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f(x)=
dF (x)

dx

∫
f(x) dx=F (x) + C

(n+ 1)xn =
dxn+1

dx

∫
xn dx=

xn+1

n+ 1
+ C n ̸= −1

1

x
=
d ln |x|
dx

∫
1

x
dx= ln |x|+ C absolute

values‼

ex =
dex

dx

∫
ex dx= ex + C

− sinx=
d cosx
dx

∫
sinx dx=− cosx+ C

cosx=
d sinx
dx

∫
cosx dx= sinx+ C

tanx=−d ln | cosx|
dx

∫
tanx=− ln | cosx|+ C absolute

values‼

1

1 + x2
=
d arctanx

dx

∫
1

1 + x2
dx= arctanx+ C

1√
1− x2

=
d arcsinx

dx

∫
1√

1− x2
dx= arcsinx+ C

f(x) + g(x)=
dF (x) +G(x)

dx

∫
{f(x) + g(x)} dx=F (x) +G(x) + C

cf(x)=
d cF (x)

dx

∫
cf(x) dx= cF (x) + C

F
dG

dx
=
dFG

dx
− dF

dx
G

∫
FG′ dx=FG−

∫
F ′Gdx

To find derivatives and integrals involving ax instead of ex use a = eln a,
and thus ax = ex ln a, to rewrite all exponentials as e....

The following integral is also useful, but not as important as the ones above:∫
dx

cosx
=

1

2
ln

1 + sinx
1− sinx

+ C for cosx ̸= 0.

Table 1. The list of the standard integrals everyone should know





CHAPTER I

Methods of Integration

e basic question that this chapter addresses is how to compute integrals, i.e.

Given a function y = f(x) how do we find
a function y = F (x) whose derivative is F ′(x) = f(x)?

e simplest solution to this problem is to look it up on the Internet. Any integral that
we compute in this chapter can be found by typing it into the following web page:

http://integrals.wolfram.com

Other similar websites exist, and more extensive soware packages are available.
It is therefore natural to ask why should we learn how to do these integrals? e

question has at least two answers.
First, there are certain basic integrals that show up frequently and that are relatively

easy to do (once we know the trick), but that are not included in a first semester calculus
course for lack of time. Knowing these integrals is useful in the same way that knowing
things like “2 + 3 = 5” saves us from a lot of unnecessary calculator use.

Electronic Circuit

t t

Output signal

g(t) =

∫ t

0
eτ−tf(τ) dτ

f(t) g(t)

Input signal
f(t)

e second reason is that we oen are not really interested in specific integrals, but
in general facts about integrals. For example, the output g(t) of an electric circuit (or me-
chanical system, or a biochemical system, etc.) is oen given by some integral involving
the input f(t). e methods of integration that we will see in this chapter give us the
tools we need to understand why some integral gives the right answer to a given electric
circuits problem, no maer what the input f(t) is.

1. Definite and indefinite integrals

We recall some facts about integration from first semester calculus.

1.1. Definition. A function y = F (x) is called an antiderivative of another function
y = f(x) if F ′(x) = f(x) for all x.

For instance, F (x) = 1
2x

2 is an antiderivative of f(x) = x, and so is G(x) = 1
2x

2 +
2012.

e Fundamental eorem of Calculus states that if a function y = f(x) is con-
tinuous on an interval a ≤ x ≤ b, then there always exists an antiderivative F (x) of f ,

7
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8 I. METHODS OF INTEGRATION

Indefinite integral Definite integral

∫
f(x)dx is a function of x.

∫ b

a
f(x)dx is a number.

By definition
∫
f(x)dx is any function

F (x) whose derivative is f(x).

∫ b

a
f(x)dx was defined in terms of Rie-

mann sums and can be interpreted as
“area under the graph of y = f(x)”
when f(x) ≥ 0.

If F (x) is an antiderivative of f(x),
then so is F (x) + C . Therefore∫
f(x)dx = F (x) + C ; an indefinite

integral contains a constant (“+C”).

∫ b

a
f(x)dx is one uniquely defined

number; an indefinite integral does not
contain an arbitrary constant.

x is not a dummy variable, for example,∫
2xdx = x2 +C and

∫
2tdt = t2 +C

are functions of different variables, so
they are not equal. (See Problem 1.)

x is a dummy variable, for example,∫ 1

0
2xdx = 1, and

∫ 1

0
2tdt = 1,

so ∫ 1

0
2xdx =

∫ 1

0
2tdt.

Whether we use x or t the integral
makes no difference.

Table 1. Important differences between definite and indefinite integrals

and one has

(1)
∫ b

a

f(x) dx = F (b)− F (a).

For example, if f(x) = x, then F (x) = 1
2x

2 is an antiderivative for f(x), and thus∫ b

a
x dx = F (b)− F (a) = 1

2b
2 − 1

2a
2.

e best way of computing an integral is oen to find an antiderivative F of the
given function f , and then to use the Fundamental eorem (1). How to go about finding
an antiderivative F for some given function f is the subject of this chapter.

e following notation is commonly used for antiderivatives:

(2) F (x) =

∫
f(x)dx.

e integral that appears here does not have the integration bounds a and b. It is called an
indefinite integral, as opposed to the integral in (1) which is called a definite integral.
It is important to distinguish between the two kinds of integrals. Table 1 lists the main
differences.
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2. Problems

1. Compute the following integrals:

(a) A =
∫
x−2 dx, [A]

(b) B =
∫
t−2 dt, [A]

(c) C =
∫
x−2 dt, [A]

(d) I =
∫
xt dt, [A]

(e) J =
∫
xt dx.

2. One of the following three integrals is not
the same as the other two:

A =

∫ 4

1

x−2 dx,

B =

∫ 4

1

t−2 dt,

C =

∫ 4

1

x−2 dt.

Which one? Explain your answer.

3. Which of the following inequalities are
true?

(a)
∫ 4

2

(1− x2)dx > 0

(b)
∫ 4

2

(1− x2)dt > 0

(c)
∫

(1 + x2)dx > 0

4. One of the following statements is wrong.
Which one, and why?

(a)
∫ x

0

2t2dt = 2
3
x3.

(b)
∫

2t2dt = 2
3
x3.

(c)
∫

2t2dt = 2
3
x3 + C .

3. First tri: using the double angle formulas

e first method of integration we see in this chapter uses trigonometric identities
to rewrite functions in a form that is easier to integrate. is particular trick is useful
in certain integrals involving trigonometric functions and while these integrals show up
frequently, the “double angle trick” is not a general method for integration.

3.1. e double angle formulas. e simplest of the trigonometric identities are the
double angle formulas. ese can be used to simplify integrals containing either sin2 x
or cos2 x.

Recall that

cos2 α− sin2 α = cos 2α and cos2 α+ sin2 α = 1,

Adding these two equations gives

cos2 α =
1

2
(cos 2α+ 1)

while subtracting them gives

sin2 α =
1

2
(1− cos 2α) .

ese are the two double angle formulas that we will use.
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3.1.1. Example. e following integral shows up in many contexts, so it is worth
knowing: ∫

cos2 x dx =
1

2

∫
(1 + cos 2x)dx

=
1

2

{
x+

1

2
sin 2x

}
+ C

=
x

2
+

1

4
sin 2x+ C.

Since sin 2x = 2 sinx cosx this result can also be wrien as∫
cos2 x dx =

x

2
+

1

2
sinx cosx+ C.

3.1.2. A more complicated example. If we need to find

I =

∫
cos4 x dx

then we can use the double angle trick once to rewrite cos2 x as 1
2 (1 + cos 2x), which

results in

I =

∫
cos4 x dx =

∫ {1
2
(1 + cos 2x)

}2
dx =

1

4

∫ (
1 + 2 cos 2x+ cos2 2x

)
dx.

e first two terms are easily integrated, and now that we know the double angle trick
we also can do the third term. We find∫

cos2 2x dx =
1

2

∫ (
1 + cos 4x

)
dx =

x

2
+

1

8
sin 2x+ C.

Going back to the integral I we get

I =
1

4

∫ (
1 + 2 cos 2x+ cos2 2x

)
dx

=
x

4
+

1

4
sin 2x+

1

2

(x
4
+

1

8
sin 4x

)
+ C

=
3x

8
+

1

4
sin 2x+

1

16
sin 4x+ C

3.1.3. Example without the double angle trick. e integral

J =

∫
cos3 x dx

looks very much like the two previous examples, but there is very different trick that will
give us the answer. Namely, substitute u = sinx. en du = cosxdx, and cos2 x =
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1− sin2 x = 1− u2, so that

J =

∫
cos2 x cosx dx

=

∫
(1− sin2 x) cosx dx

=

∫
(1− u2) du

= u− 1

3
u3 + C

= sinx− 1

3
sin3 x+ C.

In summary, the double angle formulas are useful for certain integrals involving pow-
ers of sin(· · · ) or cos(· · · ), but not all. In addition to the double angle identities there are
other trigonometric identities that can be used to find certain integrals. See the exercises.

4. Problems

Compute the following integrals using
the double angle formulas if necessary:

1.
∫

(1 + sin 2θ)2 dθ .

2.
∫

(cos θ + sin θ)2 dθ.

3. Find
∫

sin2 x cos2 x dx

(hint: use the other double angle formula
sin 2α = 2 sinα cosα.) [A]

4.
∫

cos5 θ dθ [A]

5. Find
∫ (

sin2 θ + cos2 θ
)2

dθ [A]

The double angle formulas are special cases of
the following trig identities:

2 sinA sinB = cos(A−B)− cos(A+B)

2 cosA cosB = cos(A−B) + cos(A+B)

2 sinA cosB = sin(B −A)− sin(A+B)

Use these identities to compute the following
integrals.

6.
∫

sinx sin 2x dx [A]

7.
∫ π

0

sin 3x sin 2x dx

8.
∫ (

sin 2θ − cos 3θ
)2

dθ.

9.
∫ π/2

0

(
sin 2θ + sin 4θ

)2
dθ.

10.
∫ π

0

sin kx sinmx dx where k and m are

constant positive integers. Simplify your an-
swer! (careful: aer working out your solu-
tion, check if you didn’t divide by zero any-
where.)

11. Let a be a positive constant and

Ia =

∫ π/2

0

sin(aθ) cos(θ) dθ.

(a) Find Ia if a ̸= 1.

(b)
�

Find Ia if a = 1. (Don’t divide by
zero.)

12.
�

The input signal for a given electronic
circuit is a function of time Vin(t). The out-
put signal is given by

Vout(t) =

∫ t

0

sin(t− s)Vin(s) ds.

Find Vout(t) if Vin(t) = sin(at) where a > 0
is some constant.

13. The alternating electric voltage coming
out of a socket in any American living room
is said to be 110Volts and 50Herz (or 60, de-
pending on where you are). This means that
the voltage is a function of time of the form

V (t) = A sin(2π
t

T
)

where T = 1
50

sec is how long one oscilla-
tion takes (if the frequency is 50 Herz, then
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there are 50 oscillations per second), and A
is the amplitude (the largest voltage during
any oscillation).

2T 3T 4TT t

A=amplitude

V(t)

0
200

VRMS

5T 6T

100

The 110 Volts that is specified is not the
amplitudeA of the oscillation, but instead it
refers to the “Root Mean Square” of the volt-
age. By definition the R.M.S. of the oscillat-
ing voltage V (t) is

110 =

√
1

T

∫ T

0

V (t)2dt.

(it is the square root of the mean of the
square of V (t)).

Compute the amplitude A.

5. Integration by Parts

While the double angle trick is just that, a (useful) trick, the method of integration
by parts is very general and appears in many different forms. It is the integration coun-
terpart of the product rule for differentiation.

5.1. e product rule and integration by parts. Recall that the product rule says
that

dF (x)G(x)
dx

=
dF (x)
dx

G(x) + F (x)
dG(x)
dx

and therefore, aer rearranging terms,

F (x)
dG(x)
dx

=
dF (x)G(x)

dx
− dF (x)

dx
G(x).

If we integrate both sides we get the formula for integration by parts∫
F (x)

dG(x)
dx

dx = F (x)G(x)−
∫

dF (x)
dx

G(x) dx.

Note that the effect of integration by parts is to integrate one part of the function (G′(x)
got replaced by G(x)) and to differentiate the other part (F (x) got replaced by F ′(x)).
For any given integral there are many ways of choosing F and G, and it not always easy
to see what the best choice is.

5.2. An Example – Integrating by parts once. Consider the problem of finding

I =

∫
xex dx.

We can use integration by parts as follows:∫
x︸︷︷︸

F (x)

ex︸︷︷︸
G′(x)

dx = x︸︷︷︸
F (x)

ex︸︷︷︸
G(x)

−
∫

ex︸︷︷︸
G(x)

1︸︷︷︸
F ′(x)

dx = xex − ex + C.

Observe that in this example ex was easy to integrate, while the factor x becomes an easier
function when you differentiate it. is is the usual state of affairs when integration by
parts works: differentiating one of the factors (F (x)) should simplify the integral, while
integrating the other (G′(x)) should not complicate things (too much).
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5.3. Another example. What is ∫
x sinx dx?

Since sinx = d(− cos x)
dx we can integrate by parts∫

x︸︷︷︸
F (x)

sinx︸︷︷︸
G′(x)

dx = x︸︷︷︸
F (x)

(− cosx)︸ ︷︷ ︸
G(x)

−
∫

1︸︷︷︸
F ′(x)

· (− cosx)︸ ︷︷ ︸
G(x)

dx = −x cosx+ sinx+ C.

5.4. Example – Repeated Integration by Parts. Let’s try to compute

I =

∫
x2e2x dx

by integrating by parts. Since e2x =
d 1
2 e

2x

dx one has

(3)
∫

x2︸︷︷︸
F (x)

e2x︸︷︷︸
G′(x)

dx = x2
e2x

2
−
∫
e2x

2
2x dx =

1

2
x2e2x −

∫
e2xx dx.

To do the integral on the le we have to integrate by parts again:∫
e2xx dx =

1

2
e2x︸ ︷︷ ︸

G(x)

x︸︷︷︸
F (x)

−
∫

1

2
e2x︸ ︷︷ ︸

G(x)

1︸︷︷︸
F ′(x)

dx. =
1

2
xe2x−1

2

∫
e2x dx =

1

2
xe2x−1

4
e2x+C.

Combining this with (3) we get∫
x2e2x dx =

1

2
x2e2x − 1

2
xe2x +

1

4
e2x − C

(Be careful with all the minus signs that appear when integrating by parts.)

5.5. Another example of repeated integration by parts. e same procedure as in
the previous example will work whenever we have to integrate∫

P (x)eax dx

where P (x) is any polynomial, and a is a constant. Every time we integrate by parts, we
get this ∫

P (x)︸ ︷︷ ︸
F (x)

eax︸︷︷︸
G′(x)

dx = P (x)
eax

a
−

∫
eax

a
P ′(x) dx

=
1

a
P (x)eax − 1

a

∫
P ′(x)eax dx.

We have replaced the integral
∫
P (x)eax dx with the integral

∫
P ′(x)eax dx. is is the

same kind of integral, but it is a lile easier since the degree of the derivative P ′(x) is
less than the degree of P (x).
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5.6. Example – sometimes the factorG′(x) is invisible. Here is how we can get the
antiderivative of lnx by integrating by parts:∫

lnx dx =

∫
lnx︸︷︷︸
F (x)

· 1︸︷︷︸
G′(x)

dx

= lnx · x−
∫

1

x
· x dx

= x lnx−
∫

1 dx

= x lnx− x+ C.

We can do
∫
P (x) lnx dx in the same way if P (x) is any polynomial. For instance, to

compute ∫
(z2 + z) ln z dz

we integrate by parts:∫
(z2 + z)︸ ︷︷ ︸

G′(z)

ln z︸︷︷︸
F (z)

dz =
(
1
3z

3 + 1
2z

2
)
ln z −

∫ (
1
3z

3 + 1
2z

2
)1
z
dz

=
(
1
3z

3 + 1
2z

2
)
ln z −

∫ (
1
3z

2 + 1
2z

)
dz

=
(
1
3z

3 + 1
2z

2
)
ln z − 1

9z
3 − 1

4z
2 + C.

5.7. An example where we get the original integral ba. It can happen that aer
integrating by parts a few times the integral we get is the same as the one we started with.
When this happens we have found an equation for the integral, which we can then try to
solve. e standard example in which this happens is the integral

I =

∫
ex sin 2x dx.

We integrate by parts twice:∫
ex︸︷︷︸

F ′(x)

sin 2x︸ ︷︷ ︸
G(x)

dx = ex sin 2x−
∫

ex︸︷︷︸
F (x)

2 cos 2x︸ ︷︷ ︸
G′(x)

dx

= ex sin 2x− 2

∫
ex cos 2x dx

= ex sin 2x− 2ex cos 2x− 2

∫
ex2 sin 2x dx

= ex sin 2x− 2ex cos 2x− 4

∫
ex sin 2x dx.

Note that the last integral here is exactly I again. erefore the integral I satisfies

I = ex sin 2x− 2ex cos 2x− 4I.

We solve this equation for I , with result

5I = ex sin 2x− 2ex cos 2x =⇒ I =
1

5

(
ex sin 2x− 2ex cos 2x

)
.
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Since I is an indefinite integral we still have to add the arbitrary constant:

I =
1

5

(
ex sin 2x− 2ex cos 2x

)
+ C.

6. Reduction Formulas

We have seen that we can compute integrals by integrating by parts, and that we
sometimes have to integrate by partsmore than once to get the answer. ere are integrals
where we have to integrate by parts not once, not twice, but n-times before the answer
shows up. To do such integrals it is useful to carefully describe what happens each time
we integrate by parts before we do the actual integrations. e formula that describes
what happens aer one partial integration is called a reduction formula. All this is best
explained by an example.

6.1. First example of a reduction formula. Consider the integral

In =

∫
xneax dx, (n = 0, 1, 2, 3, . . .)

or, in other words, consider all the integrals

I0 =

∫
eax dx, I1 =

∫
xeax dx, I2 =

∫
x2eax dx, I3 =

∫
x3eax dx, . . .

and so on. We will consider all these integrals at the same time.
Integration by parts in In gives us

In =

∫
xn︸︷︷︸
F (x)

eax︸︷︷︸
G′(x)

dx

= xn
1

a
eax −

∫
nxn−1 1

a
eax dx

=
1

a
xneax − n

a

∫
xn−1eax dx.

We haven’t computed the integral, and in fact the integral that we still have to do is of
the same kind as the one we started with (integral of xn−1eax instead of xneax). What
we have derived is the following reduction formula

In =
1

a
xneax − n

a
In−1,

which holds for all n.
For n = 0 we do not need the reduction formula to find the integral. We have

I0 =

∫
eax dx =

1

a
eax + C.

When n ̸= 0 the reduction formula tells us that we have to compute In−1 if we want to
find In. e point of a reduction formula is that the same formula also applies to In−1,
and In−2, etc., so that aer repeated application of the formula we end up with I0, i.e., an
integral we know.
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For example, if we want to compute
∫
x3eax dx we use the reduction formula three

times:

I3 =
1

a
x3eax − 3

a
I2

=
1

a
x3eax − 3

a

{
1

a
x2eax − 2

a
I1

}
=

1

a
x3eax − 3

a

{
1

a
x2eax − 2

a

(
1

a
xeax − 1

a
I0

)}
Insert the known integral I0 = 1

ae
ax + C and simplify the other terms and we get∫

x3eax dx =
1

a
x3eax − 3

a2
x2eax +

6

a3
xeax − 6

a4
eax + C.

6.2. Reduction formula requiring two partial integrations. Consider

Sn =

∫
xn sinx dx.

en for n ≥ 2 one has

Sn = −xn cosx+ n

∫
xn−1 cosx dx

= −xn cosx+ nxn−1 sinx− n(n− 1)

∫
xn−2 sinx dx.

us we find the reduction formula

Sn = −xn cosx+ nxn−1 sinx− n(n− 1)Sn−2.

Each time we use this reduction, the exponent n drops by 2, so in the end we get either
S1 or S0, depending on whether we started with an odd or even n. ese two integrals
are

S0 =

∫
sinx dx = − cosx+ C

S1 =

∫
x sinx dx = −x cosx+ sinx+ C.

(Integrate by parts once to find S1.)
As an example of how to use the reduction formulas for Sn let’s try to compute S4:∫
x4 sinx dx = S4 = −x4 cosx+ 4x3 sinx− 4 · 3S2

= −x4 cosx+ 4x3 sinx− 4 · 3 ·
{
−x2 cosx+ 2x sinx− 2 · 1S0

}
At this point we use S0 =

∫
sinx dx = − cosx + C , and we combine like terms. is

results in∫
x4 sinx dx = −x4 cosx+ 4x3 sinx

− 4 · 3 ·
{
−x2 cosx+ 2x sinx− 2 · 1(− cosx)

}
+ C

=
(
−x4 + 12x2 − 24

)
cosx+

(
4x3 + 24x

)
sinx+ C.
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6.3. A reduction formula where you have to solve for In. We try to compute

In =

∫
(sinx)n dx

by a reduction formula. Integrating by parts twice we get

In =

∫
(sinx)n−1 sinx dx

= −(sinx)n−1 cosx−
∫
(− cosx)(n− 1)(sinx)n−2 cosx dx

= −(sinx)n−1 cosx+ (n− 1)

∫
(sinx)n−2 cos2 x dx.

We now use cos2 x = 1− sin2 x, which gives

In = −(sinx)n−1 cosx+ (n− 1)

∫ {
sinn−2 x− sinn x

}
dx

= −(sinx)n−1 cosx+ (n− 1)In−2 − (n− 1)In.

We can think of this as an equation for In, which, when we solve it tells us

nIn = −(sinx)n−1 cosx+ (n− 1)In−2

and thus implies

(4) In = − 1

n
sinn−1 x cosx+

n− 1

n
In−2.

Since we know the integrals

I0 =

∫
(sinx)0dx =

∫
dx = x+ C

and

I1 =

∫
sinx dx = − cosx+ C

the reduction formula (4) allows us to calculate In for any n ≥ 2.

6.4. A reduction formula that will come in handy later. In the next section we will
see how the integral of any “rational function” can be transformed into integrals of easier
functions, the most difficult of which turns out to be

In =

∫
dx

(1 + x2)n
.

When n = 1 this is a standard integral, namely

I1 =

∫
dx

1 + x2
= arctanx+ C.

When n > 1 integration by parts gives us a reduction formula. Here’s the computation:

In =

∫
(1 + x2)−n dx

=
x

(1 + x2)n
−
∫
x (−n)

(
1 + x2

)−n−1
2x dx

=
x

(1 + x2)n
+ 2n

∫
x2

(1 + x2)n+1
dx
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Apply
x2

(1 + x2)n+1
=

(1 + x2)− 1

(1 + x2)n+1
=

1

(1 + x2)n
− 1

(1 + x2)n+1

to get ∫
x2

(1 + x2)n+1
dx =

∫ {
1

(1 + x2)n
− 1

(1 + x2)n+1

}
dx = In − In+1.

Our integration by parts therefore told us that

In =
x

(1 + x2)n
+ 2n

(
In − In+1

)
,

which we can solve for In+1. We find the reduction formula

In+1 =
1

2n

x

(1 + x2)n
+

2n− 1

2n
In.

As an example of how we can use it, we start with I1 = arctanx+ C , and conclude
that ∫

dx
(1 + x2)2

= I2 = I1+1

=
1

2 · 1
x

(1 + x2)1
+

2 · 1− 1

2 · 1
I1

= 1
2

x

1 + x2
+ 1

2 arctanx+ C.

Apply the reduction formula again, now with n = 2, and we get∫
dx

(1 + x2)3
= I3 = I2+1

=
1

2 · 2
x

(1 + x2)2
+

2 · 2− 1

2 · 2
I2

= 1
4

x

(1 + x2)2
+ 3

4

{
1
2

x

1 + x2
+ 1

2 arctanx
}

= 1
4

x

(1 + x2)2
+ 3

8

x

1 + x2
+ 3

8 arctanx+ C.

7. Problems

1. Evaluate
∫

xn lnx dx where n ̸= −1.

[A]

2. Assume a and b are constants, and com-

pute
∫

eax sin bx dx. [Hint: Integrate by

parts twice; you can assume that b ̸= 0.]
[A]

3. Evaluate
∫

eax cos bx dxwhere a, b ̸= 0.

[A]

4. Prove the formula∫
xnex dx = xnex − n

∫
xn−1ex dx

and use it to evaluate
∫

x2ex dx.

5. Use §6.3 to evaluate
∫

sin2 x dx. Show

that the answer is the same as the answer
you get using the half angle formula.

6. Use the reduction formula in §6.3 to com-

pute
∫ π/2

0

sin14 xdx. [A]
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7. In this problem you’ll look at the numbers

An =

∫ π

0

sinn x dx.

(a) Check that A0 = π and A1 = 2.

(b) Use the reduction formula in §6.3 to com-
pute A5, A6, and A7. [A]

(c) Explain why

An < An−1

is true for all n = 1, 2, 3, 4, . . .

(Hint: Interpret the integrals An as
area under the graph, and check that
(sinx)n ≤ (sinx)n−1 for all x.)

(d)
�

Based on your values for A5, A6, and
A7 find two fractions a and b such that a <
π < b.

8. Prove the formula∫
cosn x dx =

1

n
sinx cosn−1 x

+
n− 1

n

∫
cosn−2 x dx,

for n ̸= 0, and use it to evaluate∫ π/4

0

cos4 x dx.

[A]

9. Prove the formula∫
xm(lnx)n dx =

xm+1(lnx)n

m+ 1

− n

m+ 1

∫
xm(lnx)n−1 dx,

for m ̸= −1, and use it to evaluate the fol-
lowing integrals: [A]

10.
∫

lnx dx [A]

11.
∫

(lnx)2 dx [A]

12.
∫

x3(lnx)2 dx

13. Evaluate
∫

x−1 lnx dx by another

method. [Hint: the solution is short!] [A]

14. For any integer n > 1 derive the formula∫
tann x dx =

tann−1 x

n− 1
−

∫
tann−2 x dx

Using this, find
∫ π/4

0

tan5 x dx. [A]

Use the reduction formula from example 6.4
to compute these integrals:

15.
∫

dx
(1 + x2)3

16.
∫

dx
(1 + x2)4

17.
∫

xdx
(1 + x2)4

[Hint:
∫
x/(1 + x2)ndx is

easy.] [A]

18.
∫

1 + x

(1 + x2)2
dx

19.
∫

dx(
49 + x2

)3 .

20. The reduction formula from example 6.4
is valid for all n ̸= 0. In particular, n does
not have to be an integer, and it does not
have to be positive. Find a relation between∫ √

1 + x2 dx and
∫

dx√
1 + x2

by seing

n = − 1
2
.

