exponent sum in f must be peripheral.

If we forget 0, we obtain another representation of π1(M f 2) to the mapping
class group of the twice–punctured torus, but this time it is less clear that we
have an isomorphism onto a nice image. However, the additive group structure
on T 2 implies that any two–strand pure braid on the torus is level isotopic to a
one–strand braid on the punctured torus, and so this new representation also takes
π1(M f 2) into the image of the usual representation. A calculation reveals that this
representation is injective, and hence an isomorphism. Again we conclude that R
must descend to a peripheral element, and since isomorphisms of hyperbolic 3–
manifold groups are type preserving, we conclude that R was peripheral to begin
with, and this completes the proof that ∆ f is type–preserving.
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2 Birman’s Exact Sequence
Suppose S is a compact orientable surface punctured at a finite set of points. If
X ⊂ S is any finite subset, we write SX to denote S−X , the surface S punctured
at the additional set of points X . Any homeomorphism h : S→ S with h(X) = X
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restricts to a homeomorphism hX : SX → SX . Conversely, any homeomorphism
SX → SX that preserves the punctures associated to X—the X–punctures—arises
in this way. If X = {x}, we write Sx = SX and hx = hX . We write [[hX ]] for the
isotopy class of hX .

Given S and a (possibly empty) finite subset X ⊂ S as above, we write Mod(SX)
for the mapping class group of SX , the group of orientation preserving homeomor-
phisms of SX up to isotopy, and

Mod(SX ,X) = {[[hX ]] | with h(x) = x for all x ∈ X}

for the mapping classes fixing each of the X–punctures. The assignment hX 7→ h
descends to a homomorphism

ρX : Mod(SX ,X)→Mod(S),

for if hX and h′X are isotopic, so are h and h′. The homomorphism ρX “forgets”
(or “fills in”) the X punctures.

If hX : SX → SX represents an element of ker(ρX), then there is an isotopy
H : S× [0,1]→ S from h to the identity 1S. We write ht = H( · , t) : S→ S for
this 1–parameter family of homeomorphisms so that h0 = h and h1 = 1S. In this
case, t 7→ ht(X) is a loop in Confn(S), the configuration space of n = |X | ordered
distinct points on S. Recall that this is defined to be the open subset of the n–fold
product

Confn(S) = S×S×·· ·×S−
{
(x1, . . . ,xn) | xi = x j for some i 6= j

}
.

The loop t 7→ ht(X) represents an element of PBn(S) = π1(Confn(S),X), the n–
strand pure braid group on S (here we choose any ordering on X , and also use
X to denote the n–tuple of its points that this ordering defines). Birman proved
that for most surfaces S, this braid is uniquely determined by the element of the
kernel—see Chapter 4 of [9], [7], and Theorem 9.1 of [25]

Theorem 7 (Birman Exact Sequence). If χ(S)< 0 and X ⊂ S is a set of n points,
then there is an exact sequence

1→ PBn(S)→Mod(SX ,X)
ρX−→Mod(S)→ 1,

where the identification of an element of the kernel of ρX with PBn(S) is as de-
scribed above.
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Given a braid in PBn(S)= π1(Confn(S),X) represented by a loop γ in Confn(S)
based at X , we may write γ(t) = (γ1(t), . . . ,γn(t)), where γ1, . . . ,γn are paths in S
with

(γ1(0), . . . ,γn(0)) = X = (γ1(1), . . . ,γn(1)).

The Isotopy Extension Theorem [36, Chapter 8, Theorem 1.3] implies that there
is an isotopy gt : S→ S with g0 = 1S and gt(X) = γ(t) for all t ∈ [0,1]. We think
of gt as “point pushing” X along γ . The reversed isotopy ht = g1−t : S→ S is
an isotopy from h0 = g1 : S→ S to the identity h1 = 1S, so ht point pushes X
along γ , the path with the reversed orientation. This identifies the braid [γ] with
the mapping class in Mod(SX ,X) obtained from 1S by point pushing backwards
along γ and restricting to SX .

The pure mapping class group PMod(S) of S is the subgroup of Mod(S) con-
sisting of elements represented by homeomorphisms that fix each puncture. If
S is closed and Y ⊂ X ⊂ S then PMod(SX) < Mod(SX ,Y ), and we can forget Y ,
defining a (sub) short exact sequence (when χ(SX−Y )< 0).

1→ PBn(SX−Y )→ PMod(SX)
ρY−→ PMod(SX−Y )→ 1.

For z∈ S and χ(S)< 0, another important instance of the exact sequence above
is

1→ π1(S,z)→ PMod(Sz)→ PMod(S)→ 1,

since the 1–strand braid group is just the fundamental group of S.

2.1 Closed braids in mapping tori
Given a homeomorphism h : S→ S, the mapping torus Mh is the quotient

Mh = S× [0,1]/(x,0)∼ (h(x),1).

We write q : S× [0,1]→Mh for the quotient map. The fundamental group π1(Mh)
is a semidirect product

π1(Mh)∼= π1(S)oZ,

where the stable letter acts by h∗ on π1(S). We describe this explicitly when h
fixes a basepoint z in S, as we will make use of this throughout. With such an
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h, the induced map h∗ : π1(S,z)→ π1(S,z) is a well-defined automorphism (not
just an outer automorphism). We then let q : S× [0,1]→Mh denote the quotient
map and consider the inclusion ι : S→Mh by ι(x) = q(x, 1

2). We consider z as a
basepoint for both S and Mh by identifying z with ι(z). We further write γ = ι ◦ γ ,
and identify π1(S,z) with its image in π1(Mh,z) by ι∗. The loop τ : [0,1]→ Mh
defined by τ(t) = q(z, t + 1

2) (modulo 1) then represents the stable letter in the
semidirect product, and, for all γ in π1(S,z), we have

τγτ
−1 = h∗(γ).

Puncturing S at z, we may then view Mh{z} ⊂Mh, where Mh{z} is obtained from Mh
by deleting the image of τ .

If a finite set X ⊂ S is preserved by a homeomorphism h : S→ S, then we can
view MhX = Mh−L , where L = p(X× [0,1]).

When hX represents an element of the kernel of ρX , then the isotopy of h = h0

to the identity h1 = 1S defines a homeomorphism H : S× [0,1]→ S× [0,1] given
by H(y, t) = (ht(y), t). This descends to a homeomorphism

Ĥ : Mh→M1S
∼= S×S1.

To see this, observe that points (y,0) and (h(y),1) identified in the domain are
mapped by H to H(y,0) = (h(y),0) and H(h(y),1) = (h(y),1), which are iden-
tified in the range. The image L0 = H(L ) ⊂ S× S1 of L is a link in “closed
braid form” in the product, being transverse to the fibers S×{∗} of the product
structure. This allows us to view MhX = S×S1−L0.

More generally, if f : S→ S is any homeomorphism, an isotopic homeomor-
phism can be expressed as f h : S→ S, where h : S→ S is isotopic to the iden-
tity. The isotopy ht of h = h0 to the identity similarly defines a homeomor-
phism Ĥ f : M f h → M f . In fact, Ĥ f is the descent of the exact same homeomor-
phism H : S× [0,1]→ S× [0,1] above, since H(x,0)= (h(x),0) and H( f h(x),1)=
( f h(x),1). If X ⊂ S is a finite set preserved by both homeomorphisms h and f ,
then we have ( f h)X = fX hX : SX → SX , and the mapping torus of M( f h)X can be
viewed as the complement of a link L ⊂ M f , depending on h and X , which is
transverse to the S–fibers.

