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We provide a new presentation for the annular braid group. The annular

braid group is known to be isomorphic to the finite type Artin group with Coxeter

graph Bn. Using our presentation, we show that the annular braid group is a semidi-

rect product of an infinite cyclic group and the affine Artin group with Coxeter graph
Ãn−1. This provides a new example of an infinite type Artin group which injects into

a finite type Artin group. In fact, we show that the affine braid group with Coxeter

graph Ãn−1 injects into the braid group on n +1 stings. Recently it has been shown
that the braid groups are linear, see [3]. Therefore, this shows that the affine braid

groups are also linear.

§1: Introduction

In this paper we examine a variation on the classical braid groups known as the

annular braid groups. We denote by CBn the annular braid group on n strings. A

precise definition is given below. In section two we will examine the geometry of

CBn and show that CBn is isomorphic to Dn+1. The group Dn+1, first studied by

W. Chow in 1948 [5], is a well known finite index subgroup of the braid group on

n+1 strings. It is the subgroup of braids for which the string beginning in position

one also ends in position one. The correspondence between CBn and Dn+1 has

been examined by other authors. See for example Crisp [6], who provides a proof

that CBn is the finite type Artin group with Coxeter graph Bn. The geometry we

construct for the annular braid group suggests a new presentation for this group

that closely resembles the classical braid presentation. This is the presentation P

Typeset by AMS-TEX

1

Autumn Kent

Autumn Kent
Autumn Kent



2 RICHARD P. KENT IV

given below. In section three, we prove that this presentation is complete. In the

final section we provide a few algebraic consequences of our presentation.

The braid groups were first defined by Emil Artin in 1925, [1]. Artin’s presenta-

tion for the braid group on n strings is,

An = 〈σ1, σ2, ..., σn−1 | σiσi+1σi = σi+1σiσi+1, for i = 1, .., n− 2,

σiσj = σjσi for |i − j| ≥ 2〉.

There are several good references on the theory of braid groups, see for example

[2], [4], or [9].

In order to construct Artin’s presentation, picture a braid as n paths, “strings,”

in R
3. These strings begin at equally spaced points along a line segment in the

plane z = a, then run monotonically down with respect to the z-axis while twisting

together, and finally end at analogous points in the plane z = b. Now, project

the braid onto the plane that contains the initial and final line segments. For any

braid this can be done so that one crossing is encountered at a time as one moves

down the projection. The ith generator represents the ith string crossing over the

i + 1st string. The relations correspond to the equivalences of the braids pictured

in Figure 1.

Figure 1: The relations of An.

Annular braids can be defined in analogy to classical braids. The strings are

again continuous paths moving monotonically down the z-axis, in R
3. The paths

begin at equally spaced points along a unit circle in the plane z = a and end

along the analogous points of a unit circle in the plane z = b. For annular braids,

we stipulate that the paths never intersect the z-axis. That is, they live in R
3

minus the z-axis, denoted by L. Two annular braids are equivalent if one can be

deformed within L by a braid isotopy into the second. Notice that the deformation

is done without passing strings through each other, through the z-axis, nor moving

any string outside the defining planes, z = a and z = b. With the same stacking

operation as braids, all annular braids on n strings form a group, denoted by CBn.



ANNALUR BRAID GROUPS 3

Now, instead of projecting onto a plane, we project onto a cylinder as follows.

First, thicken the z-axis to form a cylinder. We call this the core. Now, project the

paths onto the core’s surface and view the projection from the outside.

This projection suggests a presentation for CBn similar to Artin’s presentation

of An. There is a generator σi corresponding to the ith string passing over the

i + 1st. Notice that CBn will contain a generator σ0, corresponding to the last

string crossing over the first. Since we are projecting onto a cylinder, the twist

that takes each string to the preceding position involves no crossings, and we have

a new generator, τ . In section three, we will prove that the set {τ, σ0, ...σn−1} is a

generating set of CBn.

Aside from our two new generators σ0 and τ , the only difference between An and

CBn is that distance between generators is calculated mod n, due to our cylindrical

projection. The generator τ introduces the nice property that conjugating σi by τ

produces σi+1, see Figure 2. So, we arrive at the presentation

P = 〈τ, σ0, σ1, σ2, ..., σn−1 | σiσi+1σi = σi+1σiσi+1, for i = 0, 1, .., n− 1,

σiσj = σjσi for |i − j| 6= 1, n − 1, τσiτ̄ = σi+1, for i = 0, 1, .., n− 1〉.