21. Apply integration by parts to∫
1

x
dx

Let u = 1
x

and dv = dx. This gives us,
du = −1

x2 dx and v = x.∫
1

x
dx = (

1

x
)(x)−

∫
x

−1

x2
dx

Simplifying∫
1

x
dx = 1 +

∫
1

x
dx

and subtracting the integral from both sides
gives us 0 = 1. How can this be?
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8. Partial Fraction Expansion

By definition, a rational function is a quotient (a ratio) of polynomials,

f(x) =
P (x)

Q(x)
=
pnx

n + pn−1x
n−1 + · · ·+ p1x+ p0

qdxd + qd−1xd−1 + · · ·+ q1x+ q0
.

Such rational functions can always be integrated, and the trick that allows you to do this is
called a partial fraction expansion. e whole procedure consists of several steps that
are explained in this section. e procedure itself has nothing to do with integration: it’s
just a way of rewriting rational functions. It is in fact useful in other situations, such as
finding Taylor expansions (see Chapter IV) and computing “inverse Laplace transforms”
(see M 319.)

8.1. Reduce to a proper rational function. A proper rational function is a rational
function P (x)/Q(x) where the degree of P (x) is strictly less than the degree of Q(x).
e method of partial fractions only applies to proper rational functions. Fortunately
there’s an additional trick for dealing with rational functions that are not proper.

If P/Q isn’t proper, i.e. if degree(P ) ≥ degree(Q), then you divide P by Q, with
result

P (x)

Q(x)
= S(x) +

R(x)

Q(x)

where S(x) is the quotient, and R(x) is the remainder aer division. In practice you
would do a long division to find S(x) and R(x).

8.2. Example. Consider the rational function

f(x) =
x3 − 2x+ 2

x2 − 1
.

Here the numerator has degree 3 which is more than the degree of the denominator
(which is 2). e function f(x) is therefore not a proper rational function. To apply
the method of partial fractions we must first do a division with remainder. One has

x = S(x)

x2 − 1 x3−2x+2
x3 −x

−x+2 = R(x)

so that

f(x) =
x3 − 2x+ 2

x2 − 1
= x+

−x+ 2

x2 − 1

When we integrate we get∫
x3 − 2x+ 2

x2 − 1
dx =

∫ {
x+

−x+ 2

x2 − 1

}
dx

=
x2

2
+

∫
−x+ 2

x2 − 1
dx.

e rational function that we still have to integrate, namely −x+2
x2−1 , is proper: its numer-

ator has lower degree than its denominator.
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8.3. Partial Fraction Expansion: e Easy Case. To compute the partial fraction
expansion of a proper rational function P (x)/Q(x) you must factor the denominator
Q(x). Factoring the denominator is a problem as difficult as finding all of its roots; in
Math 222 we shall only do problems where the denominator is already factored into linear
and quadratic factors, or where this factorization is easy to find.

In the easiest partial fractions problems, all the roots of Q(x) are real numbers and
distinct, so the denominator is factored into distinct linear factors, say

P (x)

Q(x)
=

P (x)

(x− a1)(x− a2) · · · (x− an)
.

To integrate this function we find constants A1, A2, . . . , An so that

P (x)

Q(x)
=

A1

x− a1
+

A2

x− a2
+ · · ·+ An

x− an
. (#)

en the integral is∫
P (x)

Q(x)
dx = A1 ln |x− a1|+A2 ln |x− a2|+ · · ·+An ln |x− an|+ C.

One way to find the coefficients Ai in (#) is called the method of equating coeffi-
cients. In this method we multiply both sides of (#) with Q(x) = (x− a1) · · · (x− an).
e result is a polynomial of degree n on both sides. Equating the coefficients of these
polynomial gives a system of n linear equations for A1, …, An. You get the Ai by solving
that system of equations.

Another much faster way to find the coefficientsAi is theHeaviside tri¹. Multiply
equation (#) by x− ai and then plug in² x = ai. On the right you are le with Ai so

Ai =
P (x)(x− ai)

Q(x)

∣∣∣∣
x=ai

=
P (ai)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
.

8.4. Previous Example continued. To integrate
−x+ 2

x2 − 1
we factor the denominator,

x2 − 1 = (x− 1)(x+ 1).

e partial fraction expansion of
−x+ 2

x2 − 1
then is

(5)
−x+ 2

x2 − 1
=

−x+ 2

(x− 1)(x+ 1)
=

A

x− 1
+

B

x+ 1
.

Multiply with (x− 1)(x+ 1) to get

−x+ 2 = A(x+ 1) +B(x− 1) = (A+B)x+ (A−B).

e functions of x on the le and right are equal only if the coefficient of x and the
constant term are equal. In other words we must have

A+B = −1 and A−B = 2.

¹ Named aer O H, a physicist and electrical engineer in the late 19th and early 20th century.
² More properly, you should take the limit x → ai. e problem here is that equation (#) has x − ai in

the denominator, so that it does not hold for x = ai. erefore you cannot set x equal to ai in any equation
derived from (#). But you can take the limit x → ai, which in practice is just as good.
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ese are two linear equations for two unknowns A and B, which we now proceed to
solve. Adding both equations gives 2A = 1, so that A = 1

2 ; from the first equation one
then finds B = −1−A = − 3

2 . So

−x+ 2

x2 − 1
=

1/2

x− 1
− 3/2

x+ 1
.

Instead, we could also use the Heaviside trick: multiply (5) with x− 1 to get

−x+ 2

x+ 1
= A+B

x− 1

x+ 1

Take the limit x→ 1 and you find

−1 + 2

1 + 1
= A, i.e. A =

1

2
.

Similarly, aer multiplying (5) with x+ 1 one gets

−x+ 2

x− 1
= A

x+ 1

x− 1
+B,

and leing x→ −1 you find

B =
−(−1) + 2

(−1)− 1
= −3

2
,

as before.
Either way, the integral is now easily found, namely,∫

x3 − 2x+ 1

x2 − 1
dx =

x2

2
+ x+

∫
−x+ 2

x2 − 1
dx

=
x2

2
+ x+

∫ {
1/2

x− 1
− 3/2

x+ 1

}
dx

=
x2

2
+ x+

1

2
ln |x− 1| − 3

2
ln |x+ 1|+ C.

8.5. Partial Fraction Expansion: e General Case. When the denominator Q(x)
contains repeated factors or quadratic factors (or both) the partial fraction decomposition
is more complicated. In the most general case the denominator Q(x) can be factored in
the form

(6) Q(x) = (x− a1)
k1 · · · (x− an)

kn(x2 + b1x+ c1)
ℓ1 · · · (x2 + bmx+ cm)ℓm

Here we assume that the factors x − a1, …, x − an are all different, and we also assume
that the factors x2 + b1x+ c1, …, x2 + bmx+ cm are all different.

It is a theorem from advanced algebra that you can always write the rational function
P (x)/Q(x) as a sum of terms like this

(7)
P (x)

Q(x)
= · · ·+ A

(x− ai)k
+ · · ·+ Bx+ C

(x2 + bjx+ cj)ℓ
+ · · ·

How did this sum come about?
For each linear factor (x− a)k in the denominator (6) you get terms

A1

x− a
+

A2

(x− a)2
+ · · ·+ Ak

(x− a)k

in the decomposition. ere are as many terms as the exponent of the linear factor that
generated them.
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For each quadratic factor (x2 + bx+ c)ℓ you get terms

B1x+ C1

x2 + bx+ c
+

B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bmx+ Cm

(x2 + bx+ c)ℓ
.

Again, there are as many terms as the exponent ℓwith which the quadratic factor appears
in the denominator (6).

In general, you find the constants A..., B... and C... by the method of equating coef-
ficients.

� Unfortunately, in the presence of quadratic factors or repeated linear fac-
tors the Heaviside trick does not give the whole answer; we really have to
use the method of equating coefficients.

�
e workings of this method are best explained in an example.

8.6. Example. Find the partial fraction decomposition of

f(x) =
x2 + 2

x2(x2 + 1)

and compute

I =

∫
x2 + 2

x2(x2 + 1)
dx.

e degree of the denominator x2(x2 + 1) is four, so our partial fraction decomposition
must also contain four undetermined constants. e expansion should be of the form

x2 + 2

x2(x2 + 1)
=
A

x
+
B

x2
+
Cx+D

x2 + 1
.

To find the coefficients A,B,C,D we multiply both sides with x2(1 + x2),

x2 + 2 = Ax(x2 + 1) +B(x2 + 1) + x2(Cx+D)

x2 + 2 = (A+ C)x3 + (B +D)x2 +Ax+B

0 · x3 + 1 · x2 + 0 · x+ 2 = (A+ C)x3 + (B +D)x2 +Ax+B

Comparing terms with the same power of x we find that

A+ C = 0, B +D = 1, A = 0, B = 2.

ese are four equations for four unknowns. Fortunately for us they are not very difficult
in this example. We find A = 0, B = 2, C = −A = 0, and D = 1−B = −1, whence

f(x) =
x2 + 2

x2(x2 + 1)
=

2

x2
− 1

x2 + 1
.

e integral is therefore

I =
x2 + 2

x2(x2 + 1)
dx = − 2

x
− arctanx+ C.
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8.7. A complicated example. Find the integral∫
x2 + 3

x2(x+ 1)(x2 + 1)3
dx.

e procedure is exactly the same as in the previous example. We have to expand the
integrand in partial fractions:

(8)
x2 + 3

x2(x+ 1)(x2 + 1)3
=
A1

x
+
A2

x2
+

A3

x+ 1

+
B1x+ C1

x2 + 1
+
B2x+ C2

(x2 + 1)2
+
B3x+ C3

(x2 + 1)3
.

Note that the degree of the denominator x2(x + 1)(x2 + 1)3 is 2 + 1 + 3 × 2 = 9, and
also that the partial fraction decomposition has nine undetermined constants A1, A2,
A3, B1, C1, B2, C2, B3, C3. Aer multiplying both sides of (8) with the denominator
x2(x + 1)(x2 + 1)3, expanding everything, and then equating coefficients of powers of
x on both sides, we get a system of nine linear equations in these nine unknowns. e
final step in finding the partial fraction decomposition is to solve those linear equations.
A computer program like Maple or Mathematica can do this easily, but it is a lot of work
to do it by hand.

8.8. Aer the partial fraction decomposition. Once we have the partial fraction
decomposition (8) we still have to integrate the terms that appeared. e first three terms
are of the form

∫
A(x− a)−p dx and they are easy to integrate:∫

A dx
x− a

= A ln |x− a|+ C

and ∫
A dx

(x− a)p
=

A

(1− p)(x− a)p−1
+ C

if p > 1. e next, fourth term in (8) can be wrien as∫
B1x+ C1

x2 + 1
dx = B1

∫
x

x2 + 1
dx+ C1

∫
dx

x2 + 1

=
B1

2
ln(x2 + 1) + C1 arctanx+K,

where K is the integration constant (normally “+C” but there are so many other C’s in
this problem that we chose a different leer, just for this once.)

While these integrals are already not very simple, the integrals∫
Bx+ C

(x2 + bx+ c)p
dx with p > 1

which can appear are particularly unpleasant. If we really must compute one of these,
then we should first complete the square in the denominator so that the integral takes the
form ∫

Ax+B

((x+ b)2 + a2)p
dx.

Aer the change of variables u = x+ b and factoring out constants we are le with the
integrals ∫

du

(u2 + a2)p
and

∫
u du

(u2 + a2)p
.
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e reduction formula from example 6.4 then allows us to compute this integral.
An alternative approach is to use complex numbers. If we allow complex numbers

then the quadratic factors x2+ bx+ c can be factored, and our partial fraction expansion
only contains terms of the form A/(x − a)p, although A and a can now be complex
numbers. e integrals are then easy, but the answer has complex numbers in it, and
rewriting the answer in terms of real numbers again can be quite involved. In this course
we will avoid complex numbers and therefore we will not explain this any further.

9. Problems

1. Express each of the following rational
functions as a polynomial plus a proper ra-
tional function. (See §8.1 for definitions.)

(a)
x3

x3 − 4
[A]

(b)
x3 + 2x

x3 − 4
[A]

(c)
x3 − x2 − x− 5

x3 − 4
[A]

(d)
x3 − 1

x2 − 1
[A]

2. Compute the following integrals by com-
pleting the square:

(a)
∫

dx
x2 + 6x+ 8

, [A]

(b)
∫

dx
x2 + 6x+ 10

, [A]

(c)
∫

dx
5x2 + 20x+ 25

. [A]

3. Use the method of equating coefficients
to find numbers A, B, C such that

x2 + 3

x(x+ 1)(x− 1)
=

A

x
+

B

x+ 1
+

C

x− 1

and then evaluate the integral∫
x2 + 3

x(x+ 1)(x− 1)
dx.

[A]

4. Do the previous problem using the Heav-
iside trick. [A]

5. Find the integral
∫

x2 + 3

x2(x− 1)
dx. [A]

6. Simplicio had to integrate

4x2

(x− 3)(x+ 1)
.

He set

4x2

(x− 3)(x+ 1)
=

A

x− 3
+

B

x+ 1
.

Using the Heaviside trick he then found

A =
4x2

x− 3

∣∣∣∣
x=−1

= −1,

and

B =
4x2

x+ 1

∣∣∣∣
x=3

= 9,

which leads him to conclude that

4x2

(x− 3)(x+ 1)
=

−1

x− 3
+

9

x+ 1
.

To double check he now sets x = 0 which
leads to

0 =
1

3
+ 9 ????

What went wrong?

Evaluate the following integrals:

7.
∫ −2

−5

x4 − 1

x2 + 1
dx

8.
∫

x3 dx
x4 + 1

9.
∫

x5 dx
x2 − 1

10.
∫

x5 dx
x4 − 1

11.
∫

x3

x2 − 1
dx [A]

12.
∫

2x+ 1

x2 − 3x+ 2
dx [A]

13.
∫

x2 + 1

x2 − 3x+ 2
dx [A]
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14.
∫

e3x dx
e4x − 1

[A]

15.
∫

ex dx√
1 + e2x

16.
∫

ex dx
e2x + 2ex + 2

[A]

17.
∫

dx
1 + ex

[A]

18.
∫

dx
x(x2 + 1)

19.
∫

dx
x(x2 + 1)2

20.
∫

dx
x2(x− 1)

[A]

21.
∫

1

(x− 1)(x− 2)(x− 3)
dx

22.
∫

x2 + 1

(x− 1)(x− 2)(x− 3)
dx

23.
∫

x3 + 1

(x− 1)(x− 2)(x− 3)
dx

24. (a) Compute
∫ 2

1

dx
x(x− h)

where h is a

positive number.

(b) What happens to your answer to (a)
when h ↘ 0?

(c) Compute
∫ 2

1

dx
x2

.

10. Substitutions for integrals containing the expression
√
ax2 + bx+ c

e main method for finding antiderivatives that we saw in Math 221 is the method
of substitution. is method will only let us compute an integral if we happen to guess
the right substitution, and guessing the right substitution is oen not easy. If the integral
contains the square root of a linear or quadratic function, then there are a number of
substitutions that are known to help.

• Integrals with
√
ax+ b: substitute ax+ b = u2 with u > 0. See § 10.1.

• Integrals with
√
ax2 + bx+ c: first complete the square to reduce the integral

to one containing one of the following three forms√
1− u2,

√
u2 − 1,

√
u2 + 1.

en, depending on which of these three cases presents itself, you choose an
appropriate substitution. ere are several options:
– a trigonometric substitution; this works well in some cases, but oen you

end up with an integral containing trigonometric functions that is still not
easy (see § 10.2 and § 10.4.1).

– use hyperbolic functions; the hyperbolic sine and hyperbolic cosine some-
times let you handle cases where trig substitutions do not help.

– a rational substitution (see § 11) using the two functionsU(t) = 1
2

(
t+t−1

)
and V (t) = 1

2

(
t− t−1

)
.

10.1. Integrals involving
√
ax+ b. If an integral contains the square root of a linear

function, i.e.
√
ax+ b then you can remove this square root by substituting u =

√
ax+ b.

10.1.1. Example. To compute

I =

∫
x
√
2x+ 3 dx

we substitute u =
√
2x+ 3. en

x =
1

2
(u2 − 3) so that dx = u du,
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and hence

I =

∫
1
2 (u

2 − 3)︸ ︷︷ ︸
x

u︸︷︷︸
√
2x+3

u du︸︷︷︸
dx

=
1

2

∫ (
u4 − 3u2

)
du

=
1

2

{
1
5u

5 − u3
}
+ C.

To write the antiderivative in terms of the original variable you substitute u =
√
2x+ 3

again, which leads to

I =
1

10
(2x+ 3)5/2 − 1

2
(2x+ 3)3/2 + C.

A comment: seing u =
√
ax+ b is usually the best choice, but sometimes other

choices also work. You, the reader, might want to try this same example substituting
v = 2x+3 instead of the substitution we used above. You should of course get the same
answer.

10.1.2. Another example. Compute

I =

∫
dx

1 +
√
1 + x

.

Again we substitute u2 = x+ 1, or, u =
√
x+ 1. We get

I =

∫
dx

1 +
√
1 + x

u2 = x+ 1 so 2u du = dx

=

∫
2u du
1 + u

A rational function: we know
what to do.

=

∫ (
2− 2

1 + u

)
du

= 2u− 2 ln(1 + u) + C

= 2
√
x+ 1− 2 ln

(
1 +

√
x+ 1

)
+ C.

Note that u =
√
x+ 1 is positive, so that 1 +

√
x+ 1 > 0, and so that we do not need

absolute value signs in ln(1 + u).

10.2. Integrals containing
√
1− x2. If an integral contains the expression

√
1− x2

then this expression can be removed at the expense of introducing trigonometric func-
tions. Sometimes (but not always) the resulting integral is easier.

e substitution that removes the
√
1− x2 is x = sin θ.

10.2.1. Example. To compute

I =

∫
dx

(1− x2)3/2

note that
1

(1− x2)3/2
=

1

(1− x2)
√
1− x2

,

so we have an integral involving
√
1− x2.
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We set x = sin θ, and thus dx = cos θ dθ. We get

I =

∫
cos θ dθ

(1− sin2 θ)3/2
.

Use 1− sin2 θ = cos2 θ and you get

(1− sin2 θ)3/2 =
(
cos2 θ

)3/2
= | cos θ|3.

We were forced to include the absolute values here because of the possibility that cos θ
might be negative. However it turns out that cos θ > 0 in our situation since, in the
original integral I the variable xmust lie between−1 and+1: hence, if we set x = sin θ,
then we may assume that −π

2 < θ < π
2 . For those θ one has cos θ > 0, and therefore we

can write
(1− sin2 θ)3/2 = cos3 θ.

Aer substitution our integral thus becomes

I =

∫
cos θ dθ
cos3 θ

=

∫
dθ

cos2 θ
= tan θ + C.

To express the antiderivative in terms of the original variable we use

θ
√
1− x2

1
x

x = sin θ√
1− x2 = cos θ. x = sin θ =⇒ tan θ =

x√
1− x2

.

e final result is

I =

∫
dx

(1− x2)3/2
=

x√
1− x2

+ C.

10.2.2. Example: sometimes you don’t have to do a trig substitution. e following
integral is very similar to the one from the previous example:

Ĩ =

∫
x dx(

1− x2
)3/2 .

e only difference is an extra “x” in the numerator.
To compute this integral you can substitute u = 1−x2, in which case du = −2x dx.

us we find ∫
x dx(

1− x2
)3/2 = −1

2

∫
du
u3/2

= −1

2

∫
u−3/2du

= −1

2

u−1/2

(−1/2)
+ C =

1√
u
+ C

=
1√

1− x2
+ C.

10.3. Integrals containing
√
a2 − x2. If an integral contains the expression

√
a2 − x2

for some positive number a, then this can be removed by substituting either x = a sin θ
or x = a cos θ. Since in the integral we must have −a < x < a, we only need values of
θ in the interval (−π

2 ,
π
2 ). us we substitute

x = a sin θ, −π
2
< θ <

π

2
.

For these values of θ we have cos θ > 0, and hence√
a2 − x2 = a cos θ.



10. SUBSTITUTIONS FOR INTEGRALS CONTAINING THE EXPRESSION
√
ax2 + bx + c 29

10.3.1. Example. To find

J =

∫ √
9− x2 dx

we substitute x = 3 sin θ, and compute dx = 3 cos θ dθ, which then leads to

J =

∫
3 cos θ 3 cos θ dθ = 9

∫
cos2 θ dθ.

is example shows that the integral we get aer a trigonometric substitution is not al-
ways easy and may still require more tricks to be computed. For this particular integral
we use the “double angle trick.” Just as in § 3 we find

θ
√
9− x2

3
x

x = 3 sin θ√
9− x2 = 3 cos θ.J = 9

∫
cos2 θ dθ =

9

2

(
θ + 1

2 sin 2θ
)
+ C.

e last step is to undo the substitution x = 3 sin θ. Since θ ranges between −π
2 and +π

2
we have

x = 3 sin θ ⇐⇒ θ = arcsin
x

3
,

To substitute θ = arcsin(· · · ) in sin 2θ we need a double angle formula,

sin 2θ = 2 sin θ cos θ = 2× x

3
×

√
9− x2

3
.

We get ∫ √
9− x2 dx =

9

2
arcsin

x

3
+

2

9
x
√

9− x2 + C.

10.4. Integrals containing
√
x2 − a2 or

√
a2 + x2. ere are trigonometric substi-

tutions that will remove either
√
x2 − a2 or

√
a2 + x2 from an integral. In both cases

they come from the identities

θ

a

a

cos
θ

a tan θ

x = a tan θ√
a2 + x2 = a/ cos θ

y = a/ cos θ√
y2 − a2 = a tan θ

(9)
( 1

cos θ

)2

= tan2 θ + 1 or
( 1

cos θ

)2

− 1 = tan2 θ.

You can remember these identities either by drawing a right triangle with angle θ and
with base of length 1, or else by dividing both sides of the equations

1 = sin2 θ + cos2 θ or 1− cos2 θ = sin2 θ

by cos2 θ.
10.4.1. Example – turn the integral

∫ 4

2

√
x2 − 4 dx into a trigonometric integral. Since√

x2 − 4 =
√
x2 − 22 we substitute

x =
2

cos θ
,

which then leads to √
x2 − 4 =

√
4 tan2 θ = 2 tan θ.

In this last step we have to be careful with the sign of the square root: since 2 < x < 4
in our integral, we can assume that 0 < θ < π

2 and thus that tan θ > 0. erefore√
tan2 θ = tan θ instead of − tan θ.

e substitution x = 2
cos θ also implies that

dx = 2
sin θ
cos2 θ

dθ.

We finally also consider the integration bounds:

x = 2 =⇒ 2

cos θ
= 2 =⇒ cos θ = 1 =⇒ θ = 0,
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and

x = 4 =⇒ 2

cos θ
= 4 =⇒ cos θ = 1

2 =⇒ θ =
π

3
.

erefore we have∫ 4

2

√
x2 − 4 dx =

∫ π/3

0

2 tan θ · 2 sin θ
cos2 θ

dθ = 4

∫ π/3

0

sin2 θ
cos3 θ

dθ.

is integral is still not easy: it can be done by integration by parts, and you have to know
the antiderivative of 1/ cos θ.

11. Rational substitution for integrals containing
√
x2 − a2 or

√
a2 + x2

11.1. e functions U(t) and V (t). Instead of using a trigonometric substitution
one can also use the following identity to get rid of either

√
x2 − a2 or

√
x2 + a2. e

identity is a relation between two functions U and V of a new variable t defined by

(10) U(t) = 1
2

(
t+

1

t

)
, V (t) = 1

2

(
t− 1

t

)
.

ese satisfy

(11) U2 = V 2 + 1,

which one can verify by direct substitution of the definitions (10) of U(t) and V (t).
To undo the substitution it is useful to note that if U and V are given by (10), then

(12) t = U + V,
1

t
= U − V.

11.1.1. Example § 10.4.1 again. Here we compute the integral

A =

∫ 4

2

√
x2 − 4 dx

using the rational substitution (10).
Since the integral contains the expression

√
x2 − 4 =

√
x2 − 22 we substitute x =

2U(t). Using U2 = 1 + V 2 we then have√
x2 − 4 =

√
4U(t)2 − 4 = 2

√
U(t)2 − 1 = 2|V (t)|.

2 4

y =
√
x2 − 4

Area = ?

Figure 1. What is the area of the shaded region under the hyperbola? We first try to compute it
using a trigonometric substitution (§ 10.4.1), and then using a rational substitution involving the
U and V functions (§ 11.1.1). The answer turns out to be 4

√
3− 2 ln

(
2 +

√
3
)
.
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1

V (t) =
1

2

(
t−

1

t

)

U(t) =
1

2

(
t+

1

t

)

t

1

U =
1

2

(
t+

1

t

)
t = U + V

V =
1

2

(
t−

1

t

) 1

t
= U − V

U2 − V 2 = 1

t/2

Figure 2. The functions U(t) and V (t)

When we use the substitution x = aU(t) we should always assume that t ≥ 1. Under
that assumption we have V (t) ≥ 0 (see Figure 2) and therefore

√
x2 − 4 = 2V (t). To

summarize, we have

(13) x = 2U(t),
√
x2 − 4 = 2V (t).

We can now do the indefinite integral:∫ √
x2 − 4 dx =

∫
2V (t)︸ ︷︷ ︸
√
x2−4

· 2U ′(t) dt︸ ︷︷ ︸
dx

=

∫
2 · 1

2

(
t− 1

t

)
·
(
1− 1

t2

)
dt

=

∫ (
t− 2

t
+

1

t3

)
dt

=
t2

2
− 2 ln t− 1

2t2
+ C

To finish the computation we still have to convert back to the original x variable, and
substitute the integration bounds. e most straightforward approach is to substitute
t = U + V , and then remember the relations (13) between U , V , and x. Using these
relations the middle term in the integral we just found becomes

−2 ln t = −2 ln(U + V ) = −2 ln
{x
2
+

√(x
2

)2 − 1
}
.
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We can save ourselves some work by taking the other two terms together and factoring
them as follows

t2

2
− 1

2t2
=

1

2

(
t2 −

(1
t

)2)
a2 − b2 = (a+ b)(a− b)(14)

=
1

2

(
t+

1

t

)(
t− 1

t

)
t+ 1

t = x

=
1

2
x · 2

√(x
2

)2 − 1 1
2

(
t− 1

t

)
=

√
(x2 )

2 − 1

=
x

2

√
x2 − 4.

So we find ∫ √
x2 − 4 dx =

x

2

√
x2 − 4− 2 ln

{x
2
+

√(x
2

)2 − 1
}
+ C.

Hence, substituting the integration bounds x = 2 and x = 4, we get

A =

∫ 4

2

√
x2 − 4 dx

=
[x
2

√
x2 − 4− 2 ln

{x
2
+

√(x
2

)2 − 1
}]x=4

x=2

=
4

2

√
16− 4− 2 ln

(
2 +

√
3
) (

the terms with
x = 2 vanish

)
= 4

√
3− 2 ln

(
2 +

√
3
)
.