We return to the case of a homeomorphism f : S→ S fixing a point z. When
the mapping class of f has infinite order in Mod(S), the short exact sequence from
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the semidirect product embeds into the Birman Exact Sequence

1 π1(S,z) π1(M f ,z) 〈τ〉 1

1 π1(S,z) Mod(Sz,z) Mod(S) 1

(2.1)

The vertical homomorphism 〈τ〉→Mod(S) sends τ to the mapping class of f and
the image of π1(M f ,z) is precisely the preimage ρ−1

z (〈 f 〉), with the loop τ in M f
sent to the mapping class fz. We think of fz as the first return map to Sz = ι(Sz)
of the “downward flow” on M f , that is, the flow generated by the vector field
− ∂

∂ t on S× [0,1] projected to M f : When Sz reaches Sz×{0}, it is identified with
Sz×{1} via fz on the first factor, and then continues to flow down until it reaches
Sz = ι(Sz).

If we change f by an isotopy to f h, where h also fixes z and is isotopic to
the identity, then we have ( f h)∗ = f∗h∗. On the other hand, the isotopy ht traces
out the loop β (t) = ht(z), and so h∗ is the inner automorphism iβ obtained by
conjugating by β . Flowing downward in M f h, the first return map to Sz is f h. We
can see the loop in M f by applying the homeomorphism Ĥ f above, but because the
basepoint z is not preserved, it is more convenient to adjust it as follows. Define
G : S× [0,1]→ S× [0,1] by

G(x, t) =


(h0(x), t) for 0≤ t ≤ 1

4

(h4t−1(x), t) for 1
4 ≤ t ≤ 1

2

(x, t) for 1
2 ≤ t ≤ 1

This homeomorphism G agrees with H on S×{0} and S×{1}, so it still descends
to a homomorphism Ĝ f : M f h→M f , but we have “combed the interesting part” of
the map into the subspace S× [1

4 ,
1
2 ] in the range. Conjugating the downward flow

on M f h to a flow on M f via Ĝ f , we see that the map pushes z = ι(z) backwards
(and down), first along β , and then backwards along (the rest of) τ . See Figure
2.1. Thus we see the loop t 7→ Ĝ f (q(z, t + 1

2)) (modulo 1), represents the same
element of π1(M f ) as τβ . We record this in the following lemma.

Lemma 8. Suppose that z is a point in S fixed by f : S→ S and h : S→ S, and
that there is an isotopy ht from h = h0 to the identity h1 = 1S. Let τ and β be the
paths defined by τ(t) = q(z, t+ 1

2) (modulo 1) and β (t) = ht(z), for t ∈ [0,1]. Then
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− ∂

∂ t

Figure 1: The flow.

t 7→ q(ht(z), t) is a loop in M f in the conjugacy class of [τβ ] in π1(M f ,z), up to
basepoint change isomorphism. Furthermore, this element represents [[( f h)z]] =
[[ fzhz]] in Mod(Sz,z), up to conjugacy.

Proof. The loop in the lemma is homotopic to the one described in the paragraph
preceding the statement of the lemma: it is straight forward to construct an isotopy
from H to G from their formulas. This is not a basepoint preserving homotopy
(indeed, the loop from the lemma need not be based at z), but the homotopy en-
sures that the two loops necessarily represent conjugate elements via a basepoint
change isomorphism. The loop defined by G was already noted to represent [τβ ]
in π1(M f ,z) and [[( f h)z]] in Mod(Sz,z), and this completes the proof.

3 The dancing representation
We continue to assume that S is the compact orientable surface punctured at a
finite set of points. Let f be any fixed–point-free homeomorphism of S. Then
there is a map D : S→ Conf2S given by

D(x) = (x, f (x))

and so a representation

D∗ : π1(S,z)→ π1(Conf2S,(z, f (z))) = PB2(S).
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The inclusion from the Birman Exact Sequence allows us to view this as a homo-
morphism

∆ f : π1(S,z)→Mod(S{z, f (z)},{z, f (z)}).

Given a loop β , there is an isotopy ht : S→ S from h0 : S→ S to the identity
h1 = 1S with ht(z) = β (t) and ht( f (z))) = f (β (t)). More concretely, we can view
ht as pushing z and f (z) along β and f (β ) simultaneously, and then ∆ f (β ) =
h0
{z, f (z)}. The next lemma was Wright’s motivation for asking Question 5.

Lemma 9 (A. Wright). Suppose f : S→ S is a fixed point free homeomorphism.
Then if β ∈ π1(S,z) and β and f (β ) are distinct homotopy classes of curves that
fill S, then ∆ f (β ) is pseudo-Anosov.

Proof. The main result of [38] completely describes the Nielsen–Thurston type
of a two–strand braid on any orientable finite–type surface, and may be applied in
our setting to prove the lemma. As the full statement is somewhat technical, we
give a self–contained proof for the reader’s convenience.

Suppose to the contrary that ∆ f (β ) is reducible. Since a pure braid is pure as
a mapping class (in the sense of [40]), we may assume that a homeomorphism h
representing ∆ f (β ) fixes the isotopy class of a simple closed curve γ in S{z, f (z)}.
As explained in §2.1, there is a link Lβ ⊂ S×S1, transverse to the S–fibers so that
S×S1−Lβ

∼= Mh. Projecting S×S1 onto the first factor, Lβ projects to β ∪ f β .
The fixed curve γ defines an essential torus T ⊂ S× S1−Lβ meeting each

S–fiber in a simple closed curve. Assume first that γ is homotopically nontrivial
in S. Then work of Waldhausen [82] implies that, after an isotopy preserving the
S–fibers, we may assume T = γ × S1. The isotopy replaces Lβ with an isotopic
link L ′

β
. Projecting L ′

β
onto the first factor of S× S1 produces the union of two

curves β ′∪β ′′ homotopic to β ∪ f (β ). In particular, β ′∪β ′′ is disjoint from the
projection of T , which is γ . However, β ∪ f (β ) is assumed to fill, hence so does
β ′ ∪ β ′′, and so the homotopically nontrivial curve γ on S must be peripheral.
Therefore, γ bounds a once-punctured disk B⊂ S, and T bounds B×S1 in S×S1.
Since T is essential in its complement, the link L ′

β
must nontrivially intersect

B×S1, and hence at least one of β ′ or β ′′ must project into B. If β ′ projects into
B, then β ′, and hence β , is peripheral, which then implies that f β is peripheral as
well. No such pair of curves can fill S, and from this contradiction we conclude
that either γ is homotopically trivial in S, or else ∆ f is pseudo-Anosov (and in the
latter case, we’re done, so we assume the former). Similarly, if β ′′ projects into
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B, we have that f β , and hence also β , is peripheral, again concluding that γ is
homotopically trivial.

Now, since γ is homotopically trivial, T bounds a solid torus V ⊂ S×S1 con-
taining Lβ . Since ∆ f (β ) is a pure braid, both components of Lβ are homotopic
to a core of V . In particular, they are homotopic to each other. Projecting this
homotopy to S determines a homotopy from β to f β , another contradiction. This
exhausts all possibilities assuming ∆ f (β ) were reducible. Therefore, ∆ f (β ) is
pseudo-Anosov, as required.