Our main result is

Theorem One. CBn, the annular braid group on n strings, has presentation P.

Figure 2: Conjugation by τ .

In order to prove Theorem One, we prove the two following theorems.

Theorem Two. CBn is isomorphic to Dn+1.

Theorem Three. Chow’s presentation D, of Dn+1, is equivalent to P.

Theorem Two has been shown by others, for example see [6]. Most of the work in

this paper is done to prove Theorem Three. The proof of Theorem Three is purely

algebraic in nature. The argument is based on Tietze transformations. Together

Theorem Two and Theorem Three prove Theorem One.
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The significance of presentation P is that it implies that CBn is the semidirect

product of an infinite cyclic group and the affine (or euclidean) braid group with

Coxeter graph Ãn−1. For simplicity we will denote this affine Artin group by Ãn−1.

The group Ãn−1 is an infinite type Artin group. That is, the associated Coxeter

group is infinite. On the other hand, the group CBn is known to be a finite type

Artin group, see [6]. By the nature of the semidirect product, Ãn−1 injects into

CBn. Likewise, CBn injects into An+1. Therefore we have given an example of an

infinite type Artin group Ãn−1, that injects into both the finite type Artin group

CBn and the braid group An+1. Recently, Bigelow [3] has shown that the braid

groups are linear. Therefore since Ãn−1 injects into the braid group An+1, an

immediate consequence is

Corollary One. The affine braid group Ãn is linear.

Acknowledgment: The authors would like to thank Ruth Charney for her helpful

comments and suggestions for improving this paper.

§2: The geometry of Dn+1 and CBn.

The group Dn+1 is a subgroup of Bn+1 and has the geometry of the classical

braids with the stipulation that the first string begins and ends at the same point

in the initial and final planes. Chow’s presentation of this group is

D = 〈γ2, γ3, ..., γn, a2, a3, ..., an+1 | γiγi+1γi = γi+1γiγi+1,

γiγj = γjγi for |i − j| ≥ 2, γiakγ̄i = ak for k 6= i, i + 1,

γiaiγ̄i = ai+1, γiai+1γ̄i = āi+1aiai+1〉.

In this presentation, γi corresponds to the ith string passing over the i + 1st.

The subscripts start at 2 so that none of these crossings involve the first string.

The ai correspond to braids involving the first string. Specifically, the generator

ai corresponds to the first string wrapping behind the 2nd through i − 1st strings,
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crossing over and then under the ith, and finally returning back behind the other

strings to it’s original position. Examples of these generators are pictured in Figure

3.

Define the map φ from Dn+1 to CBn as follows. Let y be a braid in Dn+1.

Notice that y is a classical braid, on n + 1 strings, with the first string ending in

the first position. Pull the first string tight and thicken it to form a cylinder. This

cylinder will be the core of the corresponding circular braid. Carefully wrap the

rest of the strings back around the core so that they reverse order. That is, the

2nd braid string becomes the n − 1st circular braid string, and the n + 1st braid

string becomes the 0th circular braid string. While wrapping, no string is allowed

to pass through the core or any of the other strings. This process takes the initial

and final line segments of the braid and wraps them into circles, creating a circular

braid on n strings. Figure 3 shows examples of this correspondence. The map,

φ : Dn+1 → CBn, is given algebraically as follows,

φ(γi) = σn−i, φ(a2) = τ̄ σ̄0...σ̄n−2, and

φ(ai) = (σ(n+1)−i...σn−2)(τ̄ σ̄0...σ̄n−2)(σ̄n−2...σ̄(n+1)−i), for i = 3, ..., n + 1.

Figure 3: The isomorphism φ : Dn+1 → CBn.

This map is clearly a homomorphism since attaching two elements of Dn+1 and

then wrapping them around the first string results in the same c-braid as when

the two n + 1 braids are first wrapped around their first string and then attached.

The generators, σ0, ..., σn−2 are clearly in the image. It is easy to check that the

generator τ is the image of γ̄n...γ̄2ā2 and that the generator σn−1 is the image of

(a2γ2...γn)γn(γ̄n...γ̄2ā2). So φ is onto. Suppose x is in the kernel of φ. Then since

its image can be deformed into the trivial c-braid, an equivalent deformation of x

will produce the trivial n + 1 braid in Dn+1. Therefore, by the First Isomorphism

Theorem, φ is an isomorphism. This proves Theorem Two.