11.1.2. An example with
√
1 + x2. ere are several ways to compute

I =

∫ √
1 + x2 dx

and unfortunately none of them are very simple. e simplest solution is to avoid finding
the integral and look it up in a table, such as Table 2. But how were the integrals in that
table found? One approach is to use the same pair of functions U(t) and V (t) from (10).
Since U2 = 1+V 2 the substitution x = V (t) allows us to take the square root of 1+x2,
namely,

x = V (t) =⇒
√
1 + x2 = U(t).

Also, dx = V ′(t)dt = 1
2

(
1 + 1

t2

)
dt, and thus we have

I =

∫ √
1 + x2︸ ︷︷ ︸
=U(t)

dx︸︷︷︸
dV (t)

=

∫
1

2

(
t+

1

t

)1
2

(
1 +

1

t2
)
dt

=
1

4

∫ (
t+

2

t
+

1

t3
)
dt

=
1

4

{ t2
2
+ 2 ln t− 1

2t2
}
+ C

=
1

8

(
t2 − 1

t2
)
+

1

2
ln t+ C.
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At this point we have done the integral, but we should still rewrite the result in terms of
the original variable x. We could use the same algebra as in (14), but this is not the only
possible approach. Instead we could also use the relations (12), i.e.

t = U + V and
1

t
= U − V

ese imply

t2=(U + V )2=U2 + 2UV + V 2

t−2=(U − V )2=U2 − 2UV + V 2

t2 − t−2= · · · = 4UV

and conclude

I =

∫ √
1 + x2 dx

=
1

8

(
t2 − 1

t2
)
+

1

2
ln t+ C

=
1

2
UV +

1

2
ln(U + V ) + C

=
1

2
x
√
1 + x2 +

1

2
ln
(
x+

√
1 + x2

)
+ C.

12. Simplifying
√
ax2 + bx+ c by completing the square

Any integral involving an expression of the form
√
ax2 + bx+ c can be reduced by

means of a substitution to one containing one of the three forms
√
1− u2,

√
u2 − 1,

or
√
u2 + 1. We can achieve this reduction by completing the square of the quadratic

expression under the square root. Once the more complicated square root
√
ax2 + bx+ c

has been simplified to
√
±u2 ± 1, we can use either a trigonometric substitution, or the

rational substitution from the previous section. In some cases the end result is one of the
integrals listed in Table 2:

∫
du√
1− u2

= arcsinu
∫ √

1− u2 du = 1
2
u
√

1− u2 + 1
2
arcsinu∫

du√
1 + u2

= ln
(
u+

√
1 + u2

) ∫ √
1 + u2 du = 1

2
u
√

1 + u2 + 1
2
ln
(
u+

√
1 + u2

)
∫

du√
u2 − 1

= ln
(
u+

√
u2 − 1

) ∫ √
u2 − 1 du = 1

2
u
√

u2 − 1− 1
2
ln
(
u+

√
u2 − 1

)
(all integrals “+C”)

Table 2. Useful integrals. Except for the first one these should not be memorized.

Here are three examples. e problems have more examples.

12.1. Example. Compute

I =

∫
dx√

6x− x2
.
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Notice that since this integral contains a square root the variable x may not be allowed
to have all values. In fact, the quantity 6x− x2 = x(6− x) under the square root has to
be positive so x must lie between x = 0 and x = 6. We now complete the square:

6x− x2 = −
(
x2 − 6x

)
= −

(
x2 − 6x+ 9− 9

)
= −

[
(x− 3)2 − 9

]
= −9

[ (x− 3)2

9
− 1

]
= −9

[(x− 3

3

)2

− 1
]
.

At this point we decide to substitute

u =
x− 3

3
,

which leads to√
6x− x2 =

√
−9

(
u2 − 1

)
=

√
9
(
1− u2

)
= 3

√
1− u2,

x = 3u+ 3, dx = 3 du.

Applying this change of variable to the integral we get∫
dx√

6x− x2
=

∫
3du

3
√
1− u2

=

∫
du√
1− u2

= arcsinu+ C = arcsin
x− 3

3
+ C.

12.2. Example. Compute

I =

∫ √
4x2 + 8x+ 8 dx.

We again complete the square in the quadratic expression under the square root:

4x2 + 8x+ 8 = 4
(
x2 + 2x+ 2

)
= 4

{
(x+ 1)2 + 1

}
.

us we substitute u = x+ 1, which implies du = dx, aer which we find

I =

∫ √
4x2 + 8x+ 8 dx =

∫
2
√

(x+ 1)2 + 1 dx = 2

∫ √
u2 + 1 du.

is last integral is in table 2, so we have

I = u
√
u2 + 1 + ln

(
u+

√
u2 + 1

)
+ C

= (x+ 1)
√
(x+ 1)2 + 1 + ln

{
x+ 1 +

√
(x+ 1)2 + 1

}
+ C.

12.3. Example. Compute:

I =

∫ √
x2 − 4x− 5 dx.

We first complete the square

x2 − 4x− 5 = x2 − 4x+ 4− 9

= (x− 2)2 − 9 u2 − a2 form

= 9
{(x− 2

3

)2 − 1
}

u2 − 1 form
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is prompts us to substitute

u =
x− 2

3
, du = 1

3dx, i.e. dx = 3 du.

We get

I =

∫ √
9
{(x− 2

3

)2 − 1
}

dx =

∫
3
√
u2 − 1 3 du = 9

∫ √
u2 − 1 du.

Using the integrals in Table 2 and then undoing the substitution we find

I =

∫ √
x2 − 4x− 5 dx

= 9
2u

√
u2 − 1− 9

2 ln
(
u+

√
u2 − 1

)
+ C

= 9
2

x− 2

3

√(x− 2

3

)2 − 1− 9
2 ln

{x− 2

3
+

√(x− 2

3

)2 − 1
}
+ C

= 1
2 (x− 2)

√
(x− 2)2 − 9− 9

2 ln 1
3

{
x− 2 +

√
(x− 2)2 − 9

}
+ C

= 1
2 (x− 2)

√
x2 − 4x+ 5− 9

2 ln
{
x− 2 +

√
x2 − 4x+ 5

}
− 9

2 ln 1
3 + C

= 1
2 (x− 2)

√
x2 − 4x+ 5− 9

2 ln
{
x− 2 +

√
x2 − 4x+ 5

}
+ C̃

13. Problems

Evaluate these integrals:

In any of these integrals, a
is a positive constant.

1.
∫

dx√
1− x2

[A]

2.
∫

dx√
4− x2

[A]

3.
∫ √

1 + x2 dx [A]

4.
∫

dx√
2x− x2

[A]

5.
∫

x dx√
1− 4x4

6.
∫ 1/2

−1/2

dx√
4− x2

7.
∫ 1

−1

dx√
4− x2

8.
∫ √

3/2

0

dx√
1− x2

9.
∫

dx
x2 + 1

10.
∫

dx
x2 + a2

11.
∫

dx
7 + 3x2

12.
∫

1 + x

a+ x2
dx

13.
∫

dx
3x2 + 6x+ 6

[A]

14.
∫

dx
3x2 + 6x+ 15

[A]

15.
∫ √

3

1

dx
x2 + 1

,

16.
∫ a

√
3

a

dx
x2 + a2

.

14. Chapter summary

ere are several methods for finding the antiderivative of a function. Each of these
methods allow us to transform a given integral into another, hopefully simpler, integral.
Here are the methods that were presented in this chapter, in the order in which they
appeared:

(1) Double angle formulas and other trig identities: some integrals can be simplified
by using a trigonometric identity. is is not a general method, and only works
for certain very specific integrals. Since these integrals do come up with some
frequency it is worth knowing the double angle trick and its variations.
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(2) Integration by parts: a very general formula; repeated integration by parts is
done using reduction formulas.

(3) Partial Fraction Decomposition: a method that allows us to integrate any rational
function.

(4) Trigonometric and Rational Substitution: a specific group of substitutions that
can be used to simplify integrals containing the expression

√
ax2 + bx+ c.

15. Mixed Integration Problems

One of the challenges in integrating a function is to recognize which of the methods
we know will be most useful – so here is an unsorted list of integrals for practice.

Evaluate these integrals:

1.
∫ a

0

x sinx dx [A]

2.
∫ a

0

x2 cosx dx [A]

3.
∫ 4

3

x dx√
x2 − 1

[A]

4.
∫ 1/3

1/4

x dx√
1− x2

[A]

5.
∫ 4

3

dx

x
√
x2 − 1

[A]

6.
∫

x dx
x2 + 2x+ 17

[A]

7.
∫

x4

(x2 − 36)1/2
dx

8.
∫

x4

x2 − 36
dx

9.
∫

x4

36− x2
dx

10.
∫

x2 + 1

x4 − x2
dx [A]

11.
∫

x2 + 3

x4 − 2x2
dx

12.
∫

dx
(x2 − 3)1/2

13.
∫

ex(x+ cos(x)) dx

14.
∫

(ex + ln(x)) dx

15.
∫

dx

(x+ 5)
√
x2 + 5x

16.
∫

3x2 + 2x− 2

x3 − 1
dx

17.
∫

x4

x4 − 16
dx

18.
∫

x

(x− 1)3
dx

19.
∫

4

(x− 1)3(x+ 1)
dx

20.
∫

1√
6− 2x− 4x2

dx

21.
∫

dx√
x2 + 2x+ 3

22.
∫ e

1

x lnx dx

23.
∫

2x ln(x+ 1) dx [A]

24.
∫ e3

e2
x2 lnx dx

25.
∫ e

1

x(lnx)3 dx

26.
∫

arctan(
√
x) dx [A]

27.
∫

x(cosx)2 dx

28.
∫ π

0

√
1 + cos(6w) dw

Hint: 1 + cosα = 2 sin2 α
2
.

29.
∫

1

1 + sin(x)
dx [A]

30. Find ∫
dx

x(x− 1)(x− 2)(x− 3)
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and ∫
(x3 + 1) dx

x(x− 1)(x− 2)(x− 3)

31. Compute∫
dx

x3 + x2 + x+ 1

(Hint: to factor the denominator begin with
1+x+x2+x3 = (1+x)+x2(1+x) = . . .)
[A]

32. [Group Problem] You don’t always
have to find the antiderivative to find a def-
inite integral. This problem gives you two
examples of how you can avoid finding the
antiderivative.

(a) To find

I =

∫ π/2

0

sinx dx
sinx+ cosx

you use the substitution u = π/2 − x. The
new integral you get must of course be equal
to the integral I you started with, so if you
add the old and new integrals you get 2I . If
you actually do this youwill see that the sum
of the old and new integrals is very easy to
compute.

(b) Use your answer from (a) to compute∫ 1

0

dx

x+
√
1− x2

.

(c) Use the same trick to find
∫ π/2

0

sin2 x dx

33.
�

The Astroid. Draw the curve whose
equation is

|x|
2
3 + |y|

2
3 = a

2
3 ,

where a is a positive constant. The curve you
get is called the Astroid. Compute the area
bounded by this curve.

34.
�

The Bow-Tie Graph. Draw the
curve given by the equation

y2 = x4 − x6.

Compute the area bounded by this curve.

35.
�

The Fan-Tailed Fish. Draw the
curve given by the equation

y2 = x2

(
1− x

1 + x

)
.

Find the area enclosed by the loop. (H:
Rationalize the denominator of the inte-
grand.)

36. Find the area of the region bounded by
the curves

x = 2, y = 0, y = x ln
x

2

37. Find the volume of the solid of revolution
obtained by rotating around the x−axis the
region bounded by the lines x = 5, x = 10,
y = 0, and the curve

y =
x√

x2 + 25
.

38. How to find the integral of f(x) =
1

cosx
.

Note that
1

cosx
=

cosx
cos2 x

=
cosx

1− sin2 x
,

and apply the substitution s = sinx fol-
lowed by a partial fraction decomposition to

compute
∫

dx
cosx

.

Calculus bloopers
As you’ll see, the following computations

can’t be right; but where did they go wrong?

39. Here is a failed computation of the area
of this region:

1 2

1

x

y

y = |x-1|

Clearly the combined area of the two trian-
gles should be 1. Now let’s try to get this
answer by integration.

Consider
∫ 2

0
|x − 1| dx. Let f(x) =

|x− 1| so that

f(x) =

{
x− 1 if x ≥ 1

1− x if x < 1

Define

F (x) =

{
1
2
x2 − x if x ≥ 1

x− 1
2
x2 if x < 1
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Then since F is an antiderivative of f we
have by the Fundamental Theorem of Cal-
culus:∫ 2

0

|x− 1| dx =

∫ 2

0

f(x) dx

= F (2)− F (0)

=
( 22

2
− 2

)
−

(
0− 02

2

)
= 0.

But this integral cannot be zero, f(x) is pos-
itive except at one point. How can this be?

40. It turns out that the area enclosed by a cir-
cle is zero – ⁈ According to the ancient for-
mula for the area of a disc, the area of the
following half-disc is π/2.

1-1
x

y

y = (1-x 2)
1/2

We can also compute this area by
means of an integral, namely

Area =

∫ 1

−1

√
1− x2 dx

Substitute u = 1− x2 so:

u = 1− x2, x =
√
1− u = (1− u)

1
2 ,

dx = (
1

2
)(1− u)−

1
2 (−1) du.

Hence∫ √
1− x2 dx =∫ √

u (
1

2
)(1− u)−

1
2 (−1) du.

Now take the definite integral from x = −1
to x = 1 and note that u = 0 when x = −1
and u = 0 also when x = 1, so∫ 1

−1

√
1− x2 dx =∫ 0

0

√
u
(1
2

)
(1− u)−

1
2 (−1) du = 0

The last being zero since∫ 0

0

( anything ) dx = 0.

But the integral on the le is equal to half
the area of the unit disc. Therefore half a
disc has zero area, and a whole disc should
have twice as much area: still zero!

How can this be?



CHAPTER II

Proper and Improper Integrals

All the definite integrals that we have seen so far were of the form

I =

∫ b

a

f(x) dx,

where a and b are finite numbers, and where the integrand (the function f(x)) is “nice”
on the interval a ≤ x ≤ b, i.e. the function f(x) does not become infinite anywhere in the
interval. ere are many situations where one would like to compute an integral that fails
one of these conditions; i.e. integrals where a or b is not finite, or where the integrand
f(x) becomes infinite somewhere in the interval a ≤ x ≤ b (usually at an endpoint).
Such integrals are called improper integrals.

If we think of integrals as areas of regions in the plane, then improper integrals usu-
ally refer to areas of infinitely large regions so that some caremust be taken in interpreting
them. e formal definition of the integral as a limit of Riemann sums cannot be used
since it assumes both that the integration bounds a and b are finite, and that the integrand
f(x) is bounded. Improper integrals have to be defined on a case by case basis. e next
section shows the usual ways in which this is done.

1. Typical examples of improper integrals

1.1. Integral on an unbounded interval. Consider the integral

A =

∫ ∞

1

dx
x3
.

is integral has a new feature that we have not dealt with before, namely, one of the
integration bounds is “∞” rather than a finite number. e interpretation of this integral
is that it is the area of the region under the graph of y = 1/x3, with 1 < x <∞.

A =

∫ ∞

1

dx
x3

1

1 y =
1

x3

Because the integral goes all the way to “x = ∞” the region whose area it represents
stretches infinitely far to the right. Could such an infinitely wide region still have a finite
area? And if it is, can we compute it? To compute the integral I that has the ∞ in its
integration bounds, we first replace the integral by one that is more familiar, namely

AM =

∫ M

1

dx
x3
,

39
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whereM > 1 is some finite number. is integral represents the area of a finite region,
namely all points between the graph and the x-axis, and with 1 ≤ x ≤M .

AM =

∫ M

1

dx
x3

1

1 y =
1

x3

M

We know how to compute this integral:

AM =

∫ M

1

dx
x3

=
[
− 1

2x2

]M
1

= − 1

2M2
+

1

2
.

e area we find depends on M . e larger we choose M , the larger the region is and
the larger the area should be. If we letM → ∞ then the region under the graph between
x = 1 and x = M will expand and eventually fill up the whole region between graph
and x-axis, and to the right of x = 1. us the area should be

A = lim
M→∞

AM = lim
M→∞

∫ M

1

dx
x3

= lim
M→∞

[
− 1

2M2
+

1

2

]
=

1

2
.

We conclude that the infinitely large region between the graph of y = 1/x3 and the x-axis
that lies to the right of the line x = 1 has finite area, and that this area is exactly 1

2 !

1.2. Second example on an unbounded interval. e following integral is very sim-
ilar to the one we just did:

A =

∫ ∞

1

dx
x
.

e integral represents the area of the region that lies to the right of the line x = 1, and
is caught between the x-axis and the hyperbola y = 1/x.

M→1

AM

1

A
1

y=1/x

As in the previous example the region extends infinitely far to the right while at the
same time becoming narrower and narrower. To see what its area is we again look at the
truncated region that contains only those points between the graph and the x-axis, and
for which 1 ≤ x ≤M . is area is

AM =

∫ M

1

dx
x

=
[
lnx

]M
1

= lnM − ln 1 = lnM.

e area of the whole region with 1 ≤ x <∞ is the limit

A = lim
M→∞

AM = lim
M→∞

lnM = +∞.

So we see that the area under the hyperbola is not finite!



1. TYPICAL EXAMPLES OF IMPROPER INTEGRALS 41

1.3. An improper integral on a finite interval. In this third example we consider
the integral

I =

∫ 1

0

dx√
1− x2

.

e integration bounds for this integral are 0 and 1 so they are finite, but the integrand
becomes infinite at one end of the integration interval:

1

1

a

y =
1

√
1− x2

lim
x↗1

1√
1− x2

= +∞.

e region whose area the integral I represents does not extend infinitely far to the le
or the right, but in this example it extends infinitely far upward. To compute this area
we again truncate the region by looking at all points with 1 ≤ x ≤ a for some constant
a < 1, and compute

Ia =

∫ a

0

dx√
1− x2

=
[
arcsinx

]a
0
= arcsin a.

e integral I is then the limit of Ia, i.e.∫ 1

0

dx√
1− x2

= lim
a↗1

∫ a

0

dx√
1− x2

= lim
a↗1

arcsin a = arcsin 1 =
π

2
.

We see that the area is finite.

1.4. A doubly improper integral. Let us try to compute

I =

∫ ∞

−∞

dx
1 + x2

.

is example has a new feature, namely, both integration limits are infinite. To compute
this integral we replace them by finite numbers, i.e. we compute∫ ∞

−∞

dx
1 + x2

= lim
a→−∞

lim
b→∞

∫ b

a

dx
1 + x2

= lim
a→−∞

lim
b→∞

arctan(b)− arctan(a)

= lim
b→∞

arctan b− lim
a→−∞

arctan a

=
π

2
−
(
−π
2

)
= π.�

A different way of geing the same example is to replace ∞ and −∞ in the integral
by a and−a and then let a→ ∞. e only difference with our previous approach is that
we now use one variable (a) instead of two (a and b). e computation goes as follows:∫ ∞

−∞

dx
1 + x2

= lim
a→∞

∫ a

−a

dx
1 + x2

= lim
a→∞

(
arctan(a)− arctan(−a)

)
=
π

2
−
(
−π
2

)
= π.

In this example we got the same answer using either approach. is is not always the
case, as the next example shows.
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1.5. Another doubly improper integral. Suppose we try to compute the integral

I =

∫ ∞

−∞
x dx.

e shorter approach where we replace both ±∞ by ±a would be∫ ∞

−∞
x dx = lim

a→∞

∫ a

−a

x dx = lim
a→∞

a2

2
− (−a)2

2
= 0.

On the other hand, if we take the longer approach, where we replace −∞ and ∞ by two
different constants, then we get this∫ ∞

−∞
x dx = lim

a→−∞
lim
b→∞

∫ b

a

x dx

= lim
a→−∞

lim
b→∞

[x2
2

]
= lim

b→∞

b2

2
− lim

a→−∞

a2

2
.

At this point we see that both limits limb→∞ b2/2 = ∞ and lima→−∞ a2/2 = ∞ do not
exist. e result we therefore get is∫ ∞

−∞
x dx = ∞−∞.

Since ∞ is not a number we find that the improper integral does not exist.

+∞

-∞

∫∞
−∞ x dx is the area above

minus the area below the
axis.

We conclude that for some improper integrals different ways of computing them can
give different results. is means that we have to be more precise and specify which
definition of the integral we use. e next section lists the definitions that are commonly
used.

2. Summary: how to compute an improper integral

2.1. How to compute an improper integral on an unbounded interval. By defini-
tion the improper integral ∫ ∞

a

f(x) dx

is given by

(15)
∫ ∞

a

f(x) dx = lim
M→∞

∫ M

a

f(x) dx.

is is how the integral in § 1.1 was computed.

2.2. How to compute an improper integral of an unbounded function. If the inte-
gration interval is bounded, but if the integrand becomes infinite at one of the endpoints,
say at x = a, then we define

(16)
∫ b

a

f(x) dx = lim
s↘a

∫ b

s

f(x) dx.
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2.3. Doubly improper integrals. If the integration interval is the whole real line,
i.e. if we need to compute the integral

I =

∫ ∞

−∞
f(x) dx,

then we must replace both integration bound by finite numbers and then let those finite
numbers go to ±∞. us we would first have to compute an antiderivative of f ,

F (x) =

∫
f(x) dx.

e Fundamental eorem of Calculus then implies

Ia,b =

∫ b

a

f(x) dx = F (b)− F (a)

and we set
I = lim

b→∞
F (b)− lim

a→−∞
F (a).

Note that according to this definition we have to compute both limits separately. e
example in Section 1.5 shows that it really is necessary to do this, and that computing∫ ∞

−∞
f(x)dx = lim

a→∞
F (a)− F (−a)

can give different results.
In general, if an integral ∫ b

a

f(x) dx

is improper at both ends we must replace them by c, d with a < c < d < b and compute
the limit ∫ b

a

f(x) dx = lim
c↘a

lim
d↗b

∫ d

c

f(x) dx.

For instance,

lim
∫ 1

−1

dx√
1− x2

= lim
c↘−1

lim
d↗1

∫ d

c

dx√
1− x2

. . .

3. More examples

3.1. Area under an exponential. Let a be some positive constant and consider the
graph of y = e−ax for x > 0. How much area is there between the graph and the x-axis
with x > 0? (See Figure 1 for the cases a = 1 and a = 2.) e answer is given by the

y = e−x
1

y = e−2x

Figure 1. What is the area under the graph of y = e−x? What fraction of the region under the
graph of y = e−x lies under the graph of y = e−2x?
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improper integral

A =

∫ ∞

0

e−ax dx

= lim
M→∞

∫ M

0

e−ax dx

= lim
M→∞

[
−1

a
e−ax

]M
0

= −1

a
lim

M→∞

(
e−aM − 1

)
a > 0 so lim

M→∞
e−aM = 0

=
1

a
.

We see that the area under the graph is finite, and that it is given by 1/a. In particular the
area under the graph of y = e−x is exactly 1, while the area under the graph of y = e−2x

is exactly half that (i.e. 1/2).

3.2. Improper integrals involving x−p. e examples in § 1.1 and § 1.2 are special
cases of the following integral

I =

∫ ∞

1

dx
xp

,

where p > 0 is some constant. We already know that the integral is 1
2 if p = 3 (§ 1.1),

and also that the integral is infinite (does not exist) if p = 1 (§ 1.2). We can compute it in
the same way as before,

I = lim
M→∞

∫ M

1

dx
xp

(17)

= lim
M→∞

[ 1

1− p
x1−p

]M
1

assume p ̸= 1

=
1

1− p
lim

M→∞

(
M1−p − 1

)
.

At this point we have to find out what happens to M1−p as M → ∞. is depends on
the sign of the exponent 1−p. If this exponent is positive, thenM1−p is a positive power
of M and therefore becomes infinite as M → ∞. On the other hand, if the exponent is
negative then M1−p is a negative power of M so that it goes to zero as M → ∞. To
summarize:

• If 0 < p < 1 then 1− p > 0 so that limM→∞M1−p = ∞;
• if p > 1 then 1− p < 0, and

lim
M→∞

M1−p = lim
M→∞

1

Mp−1
= 0.

If we apply this to (17) then we find that

if 0 < p ≤ 1 then
∫ ∞

1

dx
xp

= ∞,

and if p > 1 then
∫ ∞

1

dx
xp

=
1

p− 1
.
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Q

PR

Q

PR

O

Figure 2. Geometric construction of the Versiera. The figure shows a circle of diameter 1 that
touches the x-axis exactly at the origin. For any point Q on the line y = 1 we can define a new
point P by intersecting the line segment OQ with the circle, and requiring P to have the same
x-coordinate as Q and the same y-coordinate as R. The Versiera is the curve traced out by the
point P as we lets the point Q slide along the line y = 1. See problem 12.

4. Problems

Compute the following improper integrals
and draw the region whose area they rep-
resent:

1.
∫ ∞

0

dx
(2 + x)2

. [A]

2.
∫ 1/2

0

(2x− 1)−3 dx [A]

3.
∫ 3

0

dx√
3− x

. [A]

4.
∫ 1

0

1/
√
x dx. [A]

5.
∫ ∞

0

xe−x2

dx. [A]

6.
∫ ∞

1

x− 1

x+ x2
dx.

7.
∫ ∞

1

x− 1

x3 + x2
dx.

8.
∫ 7

0

dx√
x
. [A]

9.
∫ 1

0

dx
x
√
x
. [A]

10.
∫ 1

0

dx
x+

√
x
. (suggestion: x = u2)

11.
∫ 1

0

( 1√
x
+

1

x

)
dx.

12. The graph of the function y = 1/(1+x2)
is called the Versiera (see Figure 2). Compute

the area of the shaded region between the
Versiera and the circle in Figure 2.

13.
∫ 0

−∞
ex dx. How would you define this

integral (one of the integration bounds is
−∞ rather than +∞)?

14. (a)
∫ ∞

0

e−x sinπx dxwhere a, b are pos-

itive constants. (You have done the integral
before – see Ch I, § 7, Problem 2 .)

(b)
�

As in the previous problems, draw the
region whose area the integral from (a) rep-
resents. Note that the function in the inte-
gral for this problem is not positive every-
where. How does this affect your answer?
Can you tell from your drawing if the inte-
gral is positive?

15. (A way to visualize that
∫∞
1

dx
x

= ∞)

(a) Show that for any a > 0 one has∫ 2a

a

dx
x

= ln 2;

in particular, this integral is the same for all
a > 0.