When convenient, we will write ∆ f (β ) = (β , f β ) when given a loop β in
π1(S,z), which makes sense as an element of PB2(S) = π1(Conf2(S),(z, f (z))).

3.1 The configuration space bundle
Continue to assume that f : S→ S is a fixed point free homeomorphism. Letting
f̂ : Conf2(S)→ Conf2(S) denote the homeomorphism f̂ (x,y) = ( f (x), f (y)), we
construct the mapping torus M f̂ of f̂ , which is a Conf2(S)–bundle over the circle.
The embedding D(x) = (x, f (x)) above defines a embedding

D×1[0,1] : S× [0,1]→ Conf2(S)× [0,1]

that descends to an embedding

D : M f →M f̂ ,

since D◦ f = f̂ ◦D. Write Π : Conf2(S)→ S for the projection Π(x,y) = x. Since
Π◦ f̂ = f ◦Π, we have that Π×1[0,1] descends to a map

Π : M f̂ →M f .

Lemma 10. The composition D ◦Π : Conf2(S)→ Conf2(S) is a retraction onto
D(S). Similarly, D◦Π : M f̂ →M f̂ is a retraction onto the image D(M f ).

Proof. The first claim is just the observation D◦Π(x,y) = (x, f (x)). The second
follows from the first, and the definition of D and Π.

Corollary 11. The induced map D∗ : π1(M f )→ π1(M f̂ ) is injective.
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Picking a basepoint z, we have the isomorphism f∗ : π1(S,z)→ π1(S, f (z)).
Choosing a path δ from z to f (z) in S, we write δ∗ : π1(S, f (z))→ π1(S,z) for
the basepoint change isomorphism given by δ∗([γ]) = [δγδ ], and we denote the
composition of these two isomorphisms

f δ
∗ = δ∗ f∗ : π1(S,z)→ π1(S,z).

Viewing z ∈ S ⊂ M f as in §2.1, we have π1(M f ,z) ∼= π1(S,z)o 〈σ〉 where the
stable letter σ acts as f δ

∗ . The image path D(δ ) = (δ , f δ ) in Conf2(S), together
with f̂ , similarly defines an isomorphism on PB2(S) = π1(Conf2(S),(z, f (z))),

f̂ δ
∗ : PB2(S)→ PB2(S),

and we can thus write

π1(M f̂ ,(z, f (z)))∼= PB2(S)o
〈
D∗(σ)

〉
,

so that D∗(σ) acts as f̂ δ
∗ , and the isomorphism D∗ preserves the semidirect product

structure, restricting to D∗ : π1(S,z)→ π1(Conf2(S),(z, f (z))) = PB2(S) on the
normal subgroup.

Proposition 12. Suppose f is fixed point free and [[ f ]]∈Mod(S) has infinite order.
Then the short exact sequence coming from the semidirect product structure on
π1(M f̂ ) embeds into the Birman Exact Sequence

1 PB2(S) π1(M f̂ ,(z, f (z)))
〈
D∗(σ)

〉
1

1 PB2(S) Mod(S{z, f (z)},{z, f (z)}) Mod(S) 1.
ρ{z, f (z)}

Proof. Let g : S→ S be a homeomorphism so that g( f (z)) = z and g( f 2(z)) =
f (z), and so that g is isotopic to the identity by an isotopy gt with g0 = g, g1 = 1S,
and so that gt( f (z)) = δ (t) and gt( f 2(z)) = f δ (t). Then

(gt f ,gt f ) : Conf2(S)→ Conf2(S),

defines an isotopy from (g f ,g f ) to ( f , f ) and (gt f (z),gt f ( f (z)) = (δ (t), f δ (t)).
Consequently, for any loop (α,β ) in Conf2(S) based at (z, f (z)), we have

(g f α,g f β )'
(

δ ( f α)δ ,( f δ )( f β )( f δ )
)
,
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as loops based at (z, f (z)). See e.g. [34, Lemma 1.19].
We now construct the embedding of short exact sequences. For this, we start

by defining the homomorphism on the stable letter D∗(σ) in π1(M f̂ ), sending it to
the element [[(g f ){z, f (z)}]]. Any element of the kernel of ρ{z, f (z)} is represented by
h{z, f (z)} : S{z, f (z)}→ S{z, f (z)}, and we let ht be an isotopy with h0 = h and h1 = 1S,
so that [[h]] corresponds to the pure braid represented by the loop

t 7→ (α(t),β (t)) = (ht(z),ht( f (z)).

Conjugating [[h{z, f (z)}]] by [[(g f ){z, f (z)}]] defines another element of the kernel of
ρ{z, f (z)} and the associated braid is represented by the loop

t 7→ (g f )ht(g f )−1(z, f (z))
= g f ht(z, f (z))
= (g f (α(t)),g f (β (t)))

'
((

δ ( f α)δ
)
(t),
(
( f δ )( f β )( f (δ ))

)
(t)
)
,

as explained above. It follows that the image of D∗(σ) conjugates the image of
(α,β ) to the image of the D∗(σ) conjugate of (α,β ), and thus we have a well-
defined homomorphism from π1(M f̂ ,(z, f (z))) to Mod(S{z, f (z)},{z, f (z)}) that is
the “identity" on PB2(S). Sending the quotient 〈D∗(σ)〉 to 〈[[ f ]]〉 then completes
the embedding of the short exact sequence.

We write ∆ f : π1(M f )→ Mod(S{z, f (z)}) for the composition of D∗ with the
embedding from the Proposition.

Corollary 13. If f is fixed point free and [[ f ]] ∈Mod(S) has infinite order, then

1 π1(S,z) π1(M f ,z) 〈σ〉 1

1 PB2(S) Mod
(
S{z, f (z)},{z, f (z)}

)
Mod(S) 1,

D∗ ∆ f
ρ{z, f (z)}

is an embedding of short exact sequences.

If f 2(z) = z, we can pass to a 2–fold cover M f 2 → M f , and the issues with
basepoints in the proof of Proposition 12 disappear. Write τ for the loop in M f 2
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based at z ∈ S ⊂M f 2 as in §2.1, representing the stable letter. Then τ acts like f 2
∗

on π1(S,z), and restricting ∆ f to π1(M f 2) we get

∆ f : π1(M f 2,z)∼= π1(S,z)o 〈τ〉 →Mod(S{z, f (z)},{z, f (z)}),

where τ is sent to f 2
{z, f (z)}. We note that ∆ f on π1(M f ) is type preserving if and

only if this restriction is, so it will suffice to work with this restriction.

4 Figure eight
We now focus on the figure–eight knot group.

4.1 A linear map
Let L : R2→ R2 be the linear transformation given by

L =

[
2 1
1 1

]
and let L be the induced self-map of T 2 = R2/Z2. The restriction

f = L0 : T 2
0 → T 2

0

is the monodromy of the fibration of the figure–eight knot complement.

Lemma 14. The homeomorphism L fixes exactly one point, 0, and its square fixes
exactly five points 0, z = 0.2[1,2]T , w = f z = 0.2[4,3]T , 0.2[2,4]T , and 0.2[3,1]T .

Proof. Let m and n be integers and consider the linear system[
2 1
1 1

][
x
y

]
=

[
x
y

]
+

[
m
n

]
which simplifies to[

1 1
1 0

][
x
y

]
=

[
m
n

]
.