Now, to prove that P is a presentation of CBn, it will suffice to show that P is

a presentation of Dn+1. This is the main result of the next section.
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§3: The equivalence of the presentations D and P.

The proof of Theorem Three is based on Tietze transformations, which are as

follows. Given a group G = 〈X | R〉,

T1: If ω is a relation on X and ω can be derived from the set R, then add

ω to R.

T2: If ω is a relation in R that can be derived from the other relations,

then remove ν from R.

T3: If ν is a word on X and t is a symbol not in X , then add t to the

generating set and t = ν to R.

T4: If one relation takes the form t = ν, where t ∈ X and ν is a word on

X − {t}, then remove t from the set X , remove t = ν from R, and

substitute ν for all occurrences of t in the remaining relations.

In 1908, Tietze proved

Tietze’s Theorem. Given two finite presentations, they present the same group

iff there is a finite sequence of transformations, T1-T4, that transforms the first

presentation into the second.

For further information on Tietze transformations see either [7] or [8].

As a first step towards Theorem Three, we provide two simplified versions of

the presentation P. First note that the relations involving τ have an immediate

consequence. Take a relation of the first type in P, for example σ0σ1σ0 = σ1σ0σ1.

Conjugating both sides by τ , results in the relation σ1σ2σ1 = σ2σ1σ2.

σ0σ1σ0 = σ1σ0σ1 =⇒ τ(σ0σ1σ0)τ̄ = τ(σ1σ0σ1)τ̄

=⇒ (τσ0τ̄)(τσ1τ̄)(τσ0τ̄) = (τσ1τ̄)(τσ0τ̄)(τσ1τ̄) =⇒ σ1σ2σ1 = σ2σ1σ2

Likewise, each relation of this type is obtained by repeated conjugation. Therefore,

by repeated applications of T2, only one of these relations is necessary in the

presentation. Conjugation by τ also effects the second type of relation. Take one
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of the relations stating that two generators commute if their indices are two apart,

for example σ0σ2 = σ2σ0. Successive conjugation by τ generates all the commuting

relations whose indices are two apart mod n. So, again by repeated applications

of T2, only one relation of this type is needed. A similar argument shows that

σ0σ3 = σ3σ0 generates all the commuting relations whose indices are three apart

mod n. Thus the presentation can be simplified to include only one relation of the

first type and of the second only one for each integer 2 ≤ |i − j| ≤ n
2 . This proves

the following lemma.

Lemma A. The presentation P is equivalent to the presentation

P1 = 〈τ, σ0, σ1, σ2, ..., σn−1 | σ0σ1σ0 = σ1σ0σ1,

σ0σi = σiσ0 for 2 ≤ i ≤
n

2
,

τσiτ̄ = σ(i+1)(mod n) for i = 0, ..., n− 1〉.

Continuing to simplify, we arrive at a presentation with two generators. Again,

τ can be thought of as the twist that moves each string back one position, and σ

represents a generic crossing. All other crossings are conjugates of σ by powers of

τ .

Lemma B. The presentation P is equivalent to the presentation

P2 = 〈τ, σ | σ(τστ̄)σ = (τστ̄)σ(τστ̄), σ = τnστ̄n,

σ(τkστ̄k) = (τkστ̄k)σ for 2 ≤ k ≤
n

2
〉.

Proof. First, by using T4, the generator σ1 and the relation σ1 = τσ0τ̄ may be

removed while changing all occurrences of σ1 in the other relations to τσ0τ̄ . After

this, perform another application of T4. This time the generator σ2 and the relation

σ2 = τ2σ0τ̄
2 (note σ2 = τσ1τ̄ has been converted to σ2 = τ2σ0τ̄

2 by the first

application of T4) may be removed and every occurrence of σ2 replaced by τ2σ0τ̄
2.
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Continue iterative applications of T4 to remove all σi except σ0. Now rename σ0,

σ. The result is the desired presentation.

�

Lemmas A and B result in a simple two generator presentation for CBn, with

generators τ and σ. We now add to this presentation new generators that rep-

resent the generators of Chow’s group, Dn+1. The generators in the set Y =

{γ2, ..., γn, a2, ..., an+1} are added by applying a sequence of T3 transformations.

To do this each element of Y must be assigned a word on X . The intuition for

choosing these words comes from the geometric correspondence discussed in sec-

tion two. In essence, we have simply wrapped the classical braid around its first

string to form a circular braid. The next lemma adds the generators in the set Y

to the presentation.