(b) Compute the area under the graph of
y = 1/x between x = 1 and x = 2n is
n · ln 2 by spliing the region into:

• the part where 1 ≤ x ≤ 2,
• the part where 2 ≤ x ≤ 4,
• the part where 4 ≤ x ≤ 8,
...
• the part where 2n−1 ≤ x ≤ 2n.
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a

y = f(x)

y = g(x)

∫∞
a
f(x) dx ≤

∫∞
a
g(x) dx

Figure 3. Comparing improper integrals. Here f and g are positive functions that satisfy
f(x) ≤ g(x) for all x ≥ a. If

∫∞
a

g(x) dx is finite, then so is
∫∞
a

f(x) dx. Conversely, if∫∞
a

f(x) dx is not finite, then
∫∞
a

g(x) dx cannot be finite either.

a

y = f(x)

y = −f(x)

y = g(x)

Figure 4. In this figure f(x) is again positive, but g(x) is bounded by−f(x) ≤ g(x) ≤ f(x). The
same conclusion still holds, namely, if

∫∞
a

f(x)dx exists, then so does
∫∞
a

g(x)dx.

(c) Explain how the answer to (b) implies
that the integral

∫∞
1

dx/x does not exist.

16. The area under the graph of y = 1/x
with 1 ≤ x < ∞ is infinite. Compute the

volume of the funnel-shaped solid you get
by revolving this region around the x-axis.
Is the volume of this funnel finite or infinite?
[A]

5. Estimating improper integrals

Sometimes it is just not possible to compute an improper integral because we simply
cannot find an antiderivative for the integrand. When this happens we can still try to
estimate the integral by comparing it with easier integrals, and even if we cannot compute
the integral we can still try to answer the question “does the integral exist,” i.e.

Does lim
M→∞

∫ M

a

f(x) dx exist?

In this section we will see a number of examples of improper integrals that much easier
to estimate than to compute. roughout there are three principles that we shall use:
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Integral of a positive function. If the function f(x) satisfies f(x) ≥ 0 for all x ≥ a
then either the integral

∫∞
a
f(x)dx exists, or else it is infinite, by which we mean

lim
M→∞

∫ M

a

f(x) dx = ∞.

If the function f(x) is not always positive then the above limit can fail to exist by oscillat-
ing without ever becoming infinite. For an example see § 5.1.2; see also § 5.1 for further
explanation.

Comparison with easier integrals. If y = f(x) and y = g(x) are functions defined for
x ≥ a, and if |g(x)| ≤ f(x) for all x ≥ a, then∣∣∣∣∫ ∞

a

g(x) dx

∣∣∣∣ ≤ ∫ ∞

a

f(x) dx.

In particular, ∫ ∞

a

f(x) dx exists =⇒
∫ ∞

a

g(x) dx exists,∫ ∞

a

g(x) dx does not exist =⇒
∫ ∞

a

f(x) dx does not exist.

Read § 5.2 for more details and examples.
Only the tail maers. If f(x) is a continuous function for all x ≥ a, then for any

b ≥ a we have ∫ ∞

a

f(x) dx exists ⇐⇒
∫ ∞

b

f(x) dx exists.

Furthermore, for any b ≥ a we have

(18)
∫ ∞

a

f(x) dx =

∫ b

a

f(x) dx+

∫ ∞

b

f(x) dx.

is is further explained in eorem 5.3 and the examples following it.

5.1. Improper integrals of positive functions. Suppose that the function f(x) is de-
fined for all x ≥ a, and that f(x) ≥ 0 for all x. To see if the improper integral

∫∞
a
f(x) dx

exists we have to figure out what happens to

IM =

∫ M

a

f(x) dx

as M ↗ ∞. Since we are assuming that f(x) ≥ 0 the integral IM represents the area
under the graph of f up to x = M . As we letM increase this region expands, and thus
the integral IM increases. So, asM ↗ ∞ there are two possibilities: either IM remains
finite and converges to a finite number, or IM becomes infinitely large. e following
theorem summarizes this useful observation:

5.1.1. eorem. If f(x) ≥ 0 for all x ≥ a then either the integral

I =

∫ ∞

a

f(x) dx

exists, (i.e. I is a finite number), or else

I =

∫ ∞

a

f(x) dx = ∞, i.e. lim
M→∞

∫ M

a

f(x) dx = ∞.
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5.1.2. Example - integral to infinity of the cosine. To illustrate what eorem 5.1.1
says, let’s consider an improper integral of a function that is not always positive. For
instance, consider

I =

∫ ∞

0

cosx dx.

e function in the integral is f(x) = cosx, and this function is clearly not always posi-
tive. When we try to compute this integral we get

I = lim
M→∞

∫ M

0

cosx dx = lim
M→∞

[
sinx

]M
x=0

= lim
M→∞

sinM.

is limit does not exist as sinM oscillates up and down between−1 and+1 asM → ∞.
On the other hand, since sinM stays between −1 and +1, we cannot say that

lim
M→∞

∫ M

0

cosx dx = +∞.

eorem 5.1.1 tells us that if you integrate a positive function then this kind of oscillatory
behavior cannot occur.

5.2. Comparisoneorem for Improper Integrals. Suppose f(x) and g(x) are func-
tions that are defined for a ≤ x <∞, and suppose that |g(x)| ≤ f(x) for all x ≥ a, i.e.

−f(x) ≤ g(x) ≤ f(x) for all x ≥ a.

If the improper integral
∫∞
a
f(x) dx exists then the improper integral

∫∞
a
g(x) dx also exists,

and one has ∣∣∣∣∫ ∞

a

g(x) dx

∣∣∣∣ ≤ ∫ ∞

a

f(x) dx.

is theorem is used in twoways: it can be used to verify that some improper integral
exists without actually computing the integral, and it can also be used to estimate an
improper integral.

5.2.1. Example. Consider the improper integral

I =

∫ ∞

1

dx
1 + x3

.

e function in the integral is a rational function so in principle we know how to compute
the integral. It turns out the computation is not very easy. If we don’t really need to know
the exact value of the integral, but only want a rough estimate of the integral, then we
could compare the integral with an easier integral.

To decide which simpler integral we should use as comparison, we reason as follows.
Since “only the tail maers,” we consider the integrand 1

1+x3 for large x. When x is very
large x3 will be much larger than 1, so that we may guess that we can ignore the “1” in
the denominator 1 + x3:

(19)
1

1 + x3
≈ 1

x3
as x→ ∞.

is suggests that we may be able to compare the given integral with the integral∫ ∞

1

1

x3
dx.

We know from our very first example in this chapter (§ 1.1) that this last integral is finite
(we found that it is 1

2 ). erefore we can guess that our integral I also is finite.
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Now let’s try to use the Comparisoneorem 5.2 to get certainty by proving that the
integral I does indeed exist. We want to show that the integral

∫∞
1

1
1+x3 dx exists, so we

choose

g(x) =
1

1 + x3
, and thus f(x) =

1

x3
.

We can compare these functions as follows:

it follows from: x3 ≤ 1 + x3 for all x ≥ 1
(
divide both sides first by
x3 and then by 1 + x3

)
that:

1

1 + x3
≤ 1

x3
for x ≥ 1

is tells us that ∫ ∞

1

dx
1 + x3

≤
∫ ∞

1

dx
x3

=
1

2
.

erefore we have found that the integral I does indeed exist, and that it is no more
than 1

2 .
We can go beyond this and try to find a lower bound (instead of saying that I is no

more than 1
2 we try to say that it is at least as large as some other number.) Here is one

way of doing that:

1 + x3 ≤ x3 + x3 for all x ≥ 1

=⇒ 1 + x3 ≤ 2x3 for all x ≥ 1
(
divide both sides first by
2x3 and then by 1+x3

)
=⇒ 1

2x3
≤ 1

1 + x3
for x ≥ 1

is implies that ∫ ∞

1

dx
2x3

≤
∫ ∞

1

dx
1 + x3

.

e first integral here is half the integral we computed in § 1.1, so we get

1

4
≤

∫ ∞

1

dx
1 + x3

.

In summary, we have found that

1

4
≤

∫ ∞

1

dx
1 + x3

≤ 1

2
.

5.2.2. Second example. Does the integral

I =

∫ ∞

1

x

x2 + 1
dx

exist? Since the function we are integrating is positive, we could also ask is the integral
finite?

As in the previous example we look at the behavior of the integrand as x→ ∞. For
large x we can assume that x2 is much larger than x, so that it would be reasonable to
ignore the 1 in the denominator x2 + 1. If we do that than we find that

x

x2 + 1
≈ x

x2
=

1

x
.

If this were correct, then we would end up comparing the integral I with the simpler
integral ∫ ∞

1

1

x
dx.
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We know this laer integral is not finite (it was our second example, see § 1.2) and there-
fore we guess that the integral I probably also is not finite. To give a sound argument we
will use the Comparison eorem.

Our goal is to show that the integral

I =

∫ ∞

1

f(x) dx, with f(x) =
x

1 + x2

is not finite. To do this we have to find a function g(x) such that

• g(x) is smaller than f(x) (so that
∫
fdx will be larger than

∫
g(x)dx),

• g(x) is easy to integrate, and
• the integral of g(x) is not finite.

e first and last point together imply that

I =

∫ ∞

1

f(x) dx ≥
∫ ∞

1

g(x) dx = ∞,

which is what we are trying to show.
To complete the reasoning we have to find the easy-to-integrate function g(x). Based

on what we have done above our first guess would be g(x) = 1
x , but this does not work,

since
x

x2 + 1
<

x

x2
=

1

x
.

So with this choice of g(x) we get g(x) > f(x) instead of g(x) < f(x).
Oneway to simplify f(x) and get a smaller function is to remember that by increasing

the denominator in a fraction you decrease the fraction. us, for x > 1 we have

f(x) =
x

x2 + 1
>

x

x2 + x2
=

x

2x2
=

1

2x
.

So we let g(x) = 1
2x . en we find

I =

∫ ∞

1

x

x2 + 1
dx

≥
∫ ∞

1

1

2x
dx

= ∞.

5.3. e Tail eorem. If y = f(x) is a continuous function for x ≥ a, and if b > a
then ∫ ∞

a

f(x) dx exists if and only if
∫ ∞

b

f(x) dx exists

Moreover, if these integrals exist, then (18) holds:
∫∞
a
f(x) dx =

∫ b

a
f(x) dx+

∫∞
b
f(x) dx.

P. For any finiteM one has∫ M

a

f(x) dx =

∫ b

a

f(x) dx+

∫ M

b

f(x) dx

e theorem follows by taking the limit forM → ∞ on both sides of this equation. □

e following two examples show how one can use this fact.
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5.3.1. Example. Does the integral

I =

∫ ∞

0

dx
x3 + 1

exist?
e integrand here is the same as in § 5.2.1 where we found that∫ ∞

1

dx
x3 + 1

<
1

2
,

and in particular is finite. Since the function f(x) = 1/(x3 + 1) is continuous for 0 ≤
x ≤ 1 we may conclude that

I =

∫ ∞

0

dx
x3 + 1

=

∫ 1

0

dx
x3 + 1

+

∫ ∞

1

dx
x3 + 1

so that I is finite.
If we want an upper estimate for the integral we can use the fact that we already

know that the integral from 1 to ∞ is not more than 1
2 and estimate the integral from

x = 0 to x = 1. For 0 ≤ x ≤ 1 we have

x3 + 1 ≥ 1 =⇒ 1

x3 + 1
≤ 1

is implies ∫ 1

0

dx
x3 + 1

≤
∫ 1

0

1 dx = 1,

and hence ∫ ∞

0

dx
x3 + 1

=

∫ 1

0

dx
x3 + 1

+

∫ ∞

1

dx
x3 + 1

≤ 1 +
1

2
=

3

2
.

5.3.2. e area under the bell curve. e bell curvewhich plays a central role in prob-
ability and statistics, is the graph of the function

n(x) = ae−x2/b,

where a and b are positive constants whose values will not be important in this example.
In fact, to simplify this example we will choose them to be a = 1 and b = 1 so that we
are dealing with the function n(x) = e−x2

. e question now is, is the area under the bell
curve finite, and can we estimate it? In terms of improper integrals, we want to know if
the integral

A =

∫ ∞

−∞
e−x2

dx

exists.

y = e−x2

1

1

y = e−x

A =

∫ ∞

−∞
e−x2

dx

Figure 5. Estimating the area under the bell curve.
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We write the integral as the sum of two integrals∫ ∞

−∞
e−x2

dx =

∫ 0

−∞
e−x2

dx+

∫ ∞

0

e−x2

dx

Since the function n(x) = e−x2

is even these two integrals are equal, so if we can shown(x) = n(−x) so the bell
curve is symmetric that one of them exists, the other will also exist.

When x is large x2 is much larger than x so that e−x2

will be smaller than e−x; since
e−x is a function we know how to integrate it seems like a good idea to compare the
bell curve with the graph of e−x. To make the comparison (and to use the Comparison
eorem) we first check if e−x2 ≤ e−x really is true. We find that this is true if x ≥ 1,
namely:

x ≥ 1 =⇒ x2 ≥ x =⇒ −x2 ≤ −x =⇒ e−x2

≤ e−x.

We can therefore use e−x to estimate the integral of e−x2

for x ≥ 1:∫ ∞

1

e−x2

dx ≤
∫ ∞

1

e−x dx = lim
M→∞

[
−e−x

]M
1

= lim
M→∞

(
−e−M + e−1

)
= e−1.

Between x = 0 and x = 1 we have e−x2 ≤ 1, so∫ 1

0

e−x2

dx ≤
∫ 1

0

1 dx = 1,

and therefore ∫ ∞

0

e−x2

dx =

∫ 1

0

e−x2

dx+

∫ ∞

1

e−x2

dx ≤ 1 +
1

e
.

Since the bell curve is symmetric, we get the same estimates for the integral over −∞ <
x ≤ 0: ∫ 0

−∞
e−x2

dx ≤ 1 +
1

e
.

In the endwe have shown that the area under the bell curve is finite, and that it is bounded
by

A =

∫ ∞

−∞
e−x2

dx ≤ 2 +
2

e
.

With quite a bit more work, and using an indirect argument one can actually compute
the integral (without finding an antiderivative of e−x2

). e true value turns out to be

A =

∫ ∞

−∞
e−x2

dx =
√
π.

For comparison,
√
π ≈ 1.772 453 850 9 . . . and 2 +

2

e
≈ 2.735 758 882 3 . . . .

6. Problems

Which of the following inequalities are true
for all x > a (you get to choose a):

1.
1

x
<

1

x2
?

Answer: True. If x > 1 then x2 > x and
therefore 1

x2 < 1
x
. So the inequality is true if

x > a where we choose a = 1.

2.
1

x− 1
<

1

x
?

3.
x

x2 + 2x
>

1

x
? [A]

4.
x√

x3 − 1
> x−1/2 ? [A]
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5.
2x2 − 3x+ 1

(x2 − x)3
< 2x−4 ? [A]

Which of the following inequalities are true
for all x with 0 < x < a (you get to choose
a again, as long as a > 0):

6.
3

x
<

3

x2
?

Answer: False. If 0 < x < 1 then x2 < x
and therefore 1

x
> 1

x2 , and thus 3
x

> 3
x2 .

So, more precisely, the inequality is false if
0 < x < a where we choose a = 1.

7.
x

x2 + x
<

1

x
? [A]

8.
2

x− x2
<

2

x
? [A]

9.
2

x+ x2
<

2

x
? [A]

10.
4

x+ 20x2
<

2

x
? [A]

11.
2

x− x2
<

4

x
? [A]

For each of the following improper integrals
draw the graph of the integrand, and decide
if the integral exists. If it does try to find an
estimate for how large the integral is.

12.
∫ ∞

0

u2(
u2 + 1

)2 du

13.
∫ ∞

0

u3(
u2 + 1

)2 du

14.
∫ ∞

0

u4(
u2 + 1

)2 du

15.
∫ ∞

π

sinx
x2

dx

16.
∫ ∞

0

sin(x2)

x2
dx (what happens

at x = 0?)

17. [Group Problem] (Fresnel integrals from
optics.) For background on Fresnel integrals
read the Wikipedia article on the subject.

Consider the function F (x) =
sinx2

2x
.

(a) Compute lim
x→0

F (x) and lim
x→∞

F (x).

(b) Show that F ′(x) = cosx2 − sinx2

2x2
.

(c) Show that the integral
∫ ∞

0

sinx2

2x2
dx ex-

ists.

(d) Show that∫ ∞

0

cosx2 dx =

∫ ∞

0

sinx2

2x2
dx.

(e) True or False: if for some function f the
improper integral

∫∞
0

f(x) dx exists then it
must be true that limx→∞ f(x) = 0?

18. [Group Problem] Suppose

p(x) = e−ax,

where a > 0 is a constant.

(a) Show that
∫∞
0

p(x) dx < ∞. (hint: you
can compute the integral.)

(b) Compute ∫∞
0

xp(x) dx∫∞
0

p(x) dx

by integrating by parts in the integral in the
numerator.

(c) Compute ∫∞
0

x2p(x) dx∫∞
0

p(x) dx

by integrating by parts twice in the integral
in the numerator.

19. [Group Problem] Suppose

p(x) = e−x2/σ2

where σ > 0 is a constant.
(σ is the Greek lower case “s,” pronounced as
“sigma.”)

(a) Show that
∫∞
−∞ p(x) dx < ∞. (hint:

there is no antiderivative of e−x2/σ2

, so
don’t look for it. Instead follow example
5.3.2.)

(b) Compute ∫∞
−∞ xp(x) dx∫∞
0

p(x) dx
.
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Hint: there is an easy antiderivative for the
integral in the numerator. Do that one first.

(c) Compute ∫∞
−∞ x2p(x) dx∫∞

0
p(x) dx

by integrating by parts in the integral in the
numerator.

20. [Group Problem]

“The area under the bell curve
is 1

2
-factorial”

In this problem we look at a new function
F (n). For any number n we would like to
define

F (n) =

∫ ∞

0

tne−t dt.

The integral that defines F (n) is improper
so it is not automatically clear that F (n) ex-
ists.

(a) Show that the integral exists if n ≥ 0.

(b) Compute F (0), F (1), and F (2).

(c) Use integration by parts to show that
F (n + 1) = (n + 1)F (n) Holds for any
n ≥ 0. Use this to Compute F (10).

(d) If you set n = −1 in the relation F (n+
1) = (n + 1)F (n) then you get F (0) =
0 · F (−1) = 0. This should contradict the
value for F (0) you found in (b). What is
wrong?

(e) Show that the integral for F ( 1
2
) exists,

and use a substitution to show that

F ( 1
2
) =

∫ ∞

−∞
e−u2

du.

How does this justify the statement at the
beginning of the problem?



CHAPTER III

First order differential Equations

1. What is a Differential Equation?

A differential equation is an equation involving an unknown function and its
derivatives. A general differential equation can contain second derivatives and higher
derivatives of the unknown function, but in this course we will only consider differential
equations that contain first order derivatives. So the most general differential equation
we will look at is of the form

(20)
dy
dx

= f(x, y).

Here f(x, y) is any expression that involves both quantities x and y. For instance, if
f(x, y) = x2 + y2 then the differential equation represented by (20) is

dy
dx

= x2 + y2.

In this equation x is a variable, while y is a function of x.
Differential equations appear in many science and engineering problems, as we will

see in the section on applications. But first let’s think of a differential equation as a purely
mathematical question: which functions y = y(x) satisfy the equation (20)? It turns out
that there is no general method that will always give us the answer to this question, but
there are methods that work for certain special kinds of differential equations. To explain
all this, this chapter is divided into the following parts:

• Some basic examples that give us a clue as to what the solution to a general
differential equation will look like.

• Two special kinds of differential equation (“separable” and “linear”), and how to
solve them.

• How to visualize the solution of a differential equation (using “direction fields”)
and how to compute the solution with a computer using Euler’s method.

• Applications: a number of examples of how differential equations come up and
what their solutions mean.

2. Two basic examples

2.1. Equations where the RHS does not contain y. Which functions y = y(x) sat-
isfy

(21)
dy
dx

= sinx ?

is is a differential equation of the form (20) where the function f that describes the
Right Hand Side is given by f(x, y) = sinx. In this example the function f does not
depend on the unknown function y. Because of this the differential equation really asks

55
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“which functions of x have sinx as derivative?” In other words, which functions are the
antiderivative of sinx? We know the answer, namely

y =

∫
sinx dx = − cosx+ C

whereC is an arbitrary constant. is is the solution to the differential equation (21). is
example shows us that there is not just one solution, but that there are many solutions.
e expression that describes all solutions to the differential equation (21) is called the
general solution. It contains an unknown constant C that is allowed to have arbitrary
values.

To give meaning to the constant C we can observe that when x = 0 we have

y(0) = − cos 0 + C = −1 + C.

So the constant C is nothing but

C = y(0) + 1.

For instance, the solution of (21) that also satisfies y(0) = 4 has C = 4+1 = 5, and thus
is given by

y(x) = − cosx+ 5.

We have found that there are many solutions to the differential equation (21) (because of
the undetermined constant C), but as soon as we prescribe the value of the solution for
one value of x, such as x = 0, then there is exactly one solution (because we can compute
the constant C .)

2.2. e exponential growth example. Which functions equal their own derivative,
i.e. which functions satisfy

dy
dx

= y ?

Everyone knows at least one example, namely y = ex. But there are more solutions: the
function y = 0 also is its own derivative. From the section on exponential growth in
math 221 we know all solutions to dy

dx = y. ey are given by

y(x) = Cex,

where C can be an arbitrary number. If we know the solution y(x) for some value of x,
such as x = 0, then we can find C by seing x = 0:

y(0) = C.

Again we see that instead of there being one solution, the general solution contains an
arbitrary constant C .

2.3. Summary. e two examples that we have just seen show us that for certain
differential equations

• there are many solutions,
• the formula for the general solution contains an undetermined constant C ,
• the undetermined constant C becomes determined once we specify the value of

the solution y at one particular value of x.

It turns out that these features are found in almost all differential equations of the form (20).
In the next two sections we will see methods for computing the general solution to two
frequently occurring kinds of differential equation, the separable equations, and the linear
equations.
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3. First Order Separable Equations

By definition a separable differential equation is a diffeq of the form

(22) y′(x) = F (x)G(y(x)), or
dy
dx

= F (x)G(y).

us the function f(x, y) on the right hand side in (20) has the special form

f(x, y) = F (x)G(y).

For example, the differential equation

dy
dx

= sin(x)
(
1 + y2

)
is separable, and one has F (x) = sinx and G(y) = 1 + y2. On the other hand, the
differential equation

dy
dx

= x+ y

is not separable.

3.1. Solutionmethod for separable equations. To solve this equation divide byG(y(x))
to get

(23)
1

G(y(x))

dy
dx

= F (x).

Next find a function H(y) whose derivative with respect to y is

(24) H ′(y) =
1

G(y)

(
solution: H(y) =

∫
dy

G(y)
.

)
en the chain rule implies that the le hand side in (23) can be wrien as

1

G(y(x))

dy
dx

= H ′(y(x))
dy
dx

=
dH(y(x))

dx
.

us (23) is equivalent with
dH(y(x))

dx
= F (x).

In words: H(y(x)) is an antiderivative of F (x), which means we can find H(y(x)) by
integrating F (x):

(25) H(y(x)) =

∫
F (x)dx+ C.

Once we have found the integral of F (x) this gives us y(x) in implicit form: the equation
(25) gives us y(x) as an implicit function of x. To get y(x) itself wemust solve the equation
(25) for y(x).

A quick way of organizing the calculation goes like this:

To solve
dy
dx

= F (x)G(y) we first separate the variables,

dy
G(y)

= F (x) dx,

and then integrate, ∫
dy
G(y)

=

∫
F (x) dx.
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e result is an implicit equation for the solution y with one undeter-
mined integration constant.

Determining the constant. e solution we get from the above procedure contains an
arbitrary constantC . If the value of the solution is specified at some given x0, i.e. if y(x0)
is known then we can express C in terms of y(x0) by using (25).

3.2. A snag: We have to divide by G(y) which is problematic when G(y) = 0. is
has as consequence that in addition to the solutions we found with the above procedure,
there are at least a few more solutions: the zeroes of G(y) (see Example 3.4 below). In
addition to the zeroes of G(y) there sometimes can be more solutions, as we will see in
Example 10.2 on “Leaky Bucket Dating.”

3.3. Example. We solve
dz
dt

= (1 + z2) cos t.

Separate variables and integrate∫
dz

1 + z2
=

∫
cos t dt,

to get
arctan z = sin t+ C.

Finally solve for z and we find the general solution

z(t) = tan
(
sin(t) + C

)
.

3.4. Example: the snag in action. If we apply the method to y′(x) = y, we get

y(x) = ex+C .

No maer how we choose C we never get the function y(x) = 0, even though y(x) = 0
satisfies the equation. is is because here G(y) = y, and G(y) vanishes for y = 0.

4. Problems

For each of the following differential
equations

- find the general solution,

- indicate which, if any, solutions were lost
while separating variables,

- find the solution that satisfies the indicated
initial values.

1.
dy
dx

= xy, y(2) = −1. [A]

2.
dy
dx

+ x cos2 y = 0, y(0) = π
3
. [A]

3.
dy
dx

+
1 + x

1 + y
= 0, y(0) = A. [A]

4. y2 dy
dx

+ x3 = 0, y(0) = A. [A]

5.
dy
dx

+ 1− y2 = 0, y(0) = A. [A]

6.
dy
dx

+ 1 + y2 = 0, y(0) = A. [A]

7.
dy
dx

+
x2 − 1

y
= 0, y(0) = 1. [A]

8. [Group Problem] LetP (t) be the size of
a colony of bacteria in a Petri dish in some
experiment. Assume that the size of the
colony changes according to the so-called lo-
gistic equation:

dP
dt

=
1

50
P (1000− P ),
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Assume also that in the beginning of the ex-
periment the population size is P = 100.

(a) Find the general solution to the differen-
tial equation.

(b) Find the solution that satisfies the given
initial conditions.

(c) How long does it take the population to
reach size P = 500?

(d) How long does it take the population to
reach size P = 900?

(e) What value does P have when dP
dt is

the largest (hint: you do not need to solve

the differential equation–this question has
a very short answer.)

5. First Order Linear Equations

Differential equations of the form equation

(26)
dy
dx

+ a(x)y = k(x)

are called first order linear.

5.1. e Integrating Factor. Linear equations can always be solved by multiplying
both sides of the equation with a specially chosen function called the integrating factor.
It is defined by

(27) A(x) =

∫
a(x) dx, m(x) = eA(x).

Here m(x) is the integrating factor. It looks like we just pulled this definition of A(x)
andm(x) out of a hat. e example in § 5.2 shows another way of finding the integrating
factor, but for now let’s go on with these two functions.

Multiply the equation (26) by the integrating factorm(x) to get

m(x)
dy
dx

+ a(x)m(x)y = m(x)k(x).