The matrix on the left is invertible, and so we have[
x
y

]
=

[
0 1
1 −1

][
m
n

]
.
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The only solution to this is 0 in T 2.
Similarly, let m and n be integers and consider the linear system[

2 1
1 1

]2[x
y

]
=

[
x
y

]
+

[
m
n

]
which simplifies to[

4 3
3 1

][
x
y

]
=

[
m
n

]
The matrix on the left is invertible, and we have that our fixed points are those
points in the unit square [0,1]× [0,1] of the form[

x
y

]
=

1
5

[
−1 3

3 −4

][
m
n

]
,

which yields the list above.

Lemma 15. For every essential loop β in T 2
0 , β and f β are distinct homotopy

classes, and their union is filling.

Proof. Let β be an essential loop in T 2
0 . Since f is pseudo-Anosov, it cannot fix

the homotopy class of an essential curve, and β and f β are not homotopic.
If β is a simple closed curve, then f (β ) and β are a pair of distinct essential

simple closed curves on T 2
0 , hence their union fills.

If β is not a simple closed curve, and β and f β don’t fill, then there is an
essential simple closed curve γ in the complement of β ∪ f β . Applying f−1, we
see that f−1γ and β are also disjoint. This means that β is disjoint from both γ

and f−1(γ). By the simple closed curve case, we know that γ and f−1(γ) fill, and
so β must be inessential, a contradiction.

4.2 Notation, conventions, and the main theorem

Write F = L2 : T 2 → T 2 and let X = {0,z,w} be the first three fixed points in
Lemma 14. We continue to use the notation that, for Z ⊂ X , the map FZ : T 2

Z → T 2
Z

is the restriction of F to T 2
Z = T 2−Z.

The homeomorphism f = L0 is fixed point free and its square f 2 = F0 fixes z
and w, by Lemma 14. We let Γ= π1(MF0,z) = π1(M f 2,z), and let K = π1(T 2

0 ,z) be
the fiber subgroup, which is free of rank two. We will also write Γ as Γ = Ko 〈τ〉
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so that τ ∈ Γ is the stable letter as described in §2.1. Corollary 13 now gives us a
representation

∆ f : Γ→ PMod(T 2
X ).

With this set up we have ∆ f (τ) = FX , as described after Corollary 13. Given an
element β of K, we may write ∆ f (β ) = (β , f β ) when convenient, (harmlessly)
blurring the distinction between a loop in Conf2(T 2

0 )) and its corresponding map-
ping class.

From Lemmas 9 and 15, we see that ∆ f sends nonperipheral loops in K to
pseudo-Anosov elements of PMod(T 2

X ). Our main theorem states that this is also
the case on all of Γ, yielding the precise version of Theorem 2.

Theorem 16. The representation ∆ f is type–preserving. In other words, the map-
ping class ∆ f (γ) is reducible if and only if γ is a peripheral element of Γ.

We will make use of the additive group structure on T 2 =R2/Z2 with identity
0. Given x in T 2, we let µx : T 2 → T 2 be the translation µx(y) = y+ x, whose
inverse is µ−1

x (y) = µ−x(y) = y− x. Observe that for each fixed point x of F , we
have Fx = µxF0µ−1

x , since F is linear. In particular, µx determines a canonical
homeomorphism

µ̂x : MF0 →MFx .

Explicitly, MFx is an open submanifold of MF obtained by deleting the image of
{x}× [0,1] ⊂ T 2× [0,1] in the quotient MF , and µ̂x is the descent of the home-
omorphism µx × 1T 2 : T 2× [0,1]→ T 2× [0,1] to MF restricted to MF0 on the
domain and MFx on the range.

4.3 Forgetting punctures
For each x ∈ X = {0,z,w}, we consider the Birman Exact Sequence

1→ π1
(
T 2

X−{x},x
)
→ PMod

(
T 2

X
) ρx−→ PMod

(
T 2

X−{x}
)
→ 1,

where ρx forgets x.
We also consider two element subsets Y = {x,y} ⊂ X , and the Birman Exact

Sequence

1→ π1
(
T 2

y ,x
)
→ PMod

(
T 2

Y
) πx−→Mod

(
T 2

y
)
→ 1
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where we write πx for the homomorphism that forgets x to distinguish it from the
map in the previous sequence. The domain of πx also depends on the choice of
two point set Y containing x, which we will make clear in context. Of course, we
can interchange the roles of x and y.

For Y = {x,y}⊂X a two point set as above, there is an associated isomorphism

ηx,y : π1
(
MFx ,y

)
→ π

−1
y 〈Fx〉< PMod

(
T 2

Y
)

coming from the embedding of short exact sequences in (2.1).
The stable letter in the semidirect product π1(MFx ,y) is mapped to FY by this

isomorphism. Since MFx
∼= MF0 , we can view the domain of ηx,y as Γ, when

convenient, after choosing an appropriate basepoint change isomorphism. The
next lemma tells us that the image depends only on Y .

Lemma 17. For Y = {x,y} ⊂ X, we have π−1
y 〈Fx〉= π−1

x 〈Fy〉.

Proof. Observe that πx(FY ) = Fy and πy(FY ) = Fx. Furthermore, the inclusions
of π1(T 2

x ,y) and π1(T 2
y ,x) into PMod(T 2

Y ) via the Birman Exact Sequence have
the same image: namely they are both equal to the kernel of the forgetful map
PMod(T 2

Y )→ Mod(T 2) since Mod(T 2
x )
∼= Mod(T 2) with the isomorphism ob-

tained by forgetting the puncture x. Therefore, we have

π
−1
y 〈Fx〉=

〈
π1
(
T 2

x ,y
)
,FY
〉
=
〈
π1
(
T 2

y ,x
)
,FY
〉
= π

−1
x 〈Fy〉.

For any two element subset Y = {x,y} ⊂ X , we write ΓY = π−1
y 〈Fx〉 = π−1

x 〈Fy〉.
We also write KY /ΓY for the fiber subgroup (which, as the proof shows, is inde-
pendent of the forgotten point).

We now come to the key lemma.

Lemma 18. For each x in X = {0,z,w}, the composition ρx◦∆ f is an isomorphism
onto ΓX−{x}, sending K to the fiber subgroup KX−{x}.

Remark. As we will see, the case when x = z or x = w is straightforward. When
x = 0, this is surprising, for the following reasons. Filling in 0 has the effect of
abelianizing K = π1(T 2

0 ). This map to Z2 has a very large kernel, and makes in-
jectivity of the composition ρ0 ◦∆ f seem unlikely. This is an illusory problem, as
we are filling in 0 after mapping K into the mapping class group, and furthermore,
the homomorphism ∆ f does not descend to a representation of the solvable group
Z2 oZ.
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We note that although the proof below shows directly that the isomorphism
sends K to KX−{x} in each case, this actually follows immediately since Γ (and

hence each ΓY ) has a unique homomorphism to Z since L2 is Anosov.

Proof of Lemma 18. First consider the case x = w and let Y = {0,z} with associ-
ated forgetful homomorphism πz. Then ρw ◦∆ f (τ) = ρw(FX) = FY , and for any γ

in π1(T 2
0 ,z), we have

ρw ◦∆ f (γ) = ρw(γ, f γ) = γ,

viewing (γ, f γ) as an element of π1(Conf(T 2
0 ),{z,w}) < PMod(T 2

X ) and γ as an
element of π1(T 2

0 ,z) < PMod(T 2
Y ). It follows that ρw ◦ ∆ f is an isomorphism

onto ΓY . A similar argument holds for x = z (where Y = {0,w} with associated
forgetful homomorphism πw). The only exception is that the displayed equation
becomes

ρz ◦∆ f (γ) = ρz(γ, f γ) = f γ.