Lemma C. The presentation P is equivalent to the presentation

P3 = 〈τ, σ, γ2, ..., γn, a2, ..., an+1 | σ(τστ̄)σ = (τστ̄)σ(τστ̄), σ = τnστ̄n,

σ(τkστ̄k) = (τkστ̄k)σ for 2 ≤ k ≤
n

2
, γi = τ̄ iστ i for i = 2, ..., n,

a2 = τ̄ γ̄n...γ̄2, ai+1 = γiaiγ̄i for i = 2, ..., n〉.

At this point we could remove both the generators τ and σ, using two T4 trans-

formations. In the next lemma we will remove σ, however it will be convenient

to leave τ . Notice that, from this point on, τ could be thought of as shorthand

notation for the word γ̄n...γ̄2ā2. The rest of the proof of Theorem Three will require

using T1 and T2 moves to add relations of the form found in D and to remove any

other relations. This will require several lemmas. The next lemma will begin this

process by converting the first three types of relations in P3 to relations found in

D.

Lemma D. The presentation P is equivalent to the presentation

P4 = 〈τ, γ2, ..., γn, a2, ..., an+1 | γiγi+1γi = γi+1γiγi+1 for i = 2, ..., n− 1
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γiγj = γjγi for |i − j| ≥ 2, γi = τ̄ iγnτ i for i = 2, ..., n,

a2 = τ̄ γ̄n...γ̄2, ai+1 = γiaiγ̄i for i = 2, ..., n〉.

Proof. Notice that the second and fourth relations of P3 imply that γn = σ. Thus

we may remove σ from the generators and replace all occurrences of σ in the relation

by γn. Therefore, the first four relation types of P3 become

γn(τγnτ̄)γn = (τγnτ̄)γn(τγnτ̄), γn = (τnγnτ̄n),

γn(τkγnτ̄k) = (τkγnτ̄k)γn for 2 ≤ k ≤
n

2
, γi = τ̄ iγnτ i for i = 2, ..., n.

The second of these relations is the last case of the fourth type, thus it may be

removed.

To convert the first type, use the fourth type relation as follows,

γn(τγnτ̄)γn = (τγnτ̄)γn(τγnτ̄)

⇔ γnτ i+1τ̄ iγnτ iτ̄ i+1γn = τ i+1τ̄ iγnτ iτ̄ i+1γnτ i+1τ̄ iγnτ iτ̄ i+1

⇔ (τ̄ i+1γnτ i+1)(τ̄ iγnτ i)(τ̄ i+1γnτ i+1) = (τ̄ iγnτ i)(τ̄ i+1γnτ i+1)(τ̄ iγnτ i)

⇔ γi+1γiγi+1 = γiγi+1γi for i = 2, ..., n− 1.

Now an application of T1 and T2 convert the first type of relation in P3 to the first

type in P4. Similarly, the third type of relation can be converted. First notice that

the third type relation in P3 is actually true for 2 ≤ k ≤ n−2. This is a consequence

of the fourth type relation. Now use T1, T2, and the following equivalence.

γn(τkγnτ̄k) = (τkγnτ̄k)γn for 2 ≤ k ≤ n − 2

⇔ γnτ iτ̄ jγnτ j τ̄ i = τ iτ̄ jγnτ j τ̄ iγn for i − j = k

⇔ (τ̄ iγnτ i)(τ̄ jγnτ j) = (τ̄ jγnτ j)(τ̄ iγnτ i) ⇔ γiγj = γjγi for i − j = 2, ..., n− 2.

This proves the lemma.
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�

In the following proofs, frequently an equivalent relation will be a direct result

of one of the five types of relations found in Lemma D. We use Di to signify an

application of the ith type of relation in P4. The next lemma states a few helpful

consequences of the relations in P4.

Lemma E. The following relations hold in P4.

1) γj τ̄ γ̄j−1 = τ̄ for j = 3, ..., n

2) γj(γk−1...γ2) = (γk−1...γ2)γj, γj(γ2...γk−1) = (γ2...γk−1)γj for j ≥ k +1

and

γj(γk−1...γ2) = (γk−1...γ2)γj+1, γj+1(γ2...γk−1) = (γ2...γk−1)γj for j ≤ k

3) γja2γ̄j = a2 for j = 3, ..., n

4) γj−1(γi...γ2aj γ̄2...γ̄i)γ̄j−1 = γi...γ2aj+1γ̄2...γ̄i for j = 3, ..., i− 1

5) ak = γk−1...γ2a2γ̄2...γ̄k−1 for k = 3, ..., n + 1

6) γiτ̄ = τ̄γi−1 for i = 3, ..., n.