By the chain rule the integrating factor satisfies

dm(x)

dx
=

d eA(x)

dx
= A′(x)︸ ︷︷ ︸

=a(x)

eA(x)︸ ︷︷ ︸
=m(x)

= a(x)m(x).

erefore one has
dm(x)y

dx
= m(x)

dy
dx

+ a(x)m(x)y

= m(x)
{dy
dx

+ a(x)y
}

= m(x)k(x).

Integrating and then dividing by the integrating factor gives the solution

y =
1

m(x)

(∫
m(x)k(x) dx+ C

)
.

In this derivation we have to divide by m(x), but since m(x) = eA(x) and since expo-
nentials never vanish we know thatm(x) ̸= 0, so we can always divide bym(x).
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5.2. An example. Find the general solution to the differential equation
dy
dx

= y + x.

en find the solution that satisfies

(28) y(2) = 0.

Solution. We first write the equation in the standard linear form

(29)
dy
dx

− y = x,

and then multiply with the integrating factor m(x). We could of course memorize the
formulas (27) that lead to the integrating factor, but a safer approach is to remember the
following procedure, which will always give us the integrating factor.

Assuming that m(x) is as yet unknown we multiply the differential equation (29)
withm,

(30) m(x)
dy
dx

−m(x)y = m(x)x.

Ifm(x) is such that

(31) −m(x) =
dm(x)

dx
,

then equation (30) implies

m(x)
dy
dx

+
dm(x)

dx
y = m(x)x.

e expression on the le is exactly what comes out of the product rule – this is the point
of multiplying with m(x) and then insisting on (31). So, if m(x) satisfies (31), then the
differential equation for y is equivalent with

dm(x)y

dx
= m(x)x.

We can integrate this equation,

m(x)y =

∫
m(x)x dx,

and thus find the solution

(32) y(x) =
1

m(x)

∫
m(x)x dx.

All we have to do is find the integrating factor m. is factor can be any function that
satisfies (31). Equation (31) is a differential equation form, but it is separable, and we can
easily solve it:

dm
dx

= −m ⇐⇒ dm
m

= −dx ⇐⇒ ln |m| = −x+ C.

Since we only need one integrating factor m we are not interested in finding all solutions
of (31), and therefore we can choose the constant C . e simplest choice is C = 0, which
leads to

ln |m| = −x ⇐⇒ |m| = e−x ⇐⇒ m = ±e−x.

Again, we only need one integrating factor, so we may choose the ± sign: the simplest
choice form here is

m(x) = e−x.
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With this choice of integrating factor we can now complete the calculation that led to (32).
e solution to the differential equation is

y(x) =
1

m(x)

∫
m(x)x dx

=
1

e−x

∫
e−xx dx (integrate by parts)

= ex
{
−e−xx− e−x + C

}
= −x− 1 + Cex.

is is the general solution.
To find the solution that satisfies not just the differential equation, but also the “initial

condition” (28), i.e. y(2) = 0, we compute y(2) for the general solution,

y(2) = −2− 1 + Ce2 = −3 + Ce2.

e requirement y(2) = 0 then tells us that C = 3e−2. e solution of the differential
equation that satisfies the prescribed initial condition is therefore

y(x) = −x− 1 + 3ex−2.

6. Problems

1. In example 5.2 we needed a function
m(x) that satisfies (31). The function
m(x) = 0 satisfies that equation. Why did
we not choose m(x) = 0?

2. Why can’t we simplify the computation
at the end in example 5.2 by canceling the
two factors m(x) as follows:

y(x) =
1

���m(x)

∫
���m(x) x dx

=

∫
x dx

=
1

2
x2 + C?

For each of the following differential
equations

- specify the differential equation that the in-
tegrating factor satisfies,

- find one integrating factor,

- find the general solution,

- find the solution that satisfies the specified
initial conditions.

In these problems K and N are constants.

3.
dy
dx

= −y + x, y(0) = 0.

4.
dy
dx

= 2y + x2, y(0) = 0.

5.
dy
dx

+ 2y + ex = 0. [A]

6.
dy
dx

− (cosx)y = esin x, y(0) = A. [A]

7.
dy
dx

= −10y + e−x, y(0) = 0.

8.
dy
dx

= y tanx+ 1, y(0) = 0. [A]

9.
dy
dx

= −y tanx+ 1, y(0) = 0. [A]

10. cos2 x
dy
dx

= N − y y(0) = 0. [A]

11. x
dy
dx

= y + x, y(2) = 0. [A]

12.
dy
dx

= −xy + x3, y(0) = 0.

13.
dy
dx

= −y + sinx, y(0) = 0.

14.
dy
dx

= −Ky + sinx, y(0) = 0.

15.
dy
dx

+ x2y = 0, y(1) = 5. [A]

16.
dy
dx

+ (1 + 3x2)y = 0, y(1) = 1. [A]
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7. Direction Fields

We can visualize a differential equation by drawing the corresponding direction field.
Consider a differential equation

dy
dx

= f(x, y)

where f is some given function. e differential equation tells us that if we know a point
(x0, y0) on the graph of a solution y = y(x) of the differential equation, then we also
know the slope of the graph at that point. We can draw the tangent line to the graph of
the solution:

(x0, y0)

Slope m = f(x0, y0)

A solution
Tangent line to the solution at (x0, y0)

If we have not yet solved the differential equation then we don’t know any points on
the solution. In this case we can sample the xy-plane, compute f(x, y) at all our sample
points, and draw the tangent lines a solution would have if it passed through one of the
sample points. In Figure 1 this is done for the differential equation

dy
dx

= −y + sinπx.

e direction field on the le in Figure 1 gives us an idea of what the solutions should look
like. Whenever a solution passes through one of the sample points the slope of its graph
is given by the line segment drawn at that sample point. It is clear from a quick look at
Figure 1 that drawing a direction field involves computing f(x, y) (i.e. −y + sinπx in
our example) for many, many points (x, y). is kind of repetitive computation is beer

Figure 1. Direction field for dy
dx = −y + sinπx on the le, and the same direction field with

solutions to the differential equation.
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done by a computer, and an internet search quickly leads to a number of websites that
produce direction fields for our favorite differential equation. In particular the ODE page
at the Virtual Math Museum of UC Irvine,

http://virtualmathmuseum.org

draws both direction fields and approximations to solutions found using Euler’s method,
to which we now turn.

8. Euler’s method

8.1. e idea behind the method. Consider again the differential equation (20),

dy
dx

= f(x, y).

Suppose we know one point on a solution, i.e. suppose we know that a given solution to
this equation satisfies y = y0 when x = x0, i.e.

(33) y(x0) = y0.

e differential equation then tells us what the derivative of the solution is at x = x0,
namely,

y′(x0) = f(x0, y0).

e definition a derivative says that

y′(x0) = lim
h→0

y(x0 + h)− y(x0)

h

so that we have

(34) lim
h→0

y(x0 + h)− y(x0)

h
= f(x0, y0).

Keep in mind that the right hand side is what we get by substituting the x and y values
that we know for the solution in f . So if we know x0 and y0 then we can also compute
f(x0, y0).

If we don’t know the solution then we cannot compute the le hand side in (34), but,
following Euler, we can make an approximation. If instead of leing h→ 0 we choose a
small number h > 0, then we may assume that

(35)
y(x0 + h)− y(x0)

h
≈ f(x0, y0).

Here “≈” means “approximately equal,” which is a vaguely defined concept. It means
that the difference between the two quantities in (35) is “small” and we will not worry
too much about the error in (35) (such issues are addressed in more advanced courses on
Numerical Analysis; e.g. Math 514 at UW Madison). In the approximate equation (35) all
quantities are known except y(x0 + h). Aer solving (35) for y(x0 + h) we find

(36) y(x0 + h) ≈ y0 + hf(x0, y0).

Euler’s idea (see Figure 2) was to forget that this is an approximation, and declare that we
now know a new point on the graph of the solution, namely

(37) x1 = x0 + h, y1 = y0 + hf(x0, y0).

Assuming that our solution satisfies y(x1) = y1 exactly (rather than just approximately),
we can apply the same procedure and get another new point on the graph of our solution:

x2 = x1 + h, y2 = y1 + hf(x1, y1).

http://virtualmathmuseum.org
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solution?

x1 = x0 + h

x0

y0

y1
tangent

0

1

2

3

4

5
6

7

8

9

10

Figure 2. Approximating a solution with Euler’s method. On the le : one step of Euler’s
method. Knowing one point (x0, y0) on the graph does not immediately tell us what the solution
is, but it does tell us what the tangent to the graph at (x0, y0) is. We can then guess that the point
on the tangent with x1 = x0 + h and y1 = y0 + f(x0, y0)h almost lies on the graph.
On the right : repeating the procedure gives us a sequence of points that approximate the solution.
Reducing the “step size” h should give beer approximations.

By repeating this procedure we can generate a whole list of points (x0, y0), (x1, y1),
(x2, y2), (x3, y3), etc…that lie approximately on the graph of the solution passing through
the given initial point (x0, y0).

8.2. Setting up the computation. If we are given xstart and y(xstart) = ystart, and
if we want to find y(xend) for some xend > xstart, then we can decide to approximate
y(xend) by applying n steps of Euler’s method. Since each step advances x by an amount
h, application of Euler’s method will advance x by nh aer n steps. us we want

nh = xend − xstart, i.e. h =
xend − xstart

n
.

Starting with the known value of y at xstart we then apply Euler’s method n times by
filling out a table of the following form:

xk yk mk = f(xk, yk) yk+1 = yk +mk · h
x0 = xstart ystart m0 y1
x1 = x0 + h y1 m1 y2
x2 = x0 + 2h y2 m2 y3
x3 = x0 + 3h y3 m3 y4
...

...
xn−1 = x0 + (n− 1)h yn−1 mn−1 yn
xn = xend yn

e procedure is very mechanical and repetitive, and is best programmed on a com-
puter.
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Once the table has been computed the values in the first two columns can be used to
graph the approximation to the real solution.

9. Problems

1. Let y(t) be the solution of

dy
dt

= −t · y, y(1.0) = 10.0.

We want to compute y(3.0).

(a) Find an exact formula for y(3.0) by solv-
ing the equation (the equation is both sep-
arable and linear, so we have at least two
methods for finding the solution.)

(b) If we use Euler’s method with step size
h = 2.0, then how many steps do we have
to take to approximate y(3.0)? Compute the
approximation with h = 2.0.

(c) Find the approximations if h = 1.0, h =
2/3, and h = 0.5. Organize the computa-
tions following the table in 8.2.

(d) Compare the results from the computa-
tions in (b) and (c) with the true value of
y(3.0) from part (a).

2.
�

The function y(x) = ex is the solution
to

dy
dx

= y, y(0) = 1.

(a) Approximate e = y(1) by using Euler’s
method first with step size h = 1, then with
h = 1/2, and then with h = 1/3. What are
the approximations you find for y(1) in each
case?

(b) Look for a paern in the answers to (a).
(c) Find a formula for the result of apply-
ing Euler’s method n times with step size
h = 1

n
.

3. Use Euler’s method to approximate the
solution to

dy
dx

= −10y, y(0) = 1,

and, in particular to find y(1). Use various
step sizes. How small do you have to make
the step size before the answer seems rea-
sonable? Explain.

10. Applications of Differential Equations

Differential equations are very oen used to describe how some “object” or “system”
changes or evolves in time. If the object or system is simple enough then its state is
completely determined by one number (say y) that changes with time t.

A differential equation for the system tells us how the system changes in time, by
specifying the rate of change of the state y(t) of the system. is rate of change can
depend on time, and it can depend on the state of the system, i.e. on y(t). is dependence
can be expressed as an equation of the form

(38)
dy
dt

= f(y, t).

e function f describes the evolutionary law of our system (synonyms: “evolutionary
law”, “dynamical law”, “evolution equation for y”).

10.1. Example: carbon dating. Suppose we have a fossil, and we want to know how
old it is.

All living things contain carbon, which naturally occurs in two isotopes, C14 (unsta-
ble) and C12 (stable). A long as the living thing is alive it eats & breaths, and its ratio
of C12 to C14 is kept constant. Once the thing dies the isotope C14 decays into C12 at a
steady rate that is proportional to the amount of C14 it contains.
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Let y(t) be the ratio of C14 to C12 at time t. e law of radioactive decay says that
there is a constant k > 0 such that

dy(t)
dt

= −ky(t).

Solve this differential equation (it is both separable and first order linear: either method
works) to find the general solution

y(t;C) = Ce−kt.

Aer some lab work it is found that the current C14/C12 ratio of our fossil is ynow. us
we have

ynow = Ce−ktnow =⇒ C = ynowe
tnow .

erefore our fossil’s C14/C12 ratio at any other time t is/was

y(t) = ynowe
k(tnow−t).

is allows us to compute the time at which the fossil died. At this time the C14/C12

ratio must have been the common value in all living things, which can be measured –
let’s call it ylife. en at the time tdemise when our fossil became a fossil we would have
had y(tdemise) = ylife. Hence the age of the fossil would be given by

ylife = y(tdemise) = ynowe
k(tnow−tdemise) =⇒ tnow − tdemise =

1

k
ln
xlife

xnow

10.2. Example: dating a leaky buet. A bucket is filled with water. ere is a hole
in the boom of the bucket so the water streams out at a certain rate.

h(t) the height of water in the bucket
A area of cross section of bucket
a area of hole in the bucket
v velocity with which water goes through the hole.

h(t)
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area = A

We have the following facts to work with:

• e amount (volume) of water in the bucket is A · h(t);
• e rate at which water is leaving the bucket is a · v(t);

Hence
dAh(t)

dt
= −av(t).

In fluid mechanics it is shown that the velocity of the water as it passes through the hole
only depends on the height h(t) of the water, and that, for some constantK ,

v(t) =
√
Kh(t).

e last two equations together give a differential equation for h(t), namely,

dh(t)
dt

= − a

A

√
Kh(t).
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h(t)

Figure 3. Several solutions h(t;C) of the Leaking Bucket Equation (39). Note how they all have
the same values when t ≥ 1.

To make things a bit easier we assume that the constants are such that a
A

√
K = 2. en

h(t) satisfies

(39) h′(t) = −2
√
h(t).

is equation is separable, and when we solve it we get

dh

2
√
h
= −1 =⇒

√
h(t) = −t+ C.

is formula can’t be valid for all values of t, for if we take t > C , the RHS becomes
negative and can’t be equal to the square root in the LHS. But when t ≤ C we do get a
solution,

h(t;C) = (C − t)2.

is solution describes a bucket that is losing water until at timeC it is empty. Motivated
by the physical interpretation of our solution it is natural to assume that the bucket stays
empty when t > C , so that the solution with integration constant C is given by

(40) h(t) =

{
(C − t)2 when t ≤ C

0 for t > C.

e snag appears again. (See § 3.2 and § 3.4.) Note that we had to divide by
√
h to

find the solution. is is not allowed when h = 0. It turns out that h(t) = 0 is a solution
to the differential equation. e solution h(t) = 0 satisfies h(0) = 0, and our experience
with differential equations so far would lead us to believe that this should therefore be
the only solution that satisfies h(0) = 0. However, every solution from (40) with C ≤ 0
also satisfies h(0) = 0. is problem is therefore different from the differential equations
we have dealt with up to now. Namely, prescribing the value y(0) = 0 does not single
out one solution of the differential equation (39).

10.3. Heat transfer. We all know that heat flows fromwarm to cold: if we put a cold
spoon in a hot cup of coffee, then heat will flow from the coffee to the spoon. How fast
does the spoon warm up?
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According to physics the rate of change of the spoon’s temperature is proportional
to the difference in temperature between the coffee and the spoon. So, if Tc and Ts are
the temperature of the coffee and the spoon, respectively, then

(41)
dTs
dt

= −K
(
Ts − Tc

)
.

HereK is a constant that depends on the shape and material of the spoon, how much of
the spoon is in the coffee, etc., but not on the temperatures Ts and Tc. If we assume that
the spoon is small, then whatever small amount of heat it extracts from the coffee will
not change the coffee temperature. Under that assumption we may assume that Tc is a
constant and the differential equation (41) is both separable and linear so that we have
two methods for solving it.

If the coffee itself is also cooling or warming up then Tc will depend on time and the
equation (41) becomes

(42)
dTs
dt

+KTs = KTc(t).

If we know Tc(t) then this is still a linear differential equation for Ts and we can solve it.

10.4. Mixing problems. Consider a container containingwater and vinegar. If water
and vinegar are flowing in and out of the container, then the concentration of vinegar
in the container will change with time according to some differential equation. Which
differential equation describes the vinegar content of the container depends on the precise
details of the set-up.

As an example, let us assume that the container has fixed volume V = 1000 liters.
is means that the amount of liquid that flows in during any time interval must equal
the amount of liquid flowing out of the container (the liquid is “incompressible,” i.e. its
density is fixed.)

Suppose furthermore that a mixture of 5% vinegar and 95% water flows into the con-
tainer at 40 liters per minute. And suppose also that the liquid in the container is thor-
oughlymixed, so that the liquid that flows out of the container has the same vinegar/water
mixture as the entire container.

out

in

Problem: LetD(t) be the fraction of the liquid in the container that is vinegar. How
does D(t) change with time?

Solution: Instead of tracking the concentration D(t) of vinegar we will look at the
total amount of vinegar in the container. is amount is D(t)V .

To find the differential equation we consider how much vinegar flows in and out of
the container during a short time interval of length ∆t (i.e. between time t and t+∆t):

in: e liquid volume flowing into the tank during a time∆t is 40∆t liters. Since the
vinegar concentration of the in-flowing liquid is 5%, this means that 5%·40∆t =
2∆t liters of vinegar enter the container.

out: Since 40∆t liters of liquid enter the container, the same amount of liquid must
also leave the container. e liquid that leaves is the well-stirred mixture, and
thus it contains D(t) · 40∆t liters vinegar.

In total we see that the change in vinegar content during a time ∆t is

(43) ∆
(
vinegar content

)
= 2∆t− 40D(t)∆t.

To find the change in concentration we divide by the volume of the container

∆D =
2∆t− 40D(t)∆t

1000
=

∆t

500
− D(t)

25
∆t.
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We find the rate of change by dividing by ∆t and leing ∆t→ 0:

(44)
dD
dt

=
1

500
− 1

25
D.

is equation is again both linear and separable so we have two methods for solving it.

11. Problems

1. Read Example 10.2 on “Leaky bucket dat-
ing” again. In that example we assumed that
a
A

√
K = 2.

(a) Solve diffeq for h(t) without assum-
ing a

A

√
K = 2. Abbreviate C = a

A

√
K .

(b) If in an experiment one found that
the bucket empties in 20 seconds aer being
filled to height 20 cm, then how much is the
constant C?

2. A population of bacteria grows at a rate
proportional to its size. Write and solve a
differential equation that expresses this. If
there are 1000 bacteria aer one hour and
2000 bacteria aer two hours, how many
bacteria are there aer three hours?

3. Rabbits in Madison have a birth rate of
5% per year and a death rate (from old age)
of 2% per year. Each year 1000 rabbits get
run over and 700 rabbits move in from Sun
Prairie.

(a) Write a differential equation that de-
scribes Madison’s rabbit population at time
t. [A]

(b) If there were 12,000 rabbits in Madison in
1991, how many are there in 1994?

4. [Group Problem] Consider a cup of
soup that is cooling by exchanging heat with
the room. If the temperature of the soup is
Ts(t), and if the temperature of the room is
Tr , then Newton’s cooling law claims that

dTs

dt
= −K(Ts − Tr)

for some constant K > 0.

(a) What units does K have, if we measure
temperature in degrees Fahrenheit, and time
in seconds? [A]

(b) Find the general solution to Newton’s
cooling law. What units does the arbitrary
constant in your solution have? What is the

limit of the temperature as t → ∞? [A]

(c) The soup starts at 180oF, and sits in a
room whose temperature is 75◦F. In five
minutes its temperature has dropped to
150◦F. Find the cooling constant K . When
will its temperature be 90◦F? [A]

5. [Group Problem] A lake gets heated by
day when the sun is out, and loses heat at
night. It also exchanges heat with the Earth.
The Earth’s temperature is Te, and the lake’s
temperature is Tl(t).

These effects together can be modeled by a
differential equation for Tl(t)

dTl

dt
= −K(Tl − Te) + S sin(2πt).

Here the first term on the right represents
Newton’s cooling law, while the second term
accounts for the heating and cooling by ra-
diation: if sin(2πt) > 0 then it’s day and
the sun is heating the lake, if sin(2πt) < 0
then it’s night and the lake is radiating heat
into the cold sky. Time t is measured in days.
Temperatures are in degrees Celsius.

(a) Assuming K = S = 1, and Te = 10
find the general solution to the differential
equation.

(b) Draw the direction field for the differ-
ential equation when K = S = 1 and
Te = 10. (First try to do this by hand. Then
use a computer.)

(c) Does limt→∞ Tl(t) exist? Consider the
separate terms in the general solution you
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found in part (a), and see if any of these
terms have a limit as t → ∞.

(d) Find the solution for arbitrary K and S
(you may assume K and S are positive.)

6. Retaw is a mysterious living liquid; it
grows at a rate of 5% of its volume per hour.
A scientist has a tank initially holding y0
gallons of retaw and removes retaw from
the tank continuously at the rate of 3 gal-
lons per hour. [A]

(a) Find a differential equation for the num-
ber y(t) of gallons of retaw in the tank at
time t.

(b) Solve this equation for y as a function of
t. (The initial volume y0 will appear in our
answer.)

(c) What is limt→∞ y(t) if y0 = 100?

(d) What should the value of y0 be so that
y(t) remains constant?

7. A 1000 gallon vat is full of 25% solution of
acid. Starting at time t = 0 a 40% solution
of acid is pumped into the vat at 20 gallons
per minute. The solution is kept well mixed
and drawn off at 20 gallons per minute so as
to maintain the total value of 1000 gallons.
Derive an expression for the acid concen-
tration at times t > 0. As t → ∞ what
percentage solution is approached? [A]

8. [Mixing] The volume of a lake is V =
109 cubic feet. Pollution P runs into the
lake at 3 cubic feet per minute, and clean
water runs in at 21 cubic feet per minute.
The lake drains at a rate of 24 cubic feet per
minute so its volume is constant. Let C be
the concentration of pollution in the lake; i.e.
C = P/V .

(a) Give a differential equation for C .

(b) Solve the differential equation. Use the
initial condition C = C0 when t = 0 to
evaluate the constant of integration.

(c) There is a critical valueC∗ with the prop-
erty that for any solutionC = C(t)we have

lim
t→∞

C = C∗.

Find C∗. If C0 = C∗, what is C(t)? [A]

9. [Mixing] A 300 gallon tank is full of milk
containing 2% buerfat. Milk containing
1% buerfat is pumped in a 10 gallons per
minute starting at 10:00 AM and the well
mixed milk is drained off at 15 gallons per
minute. What is the percent buerfat in the
milk in the tank 5minutes later at 10:05 AM?
Hint: How much milk is in the tank at time
t? How much buerfat is in the milk at time
t = 0?

10. [Group Problem] A philanthropist en-
dows a chair. This means that she donates
an amount of money B0 to the university.
The university invests the money (it earns
interest) and pays the salary of a profes-
sor. Denote the interest rate on the invest-
ment by r (e.g. if r = .06, then the in-
vestment earns interest at a rate of 6% per
year) the salary of the professor by a (e.g.
a = $50, 000 per year), and the balance in
the investment account at time t by B.

(a) Give a differential equation for B.

(b) Solve the differential equation. Use the
initial condition B = B0 when t = 0 to
evaluate the constant of integration.

(c) There is a critical valueB∗ with the prop-
erty that (1) if B0 < B∗, then there is a
t > 0 with B(t) = 0 (i.e. the account runs
out of money) while (2) if B0 > B∗, then
limt→∞ B = ∞. Find B∗.

(d) This problem is like the pollution prob-
lem except for the signs of r and a. Explain.

11. [Group Problem] A citizen pays social
security taxes of a dollars per year for T1

years, then retires, then receives payments
of b dollars per year for T2 years, then dies.
The account which receives and dispenses
the money earns interest at a rate of r% per
year and has no money at time t = 0 and no
money at the time t = T1+T2 of death. Find
two differential equations for the balance
B(t) at time t; one valid for 0 ≤ t ≤ T1,
the other valid for T1 ≤ t ≤ T1 + T2. Ex-
press the ratio b/a in terms of T1, T2, and
r. Reasonable values for T1, T2, and r are
T1 = 40, T2 = 20, and r = 5% = .05.
This model ignores inflation. Notice that
0 < dB/dt for 0 < t < T1, that dB/dt < 0
for T1 < t < T1 + T2, and that the account
earns interest even for T1 < t < T1 + T2.



CHAPTER IV

Taylor’s Formula

All continuous functions that vanish at x = a
are approximately equal at x = a,

but some are more approximately equal than others.

1. Taylor Polynomials

Suppose we need to do some computation with a complicated function y = f(x),
and suppose that the only values of x we care about are close to some constant x =
a. Since polynomials are simpler than most other functions, we could then look for a
polynomial y = P (x) that somehow “matches” our function y = f(x) for values of x
close to a. And we could then replace our function f with the polynomial P , hoping
that the error we make is not too big. Which polynomial we choose depends on when we
think a polynomial “matches” a function. In this chapter we will say that a polynomial
P of degree n matches a function f at x = a if P has the same value and the same
derivatives of order 1, 2, …, n at x = a as the function f . e polynomial that matches
a given function at some point x = a is the Taylor polynomial of f . It is given by the
following formula.

1.1. Definition. e Taylor polynomial of a function y = f(x) of degree n at a point
a is the polynomial

(45) T a
nf(x) = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

(Recall that n! = 1 · 2 · 3 · · ·n, and by definition 0! = 1.

1.2. eorem. e Taylor polynomial has the following property: it is the only poly-
nomial P (x) of degree n whose value and whose derivatives of orders 1, 2, …, and n are the
same as those of f , i.e. it’s the only polynomial of degree n for which

P (a) = f(a), P ′(a) = f ′(a), P ′′(a) = f ′′(a), . . . , P (n)(a) = f (n)(a)

holds.

P. We do the case a = 0, for simplicity. Let n be given, consider a polynomial
P (x) of degree n, say,

P (x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n,

71
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and let’s see what its derivatives look like. ey are:

P (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · ·

P ′(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + · · ·
P (2)(x) = 1 · 2a2 + 2 · 3a3x + 3 · 4a4x2 + · · ·
P (3)(x) = 1 · 2 · 3a3 + 2 · 3 · 4a4x + · · ·
P (4)(x) = 1 · 2 · 3 · 4a4 + · · ·

When we set x = 0 all the terms that have a positive power of x vanish, and we are le
with the first entry on each line, i.e.