We now consider the case that x = 0 and let Y = {z,w}. Let us first restrict our
attention to the fiber subgroup K.

Let γ be an element of K, and let h : T 2 → T 2 be a homeomorphism so that
hX : T 2

X → T 2
X represents ∆ f (γ). The mapping class ρ0 ◦∆ f (γ) is then represented

by the homeomorphism

hY : T 2
Y → T 2

Y .

Since ∆ f (K) is in the kernel of the homomorphism obtained by forgetting
both z and w, the restriction h0 : T 2

0 → T 2
0 is isotopic to the identity on T 2

0 . We
let ht : T 2→ T 2 be the extension of that isotopy to an isotopy from h = h0 to the
identity h1 = 1T 2 .

We define a new one–parameter family of maps by

ψ
t = ht−ht(z)+ z.

For each t, the map ψ t is a homeomorphism (namely, the homeomorphism ht

composed with the translation µz−ht(z)) and so ψ t defines an isotopy from ψ0 to
ψ1 on T 2. Now, since h0(z) = z = h1(z), we have

ψ
0 = h0−h0(z)+ z = h0
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and

ψ
1 = h1−h1(z)+ z = h1 = 1T 2

Also note that, for all t, we have

ψ
t(z) = ht(z)−ht(z)+ z = z.

Since ψ t fixes z for all t, the isotopy ψ t
z : T 2

z → T 2
z is well–defined.

Since ψ t
z is an isotopy from ψ0

z = h0
z to ψ1

z = h1
z = 1T 2

z
, the homeomorphism

hY : T 2
Y → T 2

Y

representing ρ0 ◦∆ f (γ) lies in the kernel of the map

πw : PMod
(
T 2

Y
)
→Mod

(
T 2

z
)

forgetting w. Moreover, this mapping class corresponds to the element of π1(T 2
z ,w)

(via the Birman sequence) represented by the loop

ψ
t
z (w) = ht(w)−ht(z)+ z

= f γ(t)− γ(t)+ z.

At this point, we have shown that, for every γ in K, the mapping class ρ0 ◦
∆ f (γ) corresponds to the element of KY = π1(T 2

z ,w) represented by the loop
f γ(t)− γ(t) + z. Now, consider the generators of K = π1(T 2

0 ,z) given by the
loops A(t) = z+[t,0]T and B(t) = z+[0, t]T . For these loops, we have

ρ0 ◦∆ f (A)≈ f A(t)−A(t)+ z

= f
(

z+
[

1
0

]
t
)
−
[

1
0

]
t− z+ z

=

[
2 1
1 1

](
z+
[

1
0

]
t
)
−
[

1
0

]
t

= f z+
[

1
1

]
t

= w+

[
1
1

]
t
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and

ρ0 ◦∆ f (B)≈ f B(t)−B(t)+ z

= f
(

z+
[

0
1

]
t
)
−
[

0
1

]
t− z+ z

=

[
2 1
1 1

](
z+
[

0
1

]
t
)
−
[

0
1

]
t

= f z+
[

1
0

]
t

= w+

[
1
0

]
t.

These two loops form a basis for the free group KY = π1(T 2
z ,w), and so ρ0 ◦∆ f |K

is a homomorphism taking a basis to a basis and therefore must be an isomorphism
onto its image KY .

The mapping class ρ0◦∆ f (τ) is represented by the homeomorphism FY . There-
fore, ρ0 ◦∆ f restricts to a homomorphism

Γ∼= K o 〈τ〉 → KY o 〈FY 〉 ∼= ΓY ,

taking K isomorphically to KY and τ to FY . This implies that ρ0 ◦∆ f is an isomor-
phism from Γ to ΓY , as required.

Proof of the Theorem 16. We have already noted that for γ in K, Lemmas 9 and
15 imply that ∆ f (γ) is reducible if and only if γ is peripheral. Thus, we consider
τmγ for some m 6= 0. Then ∆ f (τ

mγ) is represented by a homeomorphism Fm
X hX

for hX in the kernel of the homomorphism πwρz that forgets both z and w. Suppose
Fm

X hX is reducible. After passing to a power, we may assume that Fm
X hX fixes an

essential simple closed curve α ⊂ T 2
X . The mapping torus MFm

X hX then contains an
essential torus T meeting each T 2

X –fiber transversely in an essential simple closed
curve.

We consider MFm
X hX an open submanifold of MFmh. As described in §2.1, there

is a T 2–fiber-preserving homeomorphism MFmh
∼= MFm and MFm

X hX is the comple-
ment of a link L ⊂MFm transverse to the T 2 fibers. Moreover, L must have three
components since each point of X is fixed by Fmh. The homeomorphism sends T
to a torus meeting each fiber T 2 in a simple closed curve, and the torus defines a
homotopy from one such curve to its Fm–image. Since Fm is Anosov, it preserves
no homotopy class of essential simple closed curve on T 2, and hence each curve
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of intersection of T with the fiber T 2 is null homotopic in T 2. In particular, T
bounds a solid torus V in MFm .

Since T is essential in MFm
X hX = MFm−L , the solid torus V must contain at

least two components of L , and each component must be a core of V . Let Y ⊂ X
be the set of two points determining this two component link L0 ⊂L contained
in V , and let x ∈ X −Y be the third point, whose corresponding component of L
may or may not lie in V . Observe that ρx∆ f (τ

mγ) is represented by Fm
Y hY ∈ ΓY ,

and MFm
Y hY = MFm−L0. In particular, since L0 ⊂V , it follows that the torus T

is still essential in MFm
Y hY , and hence Fm

Y hY is reducible.
Now write Y = {y,u} and note that ρx∆ f (τ

mγ) ∈ ΓY is represented by Fm
Y hY .

Forgetting u, we have that hy must in fact be isotopic to the identity in T 2
y , and we

let ht
y be the isotopy from h0

y to the identity. This traces out a loop β (t) = ht
y(u)

that represents the element of π1(T 2
y ,u) corresponding to mapping class hY . The

mapping torus MFm
Y hY is homeomorphic to MFm

y −K , where K is the knot traced
out in T 2

y × [0,1] by (ht
y(u), t) and projected to MFm

y . The knot K is a loop based at
u which maps to ρx∆ f (τmγ) up to conjugacy, by Lemma 8. Since K is contained
in V , it follows that this loop is peripheral. Since peripheral elements are precisely
those whose centralizers are isomorphic to Z2, the isomorphism from Γ→ ΓY
maps peripheral elements precisely to the peripheral elements, and hence τmγ is
peripheral in Γ, as required.

4.4 Surface subgroups
We have the following consequence of Theorem 16.

Corollary 19. There are infinitely many commensurability classes of purely pseudo-
Anosov closed surface subgroups of Mod(T 2

X ).