Proof. (1) Using D3, we have τ̄γjτ = τ̄(τ̄ jγnτ j)τ = τ̄ j+1γnτ j+1 = γj+1 for j =

2, ..., n− 1. This implies that γj+1τ̄ γ̄j = τ̄ .

(2) The first half is clear because when j ≥ k+1, γj commutes with all the other

γ’s by D2. Suppose j ≤ k − 2. Both equalities follow from similar proofs. The

first is done by using D1, the fact that γj commutes with the first γ’s, and γj+1

commutes with the rest to get

γj(γk−1...γ2) = γk−1...γj+2(γjγj+1γj)γj−1...γ2

= γk−1...γj+2(γj+1γjγj+1)γj−1...γ2 = (γk−1...γ2)γj+1.

(3) Noting that j ≤ n, use part 2 and then part 1 from above to get the following.

γja2γ̄j = γj(τ̄ γ̄n...γ̄2)γ̄j = γj τ̄ γ̄j−1(γ̄n...γ̄2) = τ̄(γ̄n...γ̄2) = a2.

(4) This follows from part 2,

γj−1(γi...γ2aj γ̄2...γ̄i)γ̄j−1 = γi...γ2(γjaj γ̄j)γ̄2...γ̄i = γi...γ2(aj+1)γ̄2...γ̄i.
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(5) and (6) follow easily from D5.

�

In the following proofs equivalences based on Lemma E will be denoted by E1 -

E6.

Lemma F. The relations γiakγ̄i = ak for k 6= i, i + 1, are consequences of the

relations in P4, and therefore may be added to the presentation.

Proof. Consider a fixed value of k. Note that k = 2 is part 3 of the previous lemma,

so we may assume k ≥ 3. There are two cases to consider, i > k and i < k.

Case 1: i > k. γiakγ̄i =E5 γi(γk−1...γ2a2γ̄2...γ̄k−1)γ̄i

=E2 (γk−1...γ2)γia2γ̄i(γ̄2...γ̄k−1) =E3 (γk−1...γ2)a2(γ̄2...γ̄k−1) = ak.

Case 2: i < k. We need only consider i < k − 1, because k 6= i, i + 1.

γiakγ̄i =E5 γi(γk−1...γ2a2γ̄2...γ̄k−1)γ̄i =E2 (γk−1...γ2)γi+1a2γ̄i+1(γ̄2...γ̄k−1) =E3

(γk−1...γ2)a2(γ̄2...γ̄k−1) = ak.

�

There is one more type of relation that must be added to the presentation P4.

We do this inductively: the first case in Lemma G, the generalization follows in

Lemma H.

Lemma G. In P4, ā3a2a3 = γ2a3γ̄2.

Proof. ā3a2a3 =D5 (γ2ā2γ̄2)a2(γ2a2γ̄2)

=D4 γ2(γ2...γnτ)γ̄2(τ̄ γ̄n...γ̄2)γ2(τ̄ γ̄n...γ̄2)γ̄2

= γ2(γ2...γnτ)γ̄2τ̄(γ̄n...γ̄3)τ̄ γ̄n...γ̄2γ̄2

=E6 γ2γ2...γn(τ γ̄2τ̄ τ̄)(γ̄n−1...γ̄2)(γ̄n...γ̄2)γ̄2

=D3 γ2γ2...γn(τ̄ γ̄n)(γ̄n−1...γ̄2)γ̄n...γ̄2γ̄2

=D4 γ2γ2...γn(a2)γ̄n...γ̄2γ̄2 =F γ2γ2a2γ̄2γ̄2 =D5 γ2a3γ̄2.

�
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Lemma H. The relations āi+1aiai+1 = γiai+1γ̄i for i = 2, ..., n are consequences

of the relations in P4, and therefore may be added to the presentation.

Proof. By Lemma G, we may assume i ≥ 3. Consider the following relation.