P (0) = a0, P ′(0) = a1, P (2)(0) = 2a2, P (3)(0) = 2 · 3a3, etc.
and in general

P (k)(0) = k!ak for 0 ≤ k ≤ n.

For k ≥ n+1 the derivatives P (k)(x) all vanish of course, since P (x) is a polynomial of
degree n.

erefore, if we want P to have the same values and derivatives at x = 0 of orders
1,,…, n as the function f , then we must have k!ak = P (k)(0) = f (k)(0) for all k ≤ n.
us

ak =
f (k)(0)

k!
for 0 ≤ k ≤ n.

□

2. Examples

2.1. Taylor polynomials of order zero and one. e zeroth order Taylor polynomial
of a function f(x) is wrien as T a

0 f(x). According to the definition (45) it is given by

T a
0 f(x) = f(a).

It does not depend on x and is just a constant.
e first order Taylor polynomial is

T a
1 f(x) = f(a) + f ′(a)(x− a).

e graph of the function

y = T a
1 f(x), i.e. y = f(a) + f ′(a)(x− a),

is the tangent line at x = a to the graph of the function y = f(x). e function y =
T a
1 f(x) is exactly the linear approximation of f(x) for x close to a that was derived in 1st

semester calculus.
eTaylor polynomial generalizes this first order approximation by providing “higher

order approximations” to f .
Most of the timewewill take a = 0 in which casewewriteTnf(x) instead of T a

nf(x),
and we get a slightly simpler formula

(46) Tnf(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn.

You will see below that for many functions f(x) the Taylor polynomials Tnf(x) give
beer and beer approximations as we add more terms (i.e. as we increase n). For this
reason the limit when n→ ∞ is oen considered, which leads to the infinite sum

T∞f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·
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y = f(x)

y = T0f(x)

y = f(x)

y = T1f(x)

y = f(x)

y = T2f(x)

Figure 1. The Taylor polynomials of degree 0, 1 and 2 of f(x) = ex at a = 0. The zeroth order
Taylor polynomial has the right value at x = 0 but it doesn’t know whether or not the function f
is increasing at x = 0. The first order Taylor polynomial has the right slope at x = 0, but it doesn’t
see if the graph of f is curved up or down at x = 0. The second order Taylor polynomial also has
the right curvature at x = 0.

Although we will not try to make sense of the “sum of infinitely many numbers” at this
point, we will return to this question in the next chapter on Sequences and Series.

2.2. Example: Compute the Taylor polynomials of degree 0, 1 and 2 of f(x) = ex

at a = 0, and plot them. One has

f(x) = ex =⇒ f ′(x) = ex =⇒ f ′′(x) = ex,

y
=
1
+
x

y = ex

y = 1 + x+ 1
2x

2

y = 1 + x+ x2

y = 1 + x+ 3
2x

2

y = 1 + x− 1
2x

2

Figure 2. The top edge of the shaded region is the graph of y = ex. The graphs are of the functions
y = 1 + x + Cx2 for various values of C . These graphs all are tangent at x = 0, but one of the
parabolas matches the graph of y = ex beer than any of the others.
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so that

f(0) = 1, f ′(0) = 1, f ′′(0) = 1.

erefore the first three Taylor polynomials of ex at a = 0 are

T0f(x) = 1

T1f(x) = 1 + x

T2f(x) = 1 + x+
1

2
x2.

e graphs are found in Figure 1.
e Taylor polynomial of degree 0, i.e. T0f(x) = 1 captures the fact that ex by virtue

of its continuity does not change very much if x stays close to x = 0.
e Taylor polynomial of degree 1, i.e. T1f(x) = 1 + x corresponds to the tangent

line to the graph of f(x) = ex, and so it also captures the fact that the function f(x) is
increasing near x = 0.

Clearly T1f(x) is a beer approximation to ex than T0f(x).
e graphs of both y = T0f(x) and y = T1f(x) are straight lines, while the graph

of y = ex is curved (in fact, convex). e second order Taylor polynomial captures this
convexity. In fact, the graph of y = T2f(x) is a parabola, and since it has the same first
and second derivative at x = 0, its curvature is the same as the curvature of the graph of
y = ex at x = 0. So it seems that y = T2f(x) = 1 + x + x2/2 is an approximation to
y = ex that beats both T0f(x) and T1f(x).

Figure 2 shows the graphs of various parabolas that have the same tangent line as
the graph of y = ex at x = 0. Such parabolas are given by y = 1+x+Cx2, for arbitrary
C . e figure shows that the choice C = 1

2 leads to the parabola that best matches the
graph of y = ex.

2.3. Example: Find the Taylor polynomials of f(x) = sinx. When we start com-
puting the derivatives of sinx we find

f(x) = sinx, f ′(x) = cosx, f ′′(x) = − sinx, f (3)(x) = − cosx,

and thus

f (4)(x) = sinx.

So aer four derivatives we’re back to where we started, and the sequence of derivatives
of sinx cycles through the paern

sinx, cosx, − sinx, − cosx, sinx, cosx, − sinx, − cosx, sinx, . . .

on and on. At x = 0 we then get the following values for the derivatives f (j)(0),

j 1 2 3 4 5 6 7 8 · · ·
f (j)(0) 0 1 0 −1 0 1 0 −1 · · ·
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is gives the following Taylor polynomials

T0f(x) = 0

T1f(x) = x

T2f(x) = x

T3f(x) = x− x3

3!

T4f(x) = x− x3

3!

T5f(x) = x− x3

3!
+
x5

5!

Note that since f (2)(0) = 0 the Taylor polynomials T1f(x) and T2f(x) are the same!
e second order Taylor polynomial in this example is really only a polynomial of degree
one. In general the Taylor polynomial Tnf(x) of any function is a polynomial of degree
at most n, and this example shows that the degree can sometimes be strictly less.

π 2π
−π−2π

y = sinx

T1f(x) T5f(x) T9f(x)

T3f(x) T7f(x) T11f(x)

Figure 3. Taylor polynomials of f(x) = sinx

2.4. Example: compute the Taylor polynomials of degree two and three of f(x) =
1 + x+ x2 + x3 at a = 3.

Solution: Remember that our notation for the nth degree Taylor polynomial of a func-
tion f at a is T a

nf(x), and that it is defined by (45).
We have

f ′(x) = 1 + 2x+ 3x2, f ′′(x) = 2 + 6x, f ′′′(x) = 6

erefore f(3) = 40, f ′(3) = 34, f ′′(3) = 20, f ′′′(3) = 6, and thus

(47) T s
2 f(x) = 40 + 34(x− 3) +

20

2!
(x− 3)2 = 40 + 34(x− 3) + 10(x− 3)2.

Why don’t we expand the answer? You could do this (i.e. replace (x− 3)2 by x2 − 6x+
9 throughout and sort the powers of x), but as we will see in this chapter, the Taylor
polynomial T a

nf(x) is used as an approximation for f(x) when x is close to a. In this
example T 3

2 f(x) is to be used when x is close to 3. If x − 3 is a small number then the
successive powers x− 3, (x− 3)2, (x− 3)3, …decrease rapidly, and so the terms in (47)
are arranged in decreasing order.
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We can also compute the third degree Taylor polynomial. It is

T 3
3 f(x) = 40 + 34(x− 3) +

20

2!
(x− 3)2 +

6

3!
(x− 3)3

= 40 + 34(x− 3) + 10(x− 3)2 + (x− 3)3.

If we expand this (this takes a lile work) we find that

40 + 34(x− 3) + 10(x− 3)2 + (x− 3)3 = 1 + x+ x2 + x3.

So the third degree Taylor polynomial is the function f itself! Why is this so? Because
of eorem 1.2! Both sides in the above equation are third degree polynomials, and their
derivatives of order 0, 1, 2 and 3 are the same at x = 3, so, since there is only one
polynomial with this property, they must be the same polynomial.

3. Some special Taylor polynomials

Here is a list of functions whose Taylor polynomials are sufficiently regular that we
can write a formula for the nth term.

Tne
x = 1 + x+

x2

2!
+
x3

3!
+ · · ·+ xn

n!

T2n+1 {sinx} = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!

T2n {cosx} = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!

Tn

{
1

1− x

}
= 1 + x+ x2 + x3 + x4 + · · ·+ xn (Geometric Sum)

Tn {ln(1 + x)} = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n+1x

n

n

All of these Taylor polynomials can be computed directly from the definition, by repeat-
edly differentiating f(x).

Another function whose Taylor polynomial we should know is f(x) = (1 + x)a,
where a is a constant. You can compute Tnf(x) directly from the definition, and when
we do this we find

(48) Tn{(1 + x)a} = 1 + ax+
a(a− 1)

1 · 2
x2 +

a(a− 1)(a− 2)

1 · 2 · 3
x3

+ · · ·+ a(a− 1) · · · (a− n+ 1)

1 · 2 · · ·n
xn.

Note that here a is not assumed to be an integer. is formula is called Newton’s bino-
mial formula. e coefficient of xn is called a binomial coefficient, and it is wrien

(49)
(
a

n

)
=
a(a− 1) · · · (a− n+ 1)

n!
.

When a is an integer
(
a
n

)
is also called “a choose n.” Using this notation equation (48) can

be wrien as

Tn
{
(1 + x)a

}
= 1 +

(
a

1

)
x+

(
a

2

)
x2 +

(
a

3

)
x3 + · · ·+

(
a

n

)
xn.

Note that we already knew special cases of the binomial formula: when a is a positive
integer the binomial coefficients are just the numbers in Pascal’s triangle.
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4. Problems

1. Find a second order polynomial (i.e. a
quadratic function) Q(x) such that Q(7) =
43, Q′(7) = 19, Q′′(7) = 11.

[A]

2. Find a second order polynomial p(x) such
that p(2) = 3, p′(2) = 8, and p′′(2) = −1.

[A]

3. A Third order polynomial P (x) satis-
fies P (0) = 1, P ′(0) = −3, P ′′(0) =
−8, P ′′′(0) = 24. Find P (x).

4. Let f(x) =
√
x+ 25. Find the poly-

nomial P (x) of degree three such that
P (k)(0) = f (k)(0) for k = 0, 1, 2, 3.

5. Let f(x) = 1 + x − x2 − x3. Com-
pute and graph T0f(x), T1f(x), T2f(x),
T3f(x), and T4f(x), as well as f(x) itself
(so, for each of these functions find where
they are positive or negative, where they are
increasing/decreasing, and find the inflec-
tion points on their graph.)

6. (a) Find T3 sinx and T5 sinx.

(b) Graph T3 sinx and T5 sinx as well as
y = sinx in one picture. (As before, find
where these functions are positive or nega-
tive, where they are increasing/decreasing,
and find the inflection points on their graph.
This problem can&should be done without a
graphing calculator.)

∗ ∗ ∗

Compute T a
0 f(x), T

a
1 f(x) and T a

2 f(x)
for the following functions.

7. f(x) = x3, a = 0; then for a = 1 and
a = 2.

8. f(x) =
1

x
, a = 1. Also do a = 2.

9. f(x) =
√
x, a = 1.

10. f(x) = lnx, a = 1. Also a = e2.

11. f(x) = ln
√
x, a = 1.

12. f(x) = sin(2x), a = 0, also a = π/4.

13. f(x) = cos(x), a = π.

14. f(x) = (x− 1)2, a = 0, and also a = 1.

15. f(x) =
1

ex
, a = 0.

16. Find the nth degree Taylor polynomial
T a
nf(x) of the following functions f(x)

n a f(x)

2 0 1 + x− x3

3 0 1 + x− x3

25 0 1 + x− x3

25 2 1 + x− x3

2 1 1 + x− x3

1 1 x2

2 1 x2

5 1 1/x
5 0 1/(1 + x)
5 1 1/(1 + x)
5 − 1

2
1/(1 + x)

3 0 1/(1− 3x+ 2x2)

For which of these combinations
(n, a, f(x)) is T a

nf(x) the same as f(x)?

∗ ∗ ∗

Compute the Taylor series T∞f(t) for the
following functions (α is a constant). Give a
formula for the coefficient of xn in T∞f(t).
(Be smart. Remember properties of the loga-
rithm, definitions of the hyperbolic functions,
partial fraction decomposition.)

17. et [A]

18. eαt [A]

19. sin(3t) [A]

20. sinh t [A]

21. cosh t [A]

22.
1

1 + 2t
[A]

23.
3

(2− t)2
[A]

24. ln(1 + t) [A]

25. ln(2 + 2t) [A]
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26. ln
√
1 + t [A]

27. ln(1 + 2t) [A]

28. ln

√
1 + t

1− t
[A]

29.
1

1− t2
[hint:PFD!] [A]

30.
t

1− t2
[A]

31. sin t+ cos t [A]

32. 2 sin t cos t [A]

33. tan t (3 terms only) [A]

34. 1 + t2 − 2

3
t4 [A]

35. (1 + t)5 [A]

36. 3
√
1 + t [A]

37. f(x) = x4

1+4x2 , what is f (10)(0)? [A]

38. [Group Problem] Compute the Taylor
series of the following two functions

f(x) = sin a cosx+ cos a sinx

and
g(x) = sin(a+ x)

where a is a constant. [A]

39. [Group Problem] Compute the Taylor
series of the following two functions

h(x) = cos a cosx− sin a sinx

and
k(x) = cos(a+ x)

where a is a constant.

40. [Group Problem] The following ques-
tions ask us to rediscover Newton’s Binomial
Formula, which is just the Taylor series for
(1 + x)n. Newton’s formula generalizes the
formulas for (a + b)2, (a + b)3, etc that we
get using Pascal’s triangle. It allows non in-
teger exponents which are allowed to be ei-
ther positive and negative. Reread section 3
before doing this problem.

(a) Find the Taylor series of f(x) =
√
1 + x

(= (1 + x)1/2)

(b) Find the coefficient of x4 in the Taylor se-
ries of f(x) = (1 + x)π (don’t do the arith-
metic!)

(c) Let p be any real number. Compute the
terms of degree 0, 1, 2 and 3 of the Taylor
series of

f(x) = (1 + x)p

(d) Compute the Taylor polynomial of de-
gree n of f(x) = (1 + x)p.

(e) Write the result of (d) for the exponents
p = 2, 3 and also, for p = −1,−2,−3
and finally for p = 1

2
. The Binomial The-

orem states that this series converges when
|x| < 1.

5. e Remainder Term

e Taylor polynomial Tnf(x) is almost never exactly equal to f(x), but oen it is
a good approximation, especially if x is small. To see how good the approximation is we
define the “error term” or, “remainder term.”

5.1. Definition. If f is an n times differentiable function on some interval containing
a, then

Ra
nf(x) = f(x)− T a

nf(x)

is called the nth order remainder (or error) term in the Taylor expansion of f .
If a = 0, as will be the case in most examples we do, then we write

Rnf(x) = f(x)− Tnf(x).
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ese definitions let us write any function f(x) as “Taylor polynomial plus error,” i.e.

(50) f(x) = T a
nf(x)︸ ︷︷ ︸

approximation

+ Ra
nf(x)︸ ︷︷ ︸

the error

Generally the approximation is something we know how to compute, while we can only
hope to prove that the remainder is in some sense “small.”

5.2. Example. If f(x) = sinx then we have found that T3f(x) = x− 1
6x

3, so that

R3{sinx} = sinx− x+ 1
6x

3.

is is a completely correct formula for the remainder term, but it is rather useless: there
is nothing about this expression that suggests that x− 1

6x
3 is a much beer approximation

to sinx than, say, x+ 1
6x

3.
e usual situation is that there is no simple formula for the remainder term.

5.3. An unusual example, in whi there is a simple formula for Rnf(x). Con-
sider f(x) = 1− x+ 3x2 − 15x3. en we find

T2f(x) = 1− x+ 3x2, so that R2f(x) = f(x)− T2f(x) = −15x3.

us
f(x) = 1− x+ 3x2︸ ︷︷ ︸

approximation

− 15x3︸ ︷︷ ︸
error

e moral of this example is this: Given a polynomial f(x) we find its nth degree Taylor
polynomial at a = 0 by taking all terms of degree ≤ n in f(x); the remainder Rnf(x) then
consists of the remaining terms.

5.4. Another unusual, but important example where we can compute Rnf(x).
Consider the function

f(x) =
1

1− x
.

en repeated differentiation gives

f ′(x) =
1

(1− x)2
, f (2)(x) =

1 · 2
(1− x)3

, f (3)(x) =
1 · 2 · 3
(1− x)4

, . . .

and thus

f (n)(x) =
1 · 2 · 3 · · ·n
(1− x)n+1

.

Consequently,

f (n)(0) = n! =⇒ 1

n!
f (n)(0) = 1,

and we see that the Taylor polynomials of this function are really simple, namely

Tnf(x) = 1 + x+ x2 + x3 + x4 + · · ·+ xn.

But this sum should be really familiar: it is just the Geometric Sum (each term is x times
the previous term). Its sum is given by¹

Tnf(x) = 1 + x+ x2 + x3 + x4 + · · ·+ xn =
1− xn+1

1− x
,

which we can rewrite as

Tnf(x) =
1

1− x
− xn+1

1− x
= f(x)− xn+1

1− x
.

¹Multiply both sides with 1− x to verify this, in case we had forgoen the formula!
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e remainder term therefore is

Rnf(x) = f(x)− Tnf(x) =
xn+1

1− x
.

6. Lagrange’s Formula for the Remainder Term

6.1. eorem. Let f be an n+ 1 times differentiable function on some interval I con-
taining x = 0. en for every x in the interval I there is a ξ between 0 and x such that

Rnf(x) =
f (n+1)(ξ)

(n+ 1)!
xn+1.

(ξ between 0 and x means either 0 < ξ < x or x < ξ < 0, depending on the sign of x.)
is theorem (including the proo) is similar to the Mean Value eorem. e proof

is a bit involved, and is given at the end of this chapter.
ere are calculus textbooks that, aer presenting this remainder formula, give a

whole bunch of problems that ask us to find ξ for given f andx. Such problems completely
miss the point of Lagrange’s formula. e point is that even though we usually can’t
compute the mystery point ξ precisely, Lagrange’s formula for the remainder term allows us
to estimate the remainder. Here is the most common way to estimate the remainder:

6.2. Estimate of remainder term. If f is an n+ 1 times differentiable function on an
interval containing x = 0, and if we have a constantM such that

(†)
∣∣∣f (n+1)(t)

∣∣∣ ≤M for all t between 0 and x,

then

|Rnf(x)| ≤
M |x|n+1

(n+ 1)!
.

P. We don’t know what ξ is in Lagrange’s formula, but it doesn’t maer, for
wherever it is, it must lie between 0 andx so that our assumption (†) implies |f (n+1)(ξ)| ≤
M . Put that in Lagrange’s formula and we get the stated inequality. □

6.3. How to compute e in a few decimal places. We are used to being able to find
decimal approximations to numbers such as e (or e0.315 219) by relying on the magic of an
electronic calculator or computer. How does a calculator, which in principle only knows
how to add, subtract, multiply, and divide numbers, compute such numbers? One way is
to use the Taylor expansion with Lagrange’s remainder term. In this section we will see
how to compute e itself in six decimals.

Consider f(x) = ex. We computed the Taylor polynomials before. If we set x = 1,
then we get e = f(1) = Tnf(1) +Rnf(1), and thus, taking n = 8,

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
+R8(1).

By Lagrange’s formula there is a ξ between 0 and 1 such that

R8(1) =
f (9)(ξ)

9!
19 =

eξ

9!
.

(remember: f(x) = ex, so all its derivatives are also ex.) We don’t really know where ξ
is, but since it lies between 0 and 1 we know that 1 < eξ < e. So the remainder term
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R8(1) is positive and no more than e/9!. Estimating e < 3, we find

1

9!
< R8(1) <

3

9!
.

us we see that

1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

7!
+

1

8!
+

1

9!
< e < 1 +

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

7!
+

1

8!
+

3

9!

or, in decimals,
2.718 281 . . . < e < 2.718 287 . . .

6.4. Error in the approximation sinx ≈ x. In many calculations involving sinx for
small values of x one makes the simplifying approximation sinx ≈ x, justified by the
known limit

lim
x→0

sinx
x

= 1.

6.4.1. estion: how big is the error in this approximation? To answer this question,
we use Lagrange’s formula for the remainder term again.

Let f(x) = sinx. en the first degree Taylor polynomial of f is

T1f(x) = x.

e approximation sinx ≈ x is therefore exactly what we get if we approximate f(x) =
sinx by its first degree Taylor polynomial. Lagrange tells us that

f(x) = T1f(x) +R1f(x), i.e. sinx = x+R1f(x),

where, since f ′′(x) = − sinx,

R1f(x) =
f ′′(ξ)

2!
x2 = − 1

2 sin ξ · x2

for some ξ between 0 and x.
As always with Lagrange’s remainder term, we don’t know where ξ is precisely, so

we have to estimate the remainder term. e easiest way to do this (but not the best: see
below) is to say that no maer what ξ is, sin ξ will always be between −1 and 1. Hence
the remainder term is bounded by

(¶) |R1f(x)| ≤ 1
2x

2,

and we find that
x− 1

2x
2 ≤ sinx ≤ x+ 1

2x
2.

6.4.2. estion: How small must we choose x to be sure that the approximation sinx ≈
x isn’t off by more than 1% ? If we want the error to be less than 1% of the estimate, then
we should require 1

2x
2 to be less than 1% of |x|, i.e.

1
2x

2 < 0.01 · |x| ⇔ |x| < 0.02

So we have shown that, if we choose |x| < 0.02, then the error wemake in approximating
sinx by just x is no more than 1%.

A final comment about this example: the estimate for the error we got here can be
improved quite a bit in two different ways:

(1) You could notice that one has | sinx| ≤ x for all x, so if ξ is between 0 and x, then
| sin ξ| ≤ |ξ| ≤ |x|, which gives us the estimate

|R1f(x)| ≤ 1
2 |x|

3 instead of 1
2x

2 as in (¶).
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(2) For this particular function the two Taylor polynomials T1f(x) and T2f(x) are
the same (because f ′′(0) = 0). So T2f(x) = x, and we can write

sinx = f(x) = x+R2f(x),

In other words, the error in the approximation sinx ≈ x is also given by the second order
remainder term, which according to Lagrange is given by

R2f(x) =
− cos ξ

3!
x3

| cos ξ|≤1
=⇒ |R2f(x)| ≤ 1

6 |x|
3,

which is the best estimate for the error in sinx ≈ x we have so far.

7. Problems

1. Find the fourth degree Taylor polynomial T4{cosx} for the function f(x) = cosx and estimate
the error | cosx− T4{cosx}| for |x| < 1. [A]

2. Find the 4th degree Taylor polynomial T4{sinx} for the function f(x) = sinx. Estimate the
error | sinx− T4{sinx}| for |x| < 1.

3. (Computing the cube root of 9) The cube root of 8 = 2 × 2 × 2 is easy, and 9 is only one more
than 8. So we could try to compute 3

√
9 by viewing it as 3

√
8 + 1.

(a) Let f(x) = 3
√
8 + x. Find T2f(x), and estimate the error | 3

√
9− T2f(1)|. [A]

(b) Repeat part (a) for “n = 3”, i.e. compute T3f(x) and estimate | 3
√
9− T3f(1)|.

4. Follow the method of problem 3 to compute
√
10:

(a) Use Taylor’s formula with f(x) =
√
9 + x, n = 1, to calculate

√
10 approximately. Show that

the error is less than 1/216.

(b) Repeat with n = 2. Show that the error is less than 0.0003.

5. Find the eighth degree Taylor polynomial T8f(x) about the point 0 for the function f(x) =
cosx and estimate the error | cosx− T8f(x)| for |x| < 1.

Next, find the ninth degree Taylor polynomial, and estimate | cosx− T9f(x)| for |x| ≤ 1.

8. e limit as x→ 0, keeping n fixed

8.1. Little-oh. Lagrange’s formula for the remainder term lets us write a function
y = f(x) that is defined on some interval containing x = 0, in the following way

(51) f(x) = f(0) + f ′(0)x+
f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn +

f (n+1)(ξ)

(n+ 1)!
xn+1

e last term contains the ξ from Lagrange’s theorem, which depends on x, and of which
we only know that it lies between 0 and x. For many purposes it is not necessary to know
the last term in this much detail – oen it is enough to know that “in some sense” the last
term is the smallest term, in particular, as x → 0 it is much smaller than x, or x2, or, …,
or xn:
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8.2. eorem. If the n + 1st derivative f (n+1)(x) is continuous at x = 0 then the
remainder term Rnf(x) = f (n+1)(ξ)xn+1/(n+ 1)! satisfies

lim
x→0

Rnf(x)

xk
= 0

for any k = 0, 1, 2, . . . , n.

P. Since ξ lies between 0 and x, one has limx→0 f
(n+1)(ξ) = f (n+1)(0), and

therefore

lim
x→0

Rnf(x)

xk
= lim

x→0
f (n+1)(ξ)

xn+1

xk
= lim

x→0
f (n+1)(ξ) · xn+1−k = f (n+1)(0) · 0 = 0.

□

So we can rephrase (51) by saying

f(x) = f(0) + f ′(0)x+
f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + remainder

where the remainder is much smaller than xn, xn−1, …, x2, x or 1. In order to express the
condition that some function is “much smaller than xn,” at least for very small x, Landau
introduced the following notation which many people find useful.

8.3. Definition. “o(xn)” is an abbreviation for any function h(x) that satisfies

lim
x→0

h(x)

xn
= 0.

One interpretation of “h(x) = o(xn)” is that the function h(x) vanishes as x → 0, and
that it goes to zero “faster than xn.”

e definition says that o(xn) refers to any function with the indicated property.
is means that different instances of o(xn) in a formula may refer to different functions
of x (just as different+C’s in an integration may refer to different constants.) is makes
computations with lile-oh a bit different from the normal algebra that we are used to,
as we will explain below (§ 8.6). Nevertheless, once we have understood this particular
point, computations with lile-oh are much simpler than with the Lagrange remainder
term.

With the lile-oh notation we can rewrite (51) as

f(x) = f(0) + f ′(0)x+
f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + o(xn).

e nice thing about Landau’s lile-oh is that we can compute with it, as long as we obey
the following (at first sight rather strange) rules that will be proved in class

xn · o(xm) = o(xn+m)

o(xn) · o(xm) = o(xn+m)

xm = o(xn) if n < m

o(xn) + o(xm) = o(xn) if n < m

o(Cxn) = o(xn) for any constant C
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1

x
x2

x3

x4

x10
x20

Figure 4. How the powers stack up. All graphs of y = xn (n > 1) are tangent to the x-axis at
the origin. But the larger the exponent n the “flaer” the graph of y = xn is.

8.4. Example: prove one of these little-oh rules. Let’s do the first one, i.e. let’s show
that xn · o(xm) is o(xn+m) as x→ 0.