Proof. The figure–eight knot complement contains infinitely many commensura-
bility classes of totally geodesic closed immersed surfaces [62], and the ∆ f –image
of these are purely pseudo-Anosov, by Theorem 16. We claim that infinitely
many distinct commensurability classes remain distinct commensurability classes
in Mod(T 2

X ).
Suppose G1,G2 < Γ are two closed surface subgroups such that ∆ f (G1) and

∆ f (G2) are conjugate by an element g ∈ PMod(T 2
X ). Since K = π1(T 2

0 ,z) is free,
G1 is not contained in K, and so there is an element τmγ ∈ G1 with m > 0 and γ

in K. Then

g∆ f (τ
m

γ)g−1 =
(
gFm

X g−1)(g∆ f (γ)g−1) ∈ ∆ f (G2).
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Applying ρ{z,w} we have

ρ{z,w}(g∆ f (τ
m

γ)g−1) = ρ{z,w}(g)F
m
0 ρ{z,w}(g)

−1. (4.1)

Since g∆ f (τ
mγ)g−1 is in ∆ f (G2)< ∆ f (Γ) and ρ{z,w} : ∆ f (Γ)→Mod(T 2

0 ) has im-
age 〈F0〉, the element (4.1) above is in 〈F0〉. Consequently, ρ{z,w}(g) is in the
normalizer N of 〈F0〉. Since F0 is pseudo-Anosov, N contains 〈F0〉 with finite in-
dex, and hence g ∈N = ρ

−1
{z,w}(N), which contains ρ

−1
{z,w}(〈F0〉) with finite index.

We note that G = ρ
−1
{z,w}(〈F0〉) is the image of π1(M f̂ 2,(z, f (z))< π1(M f̂ ,(z, f (z)))

under the embedding from Proposition 12.
Now, suppose there are infinitely many surface subgroups G1,G2, . . . < Γ that

are pairwise non-conjugate in Γ, but whose ∆ f –images are conjugate in PMod(T 2
X ).

For each i≥ 2, let gi ∈ PMod(T 2
X ) be an element that conjugates ∆ f (G1) to ∆ f (Gi).

After passing to a subsequence, we can assume that giG = g jG for all i, j, since gi

and g j lie in N and the index [N : G ] is finite. But then gig−1
2 conjugates ∆ f (G2)

to ∆ f (Gi), for all i, and gig−1
2 lies in G for all i. By Lemma 10, there is a retrac-

tion r : G → ∆ f (Γ) induced by the retraction M f̂ 2 →M f 2 . It follows that r(gig−1
2 )

also conjugates ∆ f (G2) to ∆ f (Gi) for all i, but r(gig−1
2 ) = ∆ f (γi) for some γi in Γ.

Since ∆ f is an isomorphism, γi conjugates G2 to Gi for all i, contradicting the fact
that the subgroups Gi were all non-conjugate in Γ.

Therefore, there are infinitely many PMod(T 2
X )–commensurability classes of

purely pseudo-Anosov surface subgroups. Since PMod(T 2
X ) has finite index in

Mod(T 2
X ), there are also infinitely many Mod(T 2

X )–commensurability classes of
purely pseudo-Anosov surface subgroups.

5 Mapping class groups of closed surfaces
Theorem 1 follows using a well–known branched covering trick following the
ideas of J. Birman and H. Hilden [10, 11, 12] (see also [63, 83, 65]). The precise
fact we need is the following.

Proposition 20. Suppose p : S̃ → T 2 is a branched cover, branched over X =
{0,z,w}, so that the local degree at each point of p−1(X) is greater than 1. Then
there is a finite index subgroup Modp(T 2

X ) < Mod(T 2
X ) and a type–preserving,

injective homomorphism p∗ : Modp(T 2
X )→Mod(S̃).

A homomorphism between torsion–free subgroups of mapping class groups is
type–preserving if an element is pseudo-Anosov if and only if its image is.
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Proof. Let Y = p−1(X) and p0 : S̃Y → T 2
X the associated unbranched covering.

From standard covering space theory, a homeomorphism hX of T 2
X lifts to a home-

omorphism of S̃Y if and only if the conjugacy class of (p0)∗(π1(S̃Y )) is preserved
by (hX)∗. Since this subgroup has finite index, there is a finite index subgroup of
Homeo+(T 2

X ) consisting of homeomorphisms that lift to homeomorphisms of S̃Y ,
and this defines a finite index subgroup Mod0(T 2

X ) of elements that lift. The set of
lifts M̃od0(T 2

X )< Mod(S̃Y ) forms a subgroup that fits into a short exact sequence

1→ G→ M̃od0(T 2
X )→Mod0(T 2

X )→ 1,

where G is the covering group of p0. See, e.g. [4].
Any finite index torsion free subgroup of M̃od0(T 2

X ) will map isomorphically
onto a finite index subgroup of Mod0(T 2

X ). Denoting such a subgroup Modp(T 2
X )<

Mod0(T 2
X ), we obtain an (inverse) isomorphism back to the finite index subgroup

of M̃od0(T 2
X ), and hence to Mod(S̃Y ). This homomorphism is clearly type preserv-

ing: for any pseudo-Anosov element Modp(T 2
X ), its stable and unstable foliations

lift to stable and unstable foliations on S̃Y for the lifted mapping class. Now we
compose this homomorphism with the forgetting homomorphism ρY : Mod(S̃Y )→
Mod(S̃) to define p∗ : Modp(T 2

X )→ Mod(S̃). If g ∈ Modp(T 2
X ) is any pseudo-

Anosov element, then p∗(g) is pseudo-Anosov since the stable and unstable folia-
tions for the lift to S̃Y have at least 2 prongs at each puncture, because of the local
degree assumption at every point of Y . Since no pseudo-Anosov element is in the
kernel (as its p∗–image is pseudo-Anosov), it also follows that p∗ is injective.

Remark. Pulling back complex structures, we actually get an isometric embed-
ding of the Teichmüller space of T 2

X into that of S̃ (with the Teichmüller metric)
since every meromorphic quadratic differential on T 2 with only simple poles, and
only at points of X , pulls back to a holomorphic quadratic differential (without
poles). This gives an alternate proof that p∗ is type preserving since pseudo-
Anosov elements are the only ones with geodesic axes.

5.1 Explicit branched covers
It is not difficult to produce some closed surfaces that admit branched covers to
T 2 branched over X and satisfying the hypotheses of Proposition 20. To see that
one can do this for all closed surfaces of genus at least 4, we proceed as follows.

Consider a two–fold unbranched cover S→ T 2 and let {01,02,z1,z2,w1,w2}⊂
S be such that the covering map sends each point in our set to the point with the
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subscript erased (in the set {0,z,w}). Let α be an arc in T 2 connecting z and w
and β a disjoint essential loop based at 0. Next, let α1 and α2 be the components
of the preimage, and choose the labeling so that they connect z1,w1 and z2,w2,
respectively. Assume that β does not lift to a loop, and let β0 be a component of
the preimage of β . Finally, cut S open along these three arcs and label the exposed
arcs by α

+
1 ,α−1 ,α+

2 ,α−2 ,β+
0 ,β−0 , as illustrated. Call this cut open surface-with-

boundary Σ.

β
+
0

β
−
0

01 02

α
+
1

α
−
1

z1

w1

α
+
2

α
−
2

w2

z2

Now consider any surface S̃ constructed from finitely many copies Σ1, . . . ,Σk
of Σ by gluing the copies along arcs in pairs subject to the following constraints:

1. Any α
+
1 arc in any Σi is glued to any α

−
2 arc in any Σ j, or to any α

−
1 in any

Σ j except Σi. Similarly for α
+
2 .