āi+1aiai+1 =E5 āi+1(γi−1...γ2a2γ̄2...γ̄i−1)ai+1

=F γi−1...γ2(āi+1a2ai+1)γ̄2...γ̄i−1

=E5 γi−1...γ2(γi...γ3ā3γ̄3...γ̄i)a2(γi...γ3a3γ̄3...γ̄i)γ̄2...γ̄i−1

=F γi−1...γ2(γi...γ3ā3a2a3γ̄3...γ̄i)γ̄2...γ̄i−1

=G γi−1...γ2(γi...γ3)(γ2a3γ̄2)(γ̄3...γ̄i)γ̄2...γ̄i−1

Now by repeated applications of E4, the conjugation by γi−1...γ2 may be eliminated

starting with γ2. Each application of E4 pushes the index of a up by one. The

result is γi...γ2ai+1γ̄2...γ̄i. Now noticing that ai+1 commutes with all the γ’s except

for γi we get that,

āi+1aiai+1 = γi...γ2ai+1γ̄2...γ̄i = γiai+1γ̄i.

Using T3 and this relation proves the lemma.

�

Now that all the relations of D are added to the presentation P4, we must show

that the other two types of relations, D3 and D4, can be removed. Lemma I

removes from the presentation the non-D type relations, γi = τ̄ iγnτ i. The proof

has two steps. The first, and harder step, involves showing that the lowest index

case, γ2 = τ̄2γnτ2, is a consequence of the other relators. After this it is fairly easy

to see that the remaining relations of this type are also consequences of the other

relators.



ANNALUR BRAID GROUPS 13

Lemma I. The relations γi = τ̄ iγnτ i for i = 2, ..., n are consequences of the

relations in Lemma F, Lemma H, and the other relations in P4.

Proof. The proof is by induction on i. The base case is γ2 = τ̄2γnτ2. Begin with

the word τ̄2γnτ2. This is equivalent to the word a2γ2a2γ2ā2γ̄2ā2 by the following,

τ̄2γnτ2 =D4 (a2γ2...γn)(a2γ2...γn)γn(γ̄n...γ̄2ā2)(γ̄n...γ̄2ā2)

= a2γ2...γna2γ2...γnγ̄n−1...γ̄2ā2γ̄n...γ̄2ā2

=E2 a2γ2...γna2(γ̄n...γ̄3)(γ2...γn)ā2γ̄n...γ̄2ā2 =F a2γ2a2γ2ā2γ̄2ā2

Notice that E2 was used n − 2 times, each time increasing the index of the γ̄ as

it passed left across (γ2...γn). Then Lemma F was used to cancel all the γ’s that

commute with a2. Now by the proper insertion of inverse pairs we get

a2γ2a2γ2ā2γ̄2ā2 = a2(γ2a2γ̄2)γ2(γ2ā2γ̄2)ā2 =D5 a2a3γ2ā3ā2

= a2a3(γ2ā3γ̄2)γ2ā2 =H a2a3(ā3ā2a3)γ2ā2 = a3γ2ā2

= a3(γ2ā2γ̄2)γ2 =D5 a3ā3γ2 = γ2.

Now assume that i = 3, ..., n and that γj = τ̄ jγnτ j , for all j < i. Then

τ̄ iγnτ i = τ̄(τ̄ i−1γnτ i−1)τ = τ̄γi−1τ =D4 a2(γ2...γn)γi−1γ̄n...γ̄2ā2

=E2 a2γi(γ2...γn)γ̄n...γ̄2ā2 = a2γiā2 =F a2ā2γi = γi.

Therefore the result is true for i = 2, ..., n.

�

Proof of Theorem Three. By Lemma D, P is equivalent to P4. By Lemma F and

Lemma H, the remaining D relations can be added to the presentation by T3. By

Lemma I the relations of the form γi = τ̄ iγnτ i may be removed from the presenta-

tion by T4. Finally, τ may be removed along with the relation a2 = τ̄ γ̄n...γ̄2 by an-

other application of T4. This successfully transforms the presentation P to the pre-

sentation D. �
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§4: Further Results

In this section we give a few algebraic consequences that follow easily from the

presentation P for CBn. By the structure of the presentation P, it is clear that

conjugation by the generator t induces an automorphism of the subgroup generated

by the σi’s. It is also clear that the subgroup generated by the σi’s is the affine

braid group Ãn−1, with presentation,

〈σ0, σ1, σ2, ..., σn−1 | σiσi+1σi = σi+1σiσi+1, for i = 0, 1, .., n− 1,

σiσj = σjσi for |i − j| 6= 1, n − 1〉.