Remember, if someone writes xn ·o(xm), then the o(xm) is an abbreviation for some
function h(x) that satisfies limx→0 h(x)/x

m = 0. So the xn · o(xm) we are given here
really is an abbreviation for xnh(x). We then have

lim
x→0

xnh(x)

xn+m
= lim

x→0

h(x)

xm
= 0, since h(x) = o(xm).

8.5. Can we see that x3 = o(x2) by looking at the graphs of these functions? A
picture is of course never a proof, but have a look at figure 4 which shows us the graphs
of y = x, x2, x3, x4, x5 and x10. As we see, when x approaches 0, the graphs of higher
powers of x approach the x-axis (much?) faster than do the graphs of lower powers.

You should also have a look at figure 5 which exhibits the graphs of y = x2, as well
as several linear functions y = Cx (with C = 1,12 ,

1
5 and 1

10 .) For each of these linear
functions one has x2 < Cx if x is small enough; how small is actually small enough
depends on C . e smaller the constant C , the closer we have to keep x to 0 to be sure
that x2 is smaller than Cx. Nevertheless, no maer how small C is, the parabola will
eventually always reach the region below the line y = Cx.

8.6. Example: Little-oh arithmetic is a little funny. Both x2 and x3 are functions
that are o(x), i.e.

x2 = o(x) and x3 = o(x)

Nevertheless x2 ̸= x3. So in working with lile-oh we are giving up on the principle that
says that two things that both equal a third object must themselves be equal; in other
words, a = b and b = c implies a = c, but not when we’re using lile-ohs! We can also
put it like this: just because two quantities both are much smaller than x, they don’t have
to be equal. In particular,

we can never cancel little-ohs‼!
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y = x

y = x/2

y = x/5

y = x/10
y = x/20

y = x2

Figure 5. x2 is smaller than any multiple of x, if x is small enough. Compare the quadratic
function y = x2 with a linear function y = Cx. Their graphs are a parabola and a straight line.
Parts of the parabolamay lie above the line, but as x ↘ 0 the parabola will always duck underneath
the line.

In other words, the following is prey wrong

o(x2)− o(x2) = 0.

Why? e two o(x2)’s both refer to functions h(x) that satisfy limx→0 h(x)/x
2 = 0, but

there are many such functions, and the two o(x2)’s could be abbreviations for different
functions h(x).

Contrast this with the following computation, which at first sight looks wrong even
though it is actually right:

o(x2)− o(x2) = o(x2).

In words: if we subtract two quantities both of which are negligible compared to x2 for
small x then the result will also be negligible compared to x2 for small x.

8.7. Computations with Taylor polynomials. e following theorem is very useful
because it lets us compute Taylor polynomials of a function without differentiating it.

8.8. eorem. If f(x) and g(x) are n+ 1 times differentiable functions then

(52) Tnf(x) = Tng(x) ⇐⇒ f(x) = g(x) + o(xn).

In other words, if two functions have the same nth degree Taylor polynomial, then their
difference is much smaller than xn, at least, if x is small.

In principle the definition of Tnf(x) lets us compute as many terms of the Taylor
polynomial as we want, but in many (most) examples the computations quickly get out
of hand. e following example shows what can happen.
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8.9. How NOT to compute the Taylor polynomial of degree 12 of f(x) = 1/(1 +
x2). Diligently computing derivatives one by one we find

f(x) =
1

1 + x2
so f(0) = 1

f ′(x) =
−2x

(1 + x2)2
so f ′(0) = 0

f ′′(x) =
6x2 − 2

(1 + x2)3
so f ′′(0) = −2

f (3)(x) = 24
x− x3

(1 + x2)4
so f (3)(0) = 0

f (4)(x) = 24
1− 10x2 + 5x4

(1 + x2)5
so f (4)(0) = 24 = 4!

f (5)(x) = 240
−3x+ 10x3 − 3x5

(1 + x2)6
so f (4)(0) = 0

f (6)(x) = −720
−1 + 21x2 − 35x4 + 7x6

(1 + x2)7
so f (4)(0) = −720 = −6!

...

Here we give up – can you find f (12)(x)? Aer a lot of work all we have found is

T6

{
1

1 + x2

}
= 1− x2 + x4 − x6.

By the way,

f (12)(x) = 479001600
1− 78x2 + 715x4 − 1716x6 + 1287x8 − 286x10 + 13x12

(1 + x2)13

and 479001600 = 12!.

8.10. A mu easier approa to finding the Taylor polynomial of any degree of
f(x) = 1/(1 + x2). Start with the Geometric Series: if g(t) = 1/(1− t) then

g(t) = 1 + t+ t2 + t3 + t4 + · · ·+ tn + o(tn).

Now substitute t = −x2 in this limit,

g(−x2) = 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + o
((

−x2
)n)

Since o
((
−x2

)n)
= o(x2n) and

g(−x2) = 1

1− (−x2)
=

1

1 + x2
,

we have found
1

1 + x2
= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + o(x2n)

By eorem (8.8) this implies

T2n

{
1

1 + x2

}
= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n.
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8.11. Example of multiplication of Taylor polynomials. Finding the Taylor poly-
nomials of e2x/(1 + x) directly from the definition is another recipe for headaches. In-
stead, we should exploit our knowledge of the Taylor polynomials of both factors e2x and
1/(1 + x):

e2x = 1 + 2x+
22x2

2!
+

23x3

3!
+

24x4

4!
+ o(x4)

= 1 + 2x+ 2x2 +
4

3
x3 +

2

3
x4 + o(x4)

1

1 + x
= 1− x+ x2 − x3 + x4 + o(x4).

en multiply these two

e2x · 1

1 + x
=

(
1 + 2x+ 2x2 +

4

3
x3 +

2

3
x4 + o(x4)

)
·
(
1− x+ x2 − x3 + x4 + o(x4)

)
= 1 − x + x2 − x3 + x4 + o(x4)

+ 2x − 2x2 + 2x3 − 2x4 + o(x4)
+ 2x2 − 2x3 + 2x4 + o(x4)

+ 4
3x

3 − 4
3x

4 + o(x4)
+ 2

3x
4 + o(x4)

= 1 + x+ x2 +
1

3
x3 +

1

3
x4 + o(x4) (x→ 0)

We conclude that

T4

[ ex

1 + x

]
= 1 + x+ x2 +

1

3
x3 +

1

3
x4.

8.12. Taylor’s formula and Fibonacci numbers. e Fibonacci numbers are defined
as follows: the first two are f0 = 1 and f1 = 1, and the others are defined by the equation

(Fib) fn = fn−1 + fn−2

So

f2 = f1 + f0 = 1 + 1 = 2,

f3 = f2 + f1 = 2 + 1 = 3,

f4 = f3 + f2 = 3 + 2 = 5,

etc.

e equation (Fib) lets us compute the whole sequence of numbers, one by one, when we
are given only the first few numbers of the sequence (f0 and f1 in this case). Such an
equation for the elements of a sequence is called a recursion relation.

Now consider the function

f(x) =
1

1− x− x2
.

Let
T∞f(x) = c0 + c1x+ c2x

2 + c3x
3 + · · ·

be its Taylor series.
Due to Lagrange’s remainder theorem we have, for any n,

1

1− x− x2
= c0 + c1x+ c2x

2 + c3x
3 + · · ·+ cnx

n + o(xn) (x→ 0).
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Multiply both sides with 1− x− x2 and we get

1 = (1− x− x2) · (c0 + c1x+ c2x
2 + · · ·+ cn + o(xn)) (x→ 0)

= c0 + c1x + c2x
2 + · · · + cnx

n + o(xn)
− c0x − c1x

2 − · · · − cn−1x
n + o(xn)

− c0x
2 − · · · − cn−2x

n − o(xn) (x→ 0)

= c0 + (c1 − c0)x+ (c2 − c1 − c0)x
2 + (c3 − c2 − c1)x

3 + · · ·
· · ·+ (cn − cn−1 − cn−2)x

n + o(xn) (x→ 0)

Compare the coefficients of powers xk on both sides for k = 0, 1, . . . , n and we find

c0 = 1, c1 − c0 = 0 =⇒ c1 = c0 = 1, c2 − c1 − c0 = 0 =⇒ c2 = c1 + c0 = 2

and in general
cn − cn−1 − cn−2 = 0 =⇒ cn = cn−1 + cn−2

erefore the coefficients of the Taylor series T∞f(x) are exactly the Fibonacci numbers:

cn = fn for n = 0, 1, 2, 3, . . .

Since it is much easier to compute the Fibonacci numbers one by one than it is to compute
the derivatives of f(x) = 1/(1−x−x2), this is a beer way to compute the Taylor series
of f(x) than just directly from the definition.

8.13. More about the Fibonacci numbers. In this example we’ll see a trick that lets
us compute the Taylor series of any rational function. You already know the trick:
find the partial fraction decomposition of the given rational function. Ignoring the case
that we have quadratic expressions in the denominator, this lets us represent our rational
function as a sum of terms of the form

A

(x− a)p
.

ese are easy to differentiate any number of times, and thus they allow us to write their
Taylor series.

Let’s apply this to the function f(x) = 1/(1− x− x2) from the example 8.12. First
we factor the denominator.

1− x− x2 = 0 ⇐⇒ x2 + x− 1 = 0 ⇐⇒ x =
−1±

√
5

2
.

e number

ϕ =
1 +

√
5

2
≈ 1.618 033 988 749 89 . . .

is called the Golden Ratio. It satisfies²

ϕ+
1

ϕ
=

√
5.

e roots of our polynomial x2 + x− 1 are therefore

x− =
−1−

√
5

2
= −ϕ, x+ =

−1 +
√
5

2
=

1

ϕ
.

²To prove this, use
1

ϕ
=

2

1 +
√
5
=

2

1 +
√
5

1−
√
5

1−
√
5
=

−1 +
√
5

2
.
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and we can factor 1− x− x2 as follows

1− x− x2 = −(x2 + x− 1) = −(x− x−)(x− x+) = −(x− 1

ϕ
)(x+ ϕ).

So f(x) can be wrien as

f(x) =
1

1− x− x2
=

−1

(x− 1
ϕ )(x+ ϕ)

=
A

x− 1
ϕ

+
B

x+ ϕ

e Heaviside trick will tell us what A and B are, namely,

A =
−1

1
ϕ + ϕ

=
−1√
5
, B =

1
1
ϕ + ϕ

=
1√
5

e nth derivative of f(x) is

f (n)(x) =
A(−1)nn!(
x− 1

ϕ

)n+1 +
B(−1)nn!

(x+ ϕ)
n+1

Seing x = 0 and dividing by n! finally gives us the coefficient of xn in the Taylor series
of f(x). e result is the following formula for the nth Fibonacci number

cn =
f (n)(0)

n!
=

1

n!

A(−1)nn!(
− 1

ϕ

)n+1 +
1

n!

B(−1)nn!

(ϕ)
n+1 = −Aϕn+1 −B

(
1

ϕ

)n+1

Using the values for A and B we find

(53) fn = cn =
1√
5

{
ϕn+1 − 1

ϕn+1

}
9. Problems

Are the following statements True or False?
In mathematics this means that we should
either show that the statement always holds or
else give at least one counterexample, thereby
showing that the statement is not always
true.

1. (1 + x2)2 − 1 = o(x)?

2. (1 + x2)2 − 1 = o(x2)?

3.
√
1 + x−

√
1− x = o(x) ?

4. o(x) + o(x) = o(x)?

5. o(x)− o(x) = o(x)?

6. o(x) · o(x) = o(x) ?

7. o(x2) + o(x) = o(x2)?

8. o(x2)− o(x2) = o(x3)?

9. o(2x) = o(x) ?

10. o(x) + o(x2) = o(x)?

11. o(x) + o(x2) = o(x2)?

12. 1− cosx = o(x)?

13. Define

f(x) =

{
e−1/x2

x ̸= 0

0 x = 0

This function goes to zero very quickly as
x → 0 but is 0 only at 0. Prove that f(x) =
o(xn) for every n.

14. For which value(s) of k are the following
true (as x → 0)?

(a)
√

1 + x2 = 1 + o(xk)

(b) 3
√

1 + x2 = 1 + o(xk)

(c) 1− cos(x2) = o(xk)

(d) 1−
(
cosx

)2
= o(xk)

15. [Group Problem] Let gn be the coeffi-
cient of xn in the Taylor series of the func-
tion

g(x) =
1

2− 3x+ x2
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(a) Compute g0 and g1 directly from the def-
inition of the Taylor series.

(b) Show that the recursion relation gn =
3gn−1 − 2gn−2 holds for all n ≥ 2.

(c) Compute g2, g3, g4, g5.

(d) Using a partial fraction decomposition of
g(x) find a formula for g(n)(0), and hence
for gn. [A]

16. Answer the same questions as in the pre-
vious problem, for the functions

h(x) =
x

2− 3x+ x2

and

k(x) =
2− x

2− 3x+ x2
.

[A]

17. Let hn be the coefficient of xn in the Tay-
lor series of

h(x) =
1 + x

2− 5x+ 2x2
.

(a) Find a recursion relation for the hn.

(b) Compute h0, h1, …, h8.

(c) Derive a formula for hn valid for all n, by
using a partial fraction expansion.

(d) Is h2009 more or less than a million? A
billion?

Find the Taylor series for the following func-
tions, by substituting, adding, multiplying,
applying long division and/or differentiating
known series for 1

1+x
, ex, sinx, cosx and

lnx.

18. eat [A]

19. e1+t [A]

20. e−t2 [A]

21.
1 + t

1− t
[A]

22.
1

1 + 2t
[A]

23.

f(x) =

{ sin(x)
x

if x ̸= 0
1 if x = 0

[A]

24.
ln(1 + x)

x
[A]

25.
et

1− t
[A]

26.
1√
1− t

[A]

27.
1√

1− t2
(recommendation: use the an-

swer to problem 26) [A]

28. arcsin t
(use problem 26 again) [A]

29. Compute T4[e
−t cos t] (See example

8.11.) [A]

30. T4[e
−t sin 2t] [A]

31.
1

2− t− t2
[A]

32. 3
√

1 + 2t+ t2 [A]

33. ln(1− t2)

34. sin t cos t

10. Differentiating and Integrating Taylor polynomials

If
Tnf(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n

is the Taylor polynomial of a function y = f(x), then what is the Taylor polynomial of
its derivative f ′(x)?

10.1. eorem. e Taylor polynomial of degree n− 1 of f ′(x) is given by

Tn−1{f ′(x)} = a1 + 2a2x+ · · ·+ nanx
n−1.
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In other words, “the Taylor polynomial of the derivative is the derivative of the Taylor
polynomial.”

Wrien in terms of lile-oh notation the theorem says that if f is an n times differ-
entiable function

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + o(xn)

=⇒ f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1 + o(xn−1).

P. Let g(x) = f ′(x). en g(k)(0) = f (k+1)(0), so that

Tn−1g(x) = g(0) + g′(0)x+ g(2)(0)
x2

2!
+ · · ·+ g(n−1)(0)

xn−1

(n− 1)!

= f ′(0) + f (2)(0)x+ f (3)(0)
x2

2!
+ · · ·+ f (n)(0)

xn−1

(n− 1)!
($)

On the other hand, if Tnf(x) = a0 + a1x+ · · ·+ anx
n, then ak = f (k)(0)/k!, so that

kak =
k

k!
f (k)(0) =

f (k)(0)

(k − 1)!
.

In other words,

1 · a1 = f ′(0), 2a2 = f (2)(0), 3a3 =
f (3)(0)

2!
, etc.

So, continuing from ($) you find that

Tn−1{f ′(x)} = Tn−1g(x) = a1 + 2a2x+ · · ·+ nanx
n−1

as claimed. □

10.2. Example: Taylor polynomial of (1−x)−2. We compute the Taylor polynomial
of f(x) = 1/(1− x)2 by noting that

f(x) = F ′(x), where F (x) =
1

1− x
.

Since
Tn+1F (x) = 1 + x+ x2 + x3 + · · ·+ xn+1,

theorem 10.1 implies that

Tn

{
1

(1− x)2

}
= 1 + 2x+ 3x2 + 4x3 + · · ·+ (n+ 1)xn

10.3. Example: Taylor polynomials of arctanx. Since integration undoes differen-
tiation we can use eorem 10.1 to find the Taylor polynomials of integrals of functions
whose Taylor polynomials we already know. e following example shows that there is
one difference, namely, when we integrate a Taylor expansion we need to determine the
integration constant.

Let f(x) = arctanx. en we know that

f ′(x) =
1

1 + x2
.

By substitution of t = −x2 in the Taylor polynomial of 1/(1− t) we had found

T2n{f ′(x)} = T2n

{
1

1 + x2

}
= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n.
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is Taylor polynomial must be the derivative of T2n+1f(x), so we have

T2n+1 {arctanx} = C + x− x3

3
+
x5

5
+ · · ·+ (−1)n

x2n+1

2n+ 1
,

whereC is the integration constant. Normally we would write the integration constant at
the end, but here we have wrien it at the beginning of the sum. is makes no difference
to the sum of course, but it makes sense to do this because C is a constant, and in Taylor
polynomials we habitually write the constant term first. is shows us that to find C we
merely have to set x equal to zero:

C = arctan(0) = 0.

erefore we get

T2n+1 {arctanx} = x− x3

3
+
x5

5
+ · · ·+ (−1)n

x2n+1

2n+ 1
.

11. Problems on Integrals and Taylor Expansions

1. (a) Compute T2{sin t} and give an upper
bound for R2{sin t} for 0 ≤ t ≤ 0.5

(b) Use part (a) to approximate∫ 0.5

0

sin(x2) dx,

and give an upper bound for the error in
your approximation. [A]

2. (a) Find the second degree Taylor polyno-
mial for the function et.

(b) Use it to give an estimate for the integral∫ 1

0

ex
2

dx

(c) Suppose instead we used the 5th degree
Taylor polynomial p(t) = T5{et} for et to
give an estimate for the integral:∫ 1

0

ex
2

dx

Give an upper bound for the error:∣∣∣∣ ∫ 1

0

ex
2

dx−
∫ 1

0

p(x2) dx

∣∣∣∣

Note: You need not find p(t) or the integral∫ 1

0
p(x2) dx.

[A]

3. Approximate
∫ 0.1

0

arctanx dx and esti-

mate the error in your approximation by an-
alyzing T2f(t) and R2f(t) where f(t) =
arctan t.

4. Approximate
∫ 0.1

0

x2e−x2

dx and esti-

mate the error in your approximation by an-
alyzing T3f(t) and R3f(t) where f(t) =
te−t.

5. Estimate
∫ 0.5

0

√
1 + x4 dxwith an error

of less than 10−4.

6. Estimate
∫ 0.1

0

arctanx dx with an error

of less than 0.001.

12. Proof of eorem 8.8

12.1. Lemma. If h(x) is a k times differentiable function on some interval containing
0, and if for some integer k < n one has h(0) = h′(0) = · · · = h(k−1)(0) = 0, then

(54) lim
x→0

h(x)

xk
=
h(k)(0)

k!
.



13. PROOF OF LAGRANGE’S FORMULA FOR THE REMAINDER 93

P. Just apply l’Hopital’s rule k times. You get

lim
x→0

h(x)

xk
= 0

0= lim
x→0

h′(x)

kxk−1

= 0
0= lim

x→0

h(2)(x)

k(k − 1)xk−2

= 0
0= · · ·

· · · = lim
x→0

h(k−1)(x)

k(k − 1) · · · 2x1
= 0

0=
h(k)(0)

k(k − 1) · · · 2 · 1
□

First define the function h(x) = f(x)− g(x). If f(x) and g(x) are n times differen-
tiable, then so is h(x).

e condition Tnf(x) = Tng(x) means that

f(0) = g(0), f ′(0) = g′(0), . . . , f (n)(0) = g(n)(0),

which says, in terms of h(x),

(†) h(0) = h′(0) = h′′(0) = · · · = h(n)(0) = 0,

i.e.
Tnh(x) = 0.

We now prove the first part of the theorem: suppose f(x) and g(x) have the same nth
degree Taylor polynomial. en we have just argued that Tnh(x) = 0, and Lemma 12.1
(with k = n) says that limx→0 h(x)/x

n = 0, as claimed.
To conclude we show the converse also holds. So suppose that limx→0 h(x)/x

n = 0.
We’ll show that (†) follows. If (†) were not true then there would be a smallest integer
k ≤ n such that

h(0) = h′(0) = h′′(0) = · · · = h(k−1)(0) = 0, but h(k)(0) ̸= 0.

is runs into the following contradiction with Lemma 12.1

0 ̸= h(k)(0)

k!
= lim

x→0

h(x)

xk
= lim

x→0

h(x)

xn
· x

n

xk
= 0 · lim

x→0
xn−k︸ ︷︷ ︸
(∗)

= 0.

Here the limit (∗) exists because n ≥ k.

13. Proof of Lagrange’s formula for the remainder

For simplicity assume x > 0. Consider the function

g(t) = f(0) + f ′(0)t+
f ′′(0)

2
t2 + · · ·+ f (n)(0)

n!
tn +Ktn+1 − f(t),

where

(55) K
def
= −

f(0) + f ′(0)x+ · · ·+ f(n)(0)
n! xn − f(x)

xn+1

We have chosen this particularK to be sure that

g(x) = 0.

Just by computing the derivatives we also find that

g(0) = g′(0) = g′′(0) = · · · = g(n)(0) = 0,

while

(56) g(n+1)(t) = (n+ 1)!K − f (n+1)(t).
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We now apply Rolle’s eorem n times:
• since g(t) vanishes at t = 0 and at t = x there exists an x1 with 0 < x1 < x

such that g′(x1) = 0
• since g′(t) vanishes at t = 0 and at t = x1 there exists an x2 with 0 < x2 < x1

such that g′(x2) = 0
• since g′′(t) vanishes at t = 0 and at t = x2 there exists an x3 with 0 < x3 < x2

such that g′′(x3) = 0
...

• since g(n)(t) vanishes at t = 0 and at t = xn there exists an xn+1 with 0 <
xn+1 < xn such that g(n)(xn+1) = 0.

We now set ξ = xn+1, and observe that we have shown that g(n+1)(ξ) = 0, so by (56)
we get

K =
f (n+1)(ξ)

(n+ 1)!
.

Apply that to (55) and we finally get

f(x) = f(0) + f ′(0)x+ · · ·+ f (n)(0)

n!
xn +

f (n+1)(ξ)

(n+ 1)!
xn+1.



CHAPTER V

Sequences and Series

1. Introduction

1.1. A different point of view on Taylor expansions. In the previous chapter we
saw that certain functions, like ex can be approximated by computing their Taylor ex-
pansions,

ex = 1 + x+R1(x)

ex = 1 + x+
x2

2!
+R2(x)

ex = 1 + x+
x2

2!
+
x3

3!
+R3(x)

...

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+Rn(x).

We found a formula for the “remainder” or “error in the approximation” Rn(x), and for
fixed n we considered the rate at which this error vanishes when x → 0. In this chapter
we consider a fixed value of x and let n→ ∞. If the remainder termRn gets smaller and
eventually goes to zero when n→ ∞, then we could say that

(57) ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · ·

where the · · · indicate that we are adding infinitely many terms. For instance, if x = 1
then the above formula would say that

(58) e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
+ · · ·

In other words the number e can be wrien as the sum of infinitely many fractions. ere
are many other formulas like this, e.g. Leibniz’ formula for π/4,

(59)
π

4
= 1− 1

3
+

1

5
− 1

7
+ · · ·

which we get by seing x = 1 in the Taylor expansion for arctanx.
Such sums with infinitely many terms are called “series” and it turns out their appli-

cations go far beyond the prey formulas for famous numbers like (58) or (59).

1.2. Some sums with infinitely many terms. Before we start using infinite sums we
should take a good look at what it means to “add infinitely many numbers.” It is not at all
clear that this concept is well defined. For example, the sum

1 + 1 + 1 + 1 + · · ·

95
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clearly becomes larger and larger as we keep on adding more terms. Adding infinitely
many ones together should give us an infinitely large sum. So we might like to say that

1 + 1 + 1 + 1 + · · · = ∞.

Since we do not know what ∞ is (“∞ is not a number”), the sum 1 + 1 + 1 + · · · is not
defined, or “does not exist.”

is may seem straightforward and it looks like this is the only possible way to con-
sider the sum 1 + 1 + · · · . e following sum is trickier:

1− 1 + 1− 1 + 1− 1 + 1− 1 + 1 · · ·
If we group the terms like this

(1− 1) + (1− 1) + (1− 1) + (1− 1) + · · ·
then 1− 1 = 0 tells us that the sum should be

(60) (1− 1) + (1− 1) + (1− 1) + (1− 1) + · · · = 0 + 0 + 0 + · · · = 0.

On the other hand, if we group the terms according to

1 −1 + 1︸ ︷︷ ︸
=0

−1 + 1︸ ︷︷ ︸
=0

−1 + 1︸ ︷︷ ︸
=0

− · · ·

and we get

1 −1 + 1︸ ︷︷ ︸ −1 + 1︸ ︷︷ ︸ −1 + 1︸ ︷︷ ︸ − · · · = 1 + 0 + 0 + 0 + · · · = 1.(61)

Look carefully at (60) and (61): depending on how we group the terms the sum can be
either 0 or 1! Clearly the infinite sum 1−1+1−1+1−· · · does not make a lot of sense.

Apparently things that we always do with finite sums, like rearranging the terms, or
changing the order in which we add the terms, do not work for infinite sums.

We are le with the question which infinite sums can we add? Our approach will be
to think of an infinite sum as the limit of finite sums. For example, to add the sum (58)
we consider the results of adding the first few terms:

1 = 1

1 +
1

1!
= 2

1 +
1

1!
+

1

2!
= 2.5

1 +
1

1!
+

1

2!
+

1

3!
= 2.666 . . .

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
= 2.7083333 . . .

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
= 2.716666 . . .

We see that as we include more terms in the sum its value appears to get closer to a
specific value. is is how we will interpret “the sum of infinitely many numbers”: the
whole sum is the limit for n → ∞ of what we get by adding the first n terms. More
precisely, if we write sn for the sum of the first n terms in an infinite sum, then we will
define the entire sum to be limn→∞ sn. e next two sections go into the details of these
definitions. First we discuss “the limit for n→ ∞” of certain quantities like sn (which we
will call “sequences”). e discussion is similar to that of limits of functions limx→a f(x),
except that now the variable x is replaced by a variable n that only takes integer values.
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Once we have a beer understanding of limits of sequences, we return to infinite sums
in Section 4.

2. Sequences

We shall call a sequence any ordered sequence of numbers a1, a2, a3, . . .. For each
positive integer n we have to specify a number an. It sometimes helps to think of a se-
quence as a function a = a(n)whose domain consists only of the integers {1, 2, 3, 4, . . .},
and for which we use subscript notation an instead of the more common notation a(n)
for functions.