2. Any α
−
1 arc in any Σi is glued to any α

+
2 arc in any Σ j, or to any α

+
1 in any

Σ j except Σi. Similarly for α
−
2 .

3. Any β
+
0 arc in any Σi may be glued to any β

−
0 arc in any Σ j, except Σi, and

vice versa for β
−
0 arcs in any Σi.

Lemma 21. If S̃ is constructed as above, then S̃ admits a branched cover p : S̃→
T 2, branching precisely over X = {0,z,w} with local degree at least 2 at every
point of p−1(X).
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Proof. Extend the arcs to a cellular triangulation of T 2 with vertices at {0,z,w}
and label the triangles. This triangulation defines a triangulation of Σ with the
same labels (so that the map to T 2 sends triangles with a given label to a triangle
with the same label). There is thus a triangulation of S̃ with triangles labeled with
the same set of labels, and mapping each triangle in S̃ to the triangle of the same
label is a branched cover, branched over {0,z,w}. The restrictions on the gluings
ensure that every point branches nontrivially at every vertex, as required.

Proposition 22. Every surface of genus at least 4 arises from the construction
above.

Proof. Note that for a single copy of Σ, we can glue α
+
1 to α

−
2 , α

+
2 to α

−
1 , and

leaving the β
±
0 unidentified, we get a surface with boundary Ω which has genus 2

and one boundary component divided into the two arcs β
±
0 . We can string k ≥ 2

of these together joining β
+
0 on one to β

−
0 on the next, to produce a surface of

genus 2k, thus producing all surfaces of even genus at least 4.
Taking two copies of Σ and gluing so that all zi vertices get identified and all

wi vertices get identified, and so that both 01 vertices get identified and both 02
vertices get identified, we get a surface of genus 5. To see this, note that we have
a four fold cover of T 2

{0,z,w} with one puncture mapping to each of z and w and
two mapping to 0, and we have capped off all four punctures with a disk. So χ is
4(−3)+4 =−8 = 2−2(5), so the genus is 5.

Cutting this genus 5 surface open along one of the β arcs and inserting k genus
2 pieces from the even genus construction, we get all odd genus at least 7, hence
all odd genus at least 5.

5.2 Proof of Theorem 1
We now give the proof of the main theorem.

Theorem 1 There are infinitely many commensurability classes of purely pseudo-
Anosov surface subgroups of Mod(Sg,0) for all g≥ 4.

Proof of Theorem 1. For any closed surface S of genus at least 4, Proposition 22
and Proposition 20 produce an embedding of finite index subgroups Mod0(T 2

X )<
Mod(T 2

X ) into Mod(S). Together with Corollary 19, this produces infinitely many
surface subgroups in Mod(S). To explain why there are infinitely many commen-
surability classes, identify Mod0(T 2

X ) with its image in Mod(S), and observe that
it suffices to prove that there are only finitely many Mod(T 2

X )–conjugacy classes
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of intersections of Mod0(T 2
X ) with a Mod(S)–conjugate, that contains a pseudo-

Anosov.
This required finiteness statement can be seen by considering the equivariant

isometric embedding of Teichmüller spaces T (T 2
X )→T (S). Identifying T (T 2

X )
with its image, we note that Mod0(T 2

X ) has finite index in the stabilizer of the im-
age of T (T 2

X ) in T (S), and up to the action of this stabilizer, T (T 2
X ) intersects

only finitely many Mod(S)–translates of T (T 2
X ). These both follow from proper

discontinuity of the action on Teichmüller space, and the cocompactness of this
action on any thick part. Then we observe that any intersection of Mod0(T 2

X ) with
a Mod(S)–conjugate of itself that contains a pseudo-Anosov element has an asso-
ciated intersection of T (T 2

X ) and a Mod(S)–translate, and moreover a Mod0(T 2
X )–

conjugate of such intersection of groups corresponds to Mod0(T 2
X )–translates of

the intersection with T (T 2
X ).

5.3 Sketch of the proof of Theorem 6
Closer examination of the proofs of Corollary 19 and Theorem 1 establishes The-
orem 6.

Theorem 6 The number of commensurability classes of purely pseudo-Anosov
subgroups of Mod(Sg,0) and Mod(S1,3) that are isomorphic to the fundamental
group of a surface of genus at most h is bounded below by a strictly increasing
linear function of h.
As mentioned in the introduction, we expect the actual number of commensura-
bility classes to be much much larger, and so we only sketch the proof.

Sketch of proof. Let SΓ be the set of conjugacy classes of convex cocompact sur-
face subgroups of Γ and let SMod(Sg,n) be the set of conjugacy classes of purely
pseudo-Anosov subgroups of Mod(Sg,n).

The indices [N : G ] and [Mod(T 2
X ) : PMod(T 2

X )] in the proof of Corollary 19
are bounded by a universal constant, and tracing through the proof with this in
mind reveals that there is a universal constant m such that the the natural map
SΓ→SMod(T 2

X )
induced by the representation ∆ f is m-to-1. We conclude that the

number of commensurability classes of purely pseudo-Anosov surface groups in
Mod(S1,3) of genus at most h is comparable to the number of commensurability
classes of such convex cocompact surface groups in π1(M8).

Let Sg,0 be the branched cover constructed in the proof of Theorem 1, let
Ξ be the finite index subgroup of Γ such that ∆ f (Ξ) lifts to a subgroup Ξg of
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Sg,0, and note that the index of Ξ in Γ is bounded by a constant depending only
on g. Close examination of the proof of Theorem 1 reveals that the number
of Ξg–commensurability classes of purely pseudo-Anosov surface groups in Ξg
is comparable to the number of Mod(Sg,0)–commensurability classes, where the
constants of comparison depend only on Ξ and g. It follows that the number of
Mod(Sg,0)–commensurability classes of purely pseudo-Anosov surface groups of
genus at most h is comparable to the number of π1(M8)–commensurability classes
of convex cocompact surface groups of genus at most h.

The proof is completed by noting that the number of commensurability classes
of cocompact fuchsian subgroups of π1(M8) of genus at most h is comparable to
a linear function of h, by the discussion at the end of [81].•
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[41] J. Kahn and V. Marković. Counting essential surfaces in a closed hyperbolic
three-manifold. Geom. Topol., 16(1):601–624, 2012.

[42] J. Kahn and V. Markovic. Immersing almost geodesic surfaces in a closed
hyperbolic three manifold. Ann. of Math. (2), 175(3):1127–1190, 2012.

[43] J. Kahn and A. Wright. Nearly Fuchsian surface subgroups of finite covol-
ume Kleinian groups. Duke Math. J., 170(3):503–573, 2021.

[44] M. Kapovich. Private communication.

[45] M. Kapovich. On normal subgroups in the fundamental groups of complex
surfaces, 1998. arXiv:math/9808085.

36



[46] A. E. Kent and C. J. Leininger. Subgroups of mapping class groups from
the geometrical viewpoint. In In the tradition of Ahlfors-Bers. IV, volume
432 of Contemp. Math., pages 119–141. Amer. Math. Soc., Providence, RI,
2007.

[47] A. E. Kent and C. J. Leininger. Shadows of mapping class groups: capturing
convex cocompactness. Geom. Funct. Anal., 18(4):1270–1325, 2008.