This shows that the group CBn is a semidirect product of the infinite cyclic group

generated by t, and the affine braid group Ãn−1. Therefore, Ãn−1 injects into CBn.

It is known that Chow’s group Dn+1, and thus CBn, is a finite type Artin group,

see [6]. On the other hand, Ãn−1 is an infinite type Artin group. Therefore this

gives a new example of an infinite type Artin group that injects into a finite type

Artin group. Furthermore, CBn injects into An+1, so in fact, Ãn−1 also injects

into the braid group An+1. Bigelow has shown that the braid groups are linear, [3].

Therefore we have

Corollary One. The affine braid group Ãn is linear.

To end with, we will show how the presentation P can be used to construct a

two generator presentation for the braid groups. Consider Chow’s presentation ∆

of Dn+1. Notice that the γi generate a copy of An. So setting the generators ai

equal to the identity leaves a copy of An. In Dn+1, this is equivalent to assuming

that there are no crossings involving the first string. In the geometry of CBn this is

equivalent to removing the core, or filling in the z-axis. This suggests a method for

finding a two generator presentation of the braid group An. In ∆, setting a2 = 1

results in ai = 1 for all i, since γiaiγ̄ = ai+1. Thus if the word that is equivalent to

a2 in P2 is set equal to the identity, the result will be a two generator presentation

of An. We prove this algebraically in Corollary Two.
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Recall that φ maps a2 to τ̄ σ̄0...σ̄n−2 in P. Using the fact that σi = τ iστ̄ i, for

i = 3, ..., n − 1 we can show that a2 maps to τ̄(σ̄0τ)n−1τ̄n−1. To pass from the

presentation P to the presentation P2 we set σ0 equal to σ. Therefore setting

a2 = 1 in ∆ is equivalent to setting τ̄(σ̄τ)n−1τ̄n−1 = 1 in P2. This relation can

also be stated as τn = (σ̄τ)n−1. The next theorem shows that adding the relation

τn = (σ̄τ)n−1 to the presentation P2, which geometrically corresponds to removing

the core, gives a presentation of An.

Corollary Two. An has presentation

B = 〈τ, σ | σ(τστ̄)σ = (τστ̄)σ(τστ̄), σ = τnστ̄n,

σ(τ iστ̄ i) = (τ iστ̄ i)σ for 2 ≤ i ≤
n

2
, τn = (σ̄τ)n−1〉.

Proof. In his 1925 paper [1], Artin gave a simple two generator presentation of the

braid groups. Artin’s presentation is

A = 〈τ, δ |τn = (τδ)n−1, δ(τ iδτ̄ i) = (τ iδτ̄ i)δ, for 2 ≤ i ≤
n

2
〉.

To prove Corollary Two, it will suffice to show that B is equivalent to A.

First notice that τn = (σ̄τ)n−1 ⇔ ττnτ̄ = τ(σ̄τ)n−1τ̄ ⇔ τn = (τ σ̄)n−1. There-

fore the last relation of B may be exchanged for the relation τn = (τ σ̄)n−1. The

above equivalence also implies that σ̄τn = σ̄(τ σ̄)n−1 = (σ̄τ)n−1σ̄ = τnσ̄. Since σ̄

commutes with τ , σ must also commute with τ . Thus the second relation in B is a

consequence of the other relations and may be removed.

To remove the first relation in B it will help to revert back to the notation from

the presentation P. That is, we will use σi as short hand notation for τ iσ0τ̄
i. This

part of the proof follows the same line of argument used by Artin. Recall, adding

the relation τn = (σ̄τ)n−1 to P2 is equivalent to adding the relation τ = σ̄0...σ̄n−2

to P. Now, σ0 commutes with σ̄2...σ̄n−2 and so σ0 commutes with σ1σ0τ . That is,

σ0σ1σ0τ = σ1σ0τσ0. Since τσ0 = σ1τ , we have that σ0σ1σ0 = σ1σ0σ1. Translating

this back into the generators of P2 we get, σ(τστ̄)σ = (τστ̄)σ(τστ̄) as desired.

Therefore the first relation of B may also be removed.
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Finally, substitute δ = σ̄. Note that the relation τn = (τ σ̄)n−1 becomes τn =

(τδ)n−1 as desired. The remaining relations in B become δ̄(τ iδ̄τ̄ i) = (τ iδ̄τ̄ i)δ̄ for

2 ≤ i ≤ n
2 . By taking the inverse of each of these, we get the desired relation in A.

This completes the proof.

�
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