[48] A. E. Kent and C. J. Leininger. Uniform convergence in the mapping class
group. Ergodic Theory Dynam. Systems, 28(4):1177–1195, 2008.

[49] A. E. Kent and C. J. Leininger. A geometric criterion to be pseudo-Anosov.
Michigan Math. J., 63(2):227–251, 2014.

[50] A. E. Kent, C. J. Leininger, and Saul Schleimer. Trees and mapping class
groups. J. Reine Angew. Math., 637:1–21, 2009.

[51] S.-h. Kim. Hyperbolic surface subgroups of right-angled Artin groups and
graph products of groups. ProQuest LLC, Ann Arbor, MI, 2007. Thesis
(Ph.D.)–Yale University.

[52] S.-h. Kim. Co-contractions of graphs and right-angled Artin groups. Algebr.
Geom. Topol., 8(2):849–868, 2008.

[53] E. Klarreich. The boundary at infinity of the curve complex and the relative
Teichmüller space. Groups Geom. Dyn., 16(2):705–723, 2022.

[54] T. Koberda. Right-angled Artin groups and a generalized isomorphism prob-
lem for finitely generated subgroups of mapping class groups. Geom. Funct.
Anal., 22(6):1541–1590, 2012.

[55] T. Koberda, J. Mangahas, and S. J. Taylor. The geometry of purely loxo-
dromic subgroups of right-angled Artin groups. Trans. Amer. Math. Soc.,
369(11):8179–8208, 2017.

[56] K. Kodaira. A certain type of irregular algebraic surfaces. J. Analyse Math.,
19:207–215, 1967.

[57] I. Kra. On the Nielsen-Thurston-Bers type of some self-maps of Riemann
surfaces. Acta Math., 146(3-4):231–270, 1981.

37



[58] C. J. Leininger, M. Mj, and S. Schleimer. The universal Cannon-Thurston
map and the boundary of the curve complex. Comment. Math. Helv.,
86(4):769–816, 2011.

[59] C. J. Leininger and A. W. Reid. A combination theorem for Veech subgroups
of the mapping class group. Geom. Funct. Anal., 16(2):403–436, 2006.

[60] C. J. Leininger and J. Russell. Pseudo-Anosov subgroups of general fibered
3-manifold groups. Trans. Amer. Math. Soc. Ser. B, 10:1141–1172, 2023.

[61] C. J. Leininger and S. Schleimer. Hyperbolic spaces in Teichmüller spaces.
J. Eur. Math. Soc. (JEMS), 16(12):2669–2692, 2014.

[62] C. Maclachlan. Fuchsian subgroups of the groups PSL2(Od). In Low-
dimensional topology and Kleinian groups (Coventry/Durham, 1984), vol-
ume 112 of London Math. Soc. Lecture Note Ser., pages 305–311. Cam-
bridge Univ. Press, Cambridge, 1986.

[63] C. Maclachlan and W. J. Harvey. On mapping-class groups and Teichmüller
spaces. Proc. London Math. Soc. (3), 30(part):496–512, 1975.

[64] J. Mangahas and S. J. Taylor. Convex cocompactness in mapping class
groups via quasiconvexity in right-angled Artin groups. Proc. Lond. Math.
Soc. (3), 112(5):855–881, 2016.

[65] D. Margalit and R. R. Winarski. Braids groups and mapping class groups:
the Birman-Hilden theory. Bull. Lond. Math. Soc., 53(3):643–659, 2021.

[66] J. D. Masters and X. Zhang. Closed quasi-Fuchsian surfaces in hyperbolic
knot complements. Geom. Topol., 12(4):2095–2171, 2008.

[67] M. Mitra. Cannon-Thurston maps for hyperbolic group extensions. Topol-
ogy, 37(3):527–538, 1998.

[68] L. Mosher. A hyperbolic-by-hyperbolic hyperbolic group. Proc. Amer. Math.
Soc., 125(12):3447–3455, 1997.

[69] L. Mosher. Problems in the geometry of surface group extensions. In Prob-
lems on mapping class groups and related topics, volume 74 of Proc. Sym-
pos. Pure Math., pages 245–256. Amer. Math. Soc., Providence, RI, 2006.

38



[70] J. Nielsen. Abbildungsklassen endlicher Ordnung. Acta Math., 75:23–115,
1943.

[71] J.-P. Otal. The hyperbolization theorem for fibered 3-manifolds, volume 7 of
SMF/AMS Texts and Monographs. American Mathematical Society, Provi-
dence, RI; Société Mathématique de France, Paris, 2001. Translated from
the 1996 French original by Leslie D. Kay.

[72] A. W. Reid. Surface subgroups of mapping class groups. In Problems on
mapping class groups and related topics, volume 74 of Proc. Sympos. Pure
Math., pages 257–268. Amer. Math. Soc., Providence, RI, 2006.

[73] A. G. Reznikov. Harmonic maps, hyperbolic cohomology and higher Milnor
inequalities. Topology, 32(4):899–907, 1993.

[74] I. Runnels. Effective generation of right-angled Artin groups in mapping
class groups. Geom. Dedicata, 214:277–294, 2021.

[75] N. Salter and B. Tshishiku. Arithmeticity of the monodromy of some Ko-
daira fibrations. Compos. Math., 156(1):114–157, 2020.

[76] D. Seo. Powers of Dehn twists generating right-angled Artin groups. Algebr.
Geom. Topol., 21(3):1511–1533, 2021.

[77] J.-P. Serre. Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier
(Grenoble), 6:1–42, 1955/56.

[78] H. Servatius, C. Droms, and B. Servatius. Surface subgroups of graph
groups. Proc. Amer. Math. Soc., 106(3):573–578, 1989.

[79] W. P. Thurston. Hyperbolic structures on 3-manifolds, II: surface groups
and 3-manifolds which fiber over the circle. In Collected works of William
P. Thurston with commentary. Vol. II. 3-manifolds, complexity and geomet-
ric group theory, pages 79–110. Amer. Math. Soc., Providence, RI, [2022]
©2022. August 1986 preprint, January 1998 eprint.

[80] B. Tshishiku. Convex-compact subgroups of the Goeritz group. Trans. Amer.
Math. Soc., 377(1):271–322, 2024.

[81] L. Ya. Vulakh. Classification of maximal Fuchsian subgroups of some
Bianchi groups. Canad. Math. Bull., 34(3):417–422, 1991.

39



[82] F. Waldhausen. Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II.
Invent. Math., 3:308–333; ibid. 4 (1967), 87–117, 1967.

[83] R. R. Winarski. Symmetry, isotopy, and irregular covers. Geom. Dedicata,
177:213–227, 2015.

[84] A. Wright. Spheres in the curve graph and linear connectivity of the Gromov
boundary. Preprint, arXiv:2304.03004.

[85] A. Wright. Private communication, July, 2018.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI
kent@math.wisc.edu

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TX
cjl12@rice.edu

40


	Introduction
	Historical notes and other approaches
	Historical comments
	Other surface groups

	Sketch of the proof of Theorem 2

	Birman's Exact Sequence
	Closed braids in mapping tori

	The dancing representation
	The configuration space bundle

	Figure eight
	A linear map
	Notation, conventions, and the main theorem
	Forgetting punctures
	Surface subgroups

	Mapping class groups of closed surfaces
	Explicit branched covers
	Proof of Theorem 1
	Sketch of the proof of Theorem 6