2.1. Examples of sequences.

definition first few numbers in the sequence

an = n 1, 2, 3, 4, . . .

bn = 0 0, 0, 0, 0, . . .

cn = 1
n

1
1 ,

1
2 ,

1
3 ,

1
4 , . . .

dn =
(
− 1

3

)n − 1
3 ,

1
9 ,−

1
27 ,

1
81 , . . .

En = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
1, 2, 21

2 , 2
2
3 , 2

17
24 , 2

43
60 , . . .

Sn = x− x3

3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
x, x− x3

3!
, x− x3

3!
+
x5

5!
, . . .

e last two sequences are derived from the Taylor polynomials of ex (at x = 1) and sinx
(at any x). e last example Sn really is a sequence of functions, i.e. the nth number in
the sequence depends on x.

2.2. Definition. A sequence of numbers (an)∞n=1 converges to a limit L, if for every
ϵ > 0 there is a number Nϵ such that for all n > Nϵ one has

|an − L| < ϵ.

One writes

lim
n→∞

an = L

2.3. Example: lim
n→∞

1

n
= 0. e sequence cn = 1/n converges to 0. To prove this

let ϵ > 0 be given. We have to find an Nϵ such that

|cn| < ϵ for all n > Nϵ.

e cn are all positive, so |cn| = cn, and hence

|cn| < ϵ ⇐⇒ 1

n
< ϵ ⇐⇒ n >

1

ϵ
,

which prompts us to chooseNϵ = 1/ϵ. e calculation we just did shows that if n > 1
ϵ =

Nϵ, then |cn| < ϵ. at means that limn→∞ cn = 0.
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2.4. Example: lim
n→∞

an = 0 if |a| < 1. As in the previous example one can show

that limn→∞ 2−n = 0, and more generally, that for any constant a with−1 < a < 1 one
has

lim
n→∞

an = 0.

Indeed,
|an| = |a|n = en ln |a| < ϵ

holds if and only if
n ln |a| < ln ϵ.

Since |a| < 1 we have ln |a| < 0 so that dividing by ln |a| reverses the inequality, with
result

|an| < ϵ ⇐⇒ n >
ln ϵ
ln |a|

e choice Nϵ = (ln ϵ)/(ln |a|) therefore guarantees that |an| < ϵ whenever n > Nϵ.
e case |a| ≥ 1 (without proo). If a > 1 then the quantity an grows larger with

increasing n, and the limit limn→∞ an does not exist.
When a ≤ −1 then the sequence of numbers 1, a, a2, a3, . . . flip-flops between posi-

tive and negative numbers, while the absolute value |an| = |a|n either becomes infinitely
large (when a < −1), or else remains exactly equal to 1 (when a = −1). In either case
the limit limn→∞ an does not exist.

Finally, if a = +1, then the sequence 1, a, a2, . . . is very simple, namely, an = 1 for
all n. Clearly in this case limn→∞ an = limn→∞ 1 = 1.

One can show that the operation of taking limits of sequences obeys the same rules
as taking limits of functions.

2.5. eorem. If
lim

n→∞
an = A and lim

n→∞
bn = B,

then one has

lim
n→∞

an ± bn = A±B

lim
n→∞

anbn = AB

lim
n→∞

an
bn

=
A

B
(assuming B ̸= 0).

e so-called “sandwich theorem” for ordinary limits also applies to limits of se-
quences. Namely, one has

2.6. Sandwi theorem. If an is a sequence which satisfies bn < an < cn for all n,
and if limn→∞ bn = limn→∞ cn = 0, then limn→∞ an = 0.

Finally, one can show this:

2.7. eorem. If f(x) is a function which is continuous at x = A, and an is a sequence
which converges to A, then

lim
n→∞

f(an) = f
(

lim
n→∞

an

)
= f(A).
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2.8. Example. Since limn→∞ 1/n = 0 and since f(x) = cosx is continuous at
x = 0 we have

lim
n→∞

cos
1

n
= cos

(
lim

n→∞

1

n

)
= cos 0 = 1.

2.9. Limits of rational functions. You can compute the limit of any rational function
of n by dividing numerator and denominator by the highest occurring power of n. Here
is an example:

lim
n→∞

2n2 − 1

n2 + 3n
= lim

n→∞

2−
(
1
n

)2
1 + 3 · 1

n

=
2− 02

1 + 3 · 02
= 2.

2.10. Example. Application of the Sandwi theorem. We show that limn→∞
1√

n2+1
=

0 in two different ways.
Method 1: Since

√
n2 + 1 >

√
n2 = n we have

0 <
1√

n2 + 1
<

1

n
.

esequences “0” and 1
n both go to zero, so the Sandwich theorem implies that 1/

√
n2 + 1

also goes to zero.
Method 2: Divide numerator and denominator both by n to get

an =
1/n√

1 + (1/n)2
= f

(
1

n

)
, where f(x) =

x√
1 + x2

.

Since f(x) is continuous at x = 0, and since 1
n → 0 as n → ∞, we conclude that an

converges to 0. You could write the computation like this:

lim
n→∞

an = lim
n→∞

f( 1n ) = f
(
lim

n→∞
1
n

)
= f(0) = 0

( we would have to
say what f is

)
or like this:

lim
n→∞

an = lim
n→∞

1/n√
1 + (1/n)2

=
limn→∞ 1/n√

limn→∞ 1 + (1/n)2
=

0√
1 + 02

= 0.

2.11. Example: factorial beats any exponential. Factorials show up in Taylor’s for-
mula, so it is useful to know that n! goes to infinity much faster than 2n or 3n or 100n,
or any xn. In this example we’ll show that

(62) lim
n→∞

xn

n!
= 0 for any real number x.

If |x| ≤ 1 then this is easy, for we would have |xn| ≤ 1 for all n ≥ 0 and thus∣∣∣∣xnn!
∣∣∣∣ ≤ 1

n!
=

1

1 · 2 · 3 · · · (n− 1) · n︸ ︷︷ ︸
n−1 factors

≤ 1

1 · 2 · 2 · · · 2 · 2︸ ︷︷ ︸
n−1 factors

=
1

2n−1
.

Wrien without the absolute values this says

−
(1
2

)n−1

≤ xn

n!
≤

(1
2

)n−1

.

Both (1/2)n−1 and −(1/2)n−1 go to 0 as n→ ∞, so the Sandwich eorem applies and
tells us that (62) is true, at least when |x| ≤ 1.
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If |x| > 1 then we need a slightly longer argument. For arbitrary x we first choose
an integer N ≥ 2x. en for all n ≥ N one has

xn

n!
≤ |x| · |x| · · · |x| · |x|

1 · 2 · 3 · · ·n
use |x| ≤ N

2

≤ N ·N ·N · · ·N ·N
1 · 2 · 3 · · ·n

(
1

2

)n

Split fraction into two parts, one containing the firstN factors from both numerator and
denominator, the other the remaining factors:

N

1
· N
2

· N
3
· · · N

N︸ ︷︷ ︸
=NN/N !

· N

N + 1
· · · N

n
=
NN

N !
· N

N + 1︸ ︷︷ ︸
<1

· N

N + 2︸ ︷︷ ︸
<1

· · · N
n︸︷︷︸
<1

≤ NN

N !

Hence we have ∣∣∣∣xnn!
∣∣∣∣ ≤ NN

N !

(
1

2

)n

if 2|x| ≤ N and n ≥ N .
Here everything is independent of n, except for the last factor ( 12 )

n which causes the
whole thing to converge to zero as n→ ∞.

3. Problems on Limits of Sequences

Compute the following limits:

1. lim
n→∞

n

2n− 3
[A]

2. lim
n→∞

n2

2n− 3
[A]

3. lim
n→∞

n2

2n2 + n− 3
[A]

4. lim
n→∞

2n + 1

1− 2n
[A]

5. lim
n→∞

2n + 1

1− 3n
[A]

6. lim
n→∞

en + 1

1− 2n
[A]

7. lim
n→∞

n2

(1.01)n
[A]

8. lim
n→∞

1000n

n!
[A]

9. lim
n→∞

n! + 1

(n+ 1)!
[A]

10. [Group Problem]Compute lim
n→∞

(n!)2

(2n)!
[Hint: write out all the factors in numerator
and denominator.]

11. [Group Problem] Let fn be the nth Fi-
bonacci number. Compute

lim
n→∞

fn
fn−1

[A]

4. Series

4.1. Definitions. A series is an infinite sum:

a1 + a2 + a3 + · · · =
∞∑
k=1

ak.

e numbers a1, a2, . . . are the terms of the sum. e result of adding the first n terms,

sn = a1 + a2 + · · ·+ an
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is called the nth partial sum. e partial sums form themselves a sequence: s1, s2, s3, . . .
obtained by adding one extra term each time. Our plan, formulated in the beginning of
this chapter, was to say that we have added the entire series provided we can take the
limit of the partial sums sn. us, by definition, we say the series converges to a number
S, which we call the sum of the series, if limn→∞ sn exists, and if

S = lim
n→∞

sn

i.e. if
S = lim

n→∞
a1 + a2 + · · ·+ an.

If the limit does not exist, then we say the series diverges. If the limit does exist, then we
write either

S = a1 + a2 + a3 + · · ·
or

S =
∞∑
k=1

ak.

4.2. Examples. It is difficult to find precise formulas for the partial sums sn that
different series can produce, and this limits the number of series that we can add “from
scratch.” In this section we present the few examples where some algebraic trick allows
us to simplify the sum that defines sn and then to take the limit of sn as n→ ∞.

e geometric series. e geometric sum formula is one formula that lets us add par-
tial sums of a particular series. For example, it tells us that

1 +
(
1
2

)
+
(
1
2

)2
+
(
1
2

)3
+ · · ·+

(
1
2

)n
=

1−
(
1
2

)n+1

1− 1
2

= 2
(
1− 1

2n+1

)
= 2− 1

2n
.

Since limn→∞
1
2n = 0, we find

1 + 1
2 + 1

4 + 1
8 + 1

16 + · · · = 2.

Telescoping series. It turns out that

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n(n+ 1)
+ · · · = 1.

ere is a trick that allows us to compute the nth partial sum. e trick begins with the
miraculous observation that

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

is allows us to rewrite the nth partial sum as

sn =
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n(n+ 1)

=
(1
1
− 1

2

)
+
(1
2
− 1

3

)
+
(1
3
− 1

4

)
+ · · ·+

( 1
n
− 1

n+ 1

)
=

1

1
−1

2
+

1

2︸ ︷︷ ︸
=0

−1

3
+

1

3︸ ︷︷ ︸
=0

+ · · · − 1

n
+

1

n︸ ︷︷ ︸
=0

− 1

n+ 1

= 1− 1

n+ 1
.
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is sum is called “telescoping” because in the last step of the computation almost all
terms cancel and the whole sum collapses like a telescope to just two terms.

Once we have the formula for sn it is easy to compute the sum:

S =
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·

= lim
n→∞

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n(n+ 1)

= lim
n→∞

1− 1

n+ 1
= 1.

4.3. Properties of series. Just with limits, derivatives, integrals and sequences there
are a number of properties that make it easier to work with series.

4.4. eorem. If the two series

A =
∞∑
k=1

ak = a1 + a2 + a3 + · · · and B =
∞∑
k=1

bk = b1 + b2 + b3 + · · ·

both converge, then so does the series
∞∑
k=1

(
ak + bk

)
= (a1 + b1) + (a2 + b2) + (a3 + b3) + · · · .

Moreover, one has

(63)
∞∑
k=1

(
ak + bk

)
= A+B, i.e.

∞∑
k=1

(
ak + bk

)
=

∞∑
k=1

ak +

∞∑
k=1

bk.

If c is any constant then

ca1 + ca2 + ca3 + · · · = c
(
a1 + a2 + a3 + · · ·

)
i.e.

∞∑
k=1

cak = c
∞∑
k=1

ak.

Another way to write equation (63) is

(a1 + b1) + (a2 + b2) + (a3 + b3) + · · ·
=

(
a1 + a2 + a3 + · · ·

)
+

(
b1 + b2 + b3 + · · ·

)
.

Rearranging terms in a series. Note that to get the le hand side from the right hand
side we have to switch around infinitely many terms! is may not seem very surprising,
but it turns out that if one digs deeper into the subject of series, examples of series show
up where switching infinitely many terms around actually changes the sum.

A simplest example of this is the sum 1− 1 + 1− 1 . . . from the introduction. Here
we could first try to add all the positive terms (1 + 1 + 1 + · · · ) and then the negative
terms (−1− 1− 1 · · · ), and finally combine them:

1− 1 + 1− 1 + 1− 1 =
(
1 + 1 + 1 + · · ·

)
+
(
−1− 1− 1 · · ·

)
= ∞−∞?

is clearly does not make a lot of sense. But, since the series in this example does not
converge, that was perhaps to be expected.
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e following example however presents a convergent series whose sum changes if
one rearranges the terms. If we take Leibniz’ formula for ln 2 (obtained from the Taylor
expansion for ln(1 + x); see §7 below),

(64) 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · = ln 2

and rearrange the terms so that we add two positive terms and then one negative term at
a time we get

(65) 1 +
1

3
−1

2
+
1

5
+

1

7
−1

4
+
1

9
+

1

11
−1

6
+ · · · = 3

2
ln 2

is fact is not obvious; the explanation would take us beyond the scope of this course,
although it does not require any ideas that a student in math 222 would not be familiar
with.

5. Convergence of Taylor Series

We now return to the study of Taylor series and their convergence.
Let y = f(x) be some function defined on an interval a < x < b containing 0. For

any number x the function defines a series

(66) f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 + · · ·

which is called the Taylor series of f . is raises two questions:

• Does the Taylor series converge?
• If the Taylor series converges, then what is its sum?

Since each different choice of x leads to a different series, the answer to these questions
depends on x.

ere is no easy and general criterion that we could apply to a given function f(x)
to find out if its Taylor series converges for any particular x (except x = 0 – what does
the Taylor series look like when we set x = 0?). On the other hand, it turns out that
for many functions the Taylor series does converge to f(x) for all x in some interval
−ρ < x < ρ. In this section we will check this for two examples: the “geometric series”
and the exponential function.

But first, before we do the examples, a word about how we will prove that Taylor
series converges: instead of taking the limit of the Tnf(x) as n → ∞, we are usually
beer off looking at the remainder term. Since Tnf(x) = f(x)−Rnf(x) we have

lim
n→∞

Tnf(x) = f(x) ⇐⇒ lim
n→∞

Rnf(x) = 0

So, to check that the Taylor series of f(x) converges to f(x) we must show that the
remainder term Rnf(x) goes to zero as n→ ∞.
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5.1. e G  converges for −1 < x < 1. If f(x) = 1/(1 − x) then
by the formula for the Geometric Sum we have

f(x) =
1

1− x

=
1− xn+1 + xn+1

1− x

= 1 + x+ x2 + · · ·+ xn +
xn+1

1− x

= Tnf(x) +
xn+1

1− x
.

We are not dividing by zero since |x| < 1 so that 1− x ̸= 0. e remainder term is

Rnf(x) =
xn+1

1− x
.

Since |x| < 1 we have

lim
n→∞

|Rnf(x)| = lim
n→∞

|x|n+1

|1− x|
=

lim
n→∞

|x|n+1

|1− x|
=

0

|1− x|
= 0.

us we have shown that the series converges for all −1 < x < 1, i.e.

1

1− x
= lim

n→∞

{
1 + x+ x2 + · · ·+ xn

}
= 1 + x+ x2 + x3 + · · · =

∞∑
k=0

xk.

5.2. Convergence of the exponential Taylor series. Let f(x) = ex. It turns out the
Taylor series of ex converges to ex for every value of x. Here’s why: we had found that

Tne
x = 1 + x+

x2

2!
+ · · ·+ xn

n!
,

and by Lagrange’s formula the remainder is given by

Rne
x = eξ

xn+1

(n+ 1)!
,

where ξ is some number between 0 and x.
If x > 0 then 0 < ξ < x so that eξ ≤ ex; if x < 0 then x < ξ < 0 implies that

eξ < e0 = 1. Either way one has eξ ≤ e|x|, and thus

|Rne
x| ≤ e|x|

|x|n+1

(n+ 1)!
.

We have shown before that limn→∞ xn+1/(n+1)! = 0, so the Sandwich theorem again
implies that limn→∞ |Rne

x| = 0.
Conclusion:

ex = lim
n→∞

{
1 + x+

x2

2!
+ · · ·+ xn

n!

}
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

Do Taylor series always converge? And if the series of some function y = f(x)
converges, must it then converge to f(x)? Although the Taylor series of almost any
function we run into will converge to the function itself, the following example shows
that it doesn’t have to be so.
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5.3. e day that all Chemistry stood still. e rate at which a chemical reaction
“A→B” proceeds depends among other things on the temperature at which the reaction
is taking place. is dependence is described by the Arrhenius lawwhich states that the
rate at which a reaction takes place is proportional to

f(T ) = e−
∆E
kT

where ∆E is the amount of energy involved in each reaction, k is Boltzmann’s constant,
and T is the temperature in degrees Kelvin. If we ignore the constants∆E and k (i.e. if we
set∆E/k equal to one by choosing the right units) then the reaction rate is proportional
to

f(T ) = e−1/T .

If we have to deal with reactions at low temperatures we might be inclined to replace this
function with its Taylor series at T = 0, or at least the first non-zero term in this series.
If we were to do this we would be in for a surprise. To see what happens, let’s look at the
following function,

f(x) =

{
e−1/x x > 0

0 x ≤ 0

is function goes to zero very quickly as x→ 0. In fact one has

lim
x↘0

f(x)

xn
= lim

x↘0

e−1/x

xn
= lim

t→∞
tne−t = 0. (set t = 1/x)

is implies
f(x) = o(xn) (x→ 0)

for any n = 1, 2, 3 . . .. As x→ 0, this function vanishes faster than any power of x.

The Taylor series
at this point does
not converge to f

1 2 3

y = e−1/x

Figure 1. An innocent looking function with an unexpected Taylor series. See example 5.3 which
shows that even when a Taylor series of some function f converges we can’t be sure that it con-
verges to f – it could converge to a different function.

If we try to compute the Taylor series of f we need its derivatives at x = 0 of all
orders. ese can be computed (not easily), and the result turns out to be that all deriva-
tives of f vanish at x = 0,

f(0) = f ′(0) = f ′′(0) = f (3)(0) = · · · = 0.

e Taylor series of f is therefore

T∞f(x) = 0 + 0 · x+ 0 · x
2

2!
+ 0 · x

3

3!
+ · · · = 0.

Clearly this series converges (all terms are zero, aer all), but instead of converging to
the function f(x) we started with, it converges to the function g(x) = 0.

What does this mean for the chemical reaction rates and Arrhenius’ law? Wewanted
to “simplify” the Arrhenius law by computing the Taylor series of f(T ) at T = 0, but we
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have just seen that all terms in this series are zero. erefore replacing the Arrhenius
reaction rate by its Taylor series at T = 0 has the effect of seing all reaction rates equal
to zero.

6. Problems on Convergence of Taylor Series

1. Prove that the Taylor series for
f(x) = cosx converges to f(x) for
all real numbers x (by showing that the
remainder term goes to zero as n→ ∞).
[A]

2. Prove that the Taylor series for
g(x) = sin(2x) converges to g(x) for
all real numbers x . [A]

3. Prove that the Taylor series for
h(x) = cosh(x) converges to h(x) for
all real numbers x .
4. Prove that the Taylor series for
k(x) = e2x+3 converges to k(x) for all
real numbers x .
5. Prove that the Taylor series for
ℓ(x) = cos

(
x − π

7

)
converges to ℓ(x)

for all real numbers x.
6. [Group Problem] If the Taylor se-
ries of a function y = f(x) converges
for all x, does it have to converge to
f(x), or could it converge to some other
function? [A]

7. For which real numbers x does the

Taylor series of f(x) =
1

1− x
converge

to f(x)? [A]

8. For which real numbers x does the

Taylor series of f(x) =
1

1− x2
con-

verge to f(x)? (hint: a substitution may
help.) [A]

9. For which real numbers x does the

Taylor series of f(x) =
1

1 + x2
con-

verge to f(x)? [A]

10. For which real numbers x does the

Taylor series of f(x) =
1

3 + 2x
con-

verge to f(x)? [A]

11. For which real numbers x does the
Taylor series of f(x) = 1

2−5x converge
to f(x)? [A]

12. [Group Problem] For which real
numbers x does the Taylor series of

f(x) =
1

2− x− x2
converge to f(x)?

(hint: use  and the Geometric Series
to find the remainder term.)

13. Show that the Taylor series for
f(x) = ln(1+x) converges when−1 <
x < 1 by integrating the Geometric Se-
ries

1

1 + t
= 1− t+ t2 − t3 + · · ·

+ (−1)ntn + (−1)n+1 t
n+1

1 + t

from t = 0 to t = x. (See §7.)

14. Show that the Taylor series for
f(x) = e−x2

converges for all real num-
bers x. (Set t = −x2 in the Taylor series
with remainder for et.)

15. Show that the Taylor series for
f(x) = sin(x4) converges for all real
numbers x. (Set t = x4 in the Taylor
series with remainder for sin t.)

16. Show that the Taylor series for
f(x) = 1/(1+x3) converges whenever
−1 < x < 1 (Use the G S
.)

17. For which x does the Taylor series of
f(x) = 2/(1 + 4x2) converge? (Again,
use the G S.)
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7. Leibniz’ formulas for ln 2 and π/4

Leibniz showed that
1

1
− 1

2
+

1

3
− 1

4
+

1

5
− · · · = ln 2

and
1

1
− 1

3
+

1

5
− 1

7
+

1

9
− · · · = π

4
Both formulas arise by seing x = 1 in the Taylor series for

ln(1 + x) = x− x2

2
+
x3

3
+
x4

4
− · · ·

arctanx = x− x3

3
+
x5

5
+
x7

7
− · · ·

is is only justified if we show that the series actually converge, which we’ll do here, at
least for the first of these two formulas. e proof of the second is similar. e following
is not Leibniz’ original proof.

We begin with the geometric sum

1− x+ x2 − x3 + · · ·+ (−1)nxn =
1

1 + x
+

(−1)n+1xn+1

1 + x

en we integrate both sides from x = 0 to x = 1 and get

1

1
− 1

2
+

1

3
− · · ·+ (−1)n

1

n+ 1
=

∫ 1

0

dx
1 + x

+ (−1)n+1

∫ 1

0

xn+1dx
1 + x

= ln 2 + (−1)n+1

∫ 1

0

xn+1dx
1 + x

(Use
∫ 1

0
xkdx = 1

k+1 .) Instead of computing the last integral we estimate it by saying

0 ≤ xn+1

1 + x
≤ xn+1 =⇒ 0 ≤

∫ 1

0

xn+1dx
1 + x

≤
∫ 1

0

xn+1dx =
1

n+ 2

Hence

lim
n→∞

(−1)n+1

∫ 1

0

xn+1dx
1 + x

= 0,

and we get

lim
n→∞

1

1
− 1

2
+

1

3
− · · ·+ (−1)n

1

n+ 1
= ln 2 + lim

n→∞
(−1)n+1

∫ 1

0

xn+1dx
1 + x

= ln 2.

8. Problems

1. [Group Problem] The error function
from statistics is defined by

erf(x) =
1√
π

∫ x

0

e−t2/2 dt

(a) Find the Taylor series of the error func-
tion from the Taylor series of f(r) = er (set
r = −t2/2 and integrate).

(b) Estimate the error term and show that
the Taylor series of the error function con-
verges for all real x.

2. [Group Problem] Prove Leibniz’ for-
mula for

π

4
by mimicking the proof in sec-

tion 7. Specifically, find a formula for the
remainder in :

1

1 + t2
= 1− t2+ · · ·+(−1)nt2n+R2n(t)

and integrate this from t = 0 to t = 1.





CHAPTER VI

Vectors

1. Introduction to vectors

1.1. Definition. A vector is a column of two, three, or more numbers, wrien as

a⃗ =

(
a1
a2

)
or a⃗ =

a1a2
a3

 or a⃗ =

a1...
an

 .

e length of a vector a⃗ =
(

a1
a2
a3

)
is defined by

∥a⃗∥ =

∥∥∥∥∥∥
a1a2
a3

∥∥∥∥∥∥ =
√
a21 + a22 + a23.

We will always deal with either the two or three dimensional cases, in other words, the
cases n = 2 or n = 3, respectively. For these cases there is a geometric description
of vectors which is very useful. In fact, the two and three dimensional theories have
their origins in physics and geometry. In higher dimensions the geometric description
fails, simply because we cannot visualize a four dimensional space, let alone a higher di-
mensional space. Instead of a geometric description of vectors there is an abstract theory
called Linear Algebrawhich deals with “vector spaces” of any dimension (even infinite!).
is theory of vectors in higher dimensional spaces is very useful in science, engineering
and economics. You can learn about it in courses like  320 or 340/341.

1.2. Basic arithmetic of vectors. You can add and subtract vectors, and you can
multiply them with arbitrary real numbers. this section tells you how.

e sum of two vectors is defined by

(67)
(
a1
a2

)
+

(
b1
b2

)
=

(
a1 + b1
a2 + b2

)
,

and a1a2
a3

+

b1b2
b3

 =

a1 + b1
a2 + b2
a3 + b3

 .

e zero vector is defined by

0⃗ =

(
0
0

)
or 0⃗ =

0
0
0

 .

It has the property that
a⃗+ 0⃗ = 0⃗+ a⃗ = a⃗

no maer what the vector a⃗ is.

109
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You can multiply a vector a⃗ =

a1a2
a3

 with a real number t according to the rule

ta⃗ =

ta1ta2
ta3

 .

In particular, “minus a vector” is defined by

−a⃗ = (−1)a⃗ =

−a1
−a2
−a3

 .

e difference of two vectors is defined by

a⃗− b⃗ = a⃗+ (−b⃗).

So, to subtract two vectors you subtract their components,

a⃗− b⃗ =

a1a2
a3

−

b1b2
b3

 =

a1 − b1
a2 − b2
a3 − b3


1.3. Some GOOD examples.(

2
3

)
+

(
−3
π

)
=

(
−1

3 + π

)
2

(
1
0

)
+ 3

(
0
1

)
=

(
2
3

)
(

1
0
3

)
−
(

−1
12√
2

)
=

(
2

−12

3−
√
2

)
a
(

1
0
0

)
+ b

(
0
1
0

)
+ c

(
0
0
1

)
=

(
a
b
c

)
0 ·

(
12
√
39

π2 − ln 3

)
=

(
0
0

)
= 0⃗

(
t+ t2

1− t2

)
= (1 + t)

(
t

1− t

)
1.4. Two very, very BAD examples. Vectors must have the same size to be added,

therefore (
2
3

)
+

1
3
2

 = undefined‼!

Vectors and numbers are different things, so an equation like

a⃗ = 3 is nonsense!

is equation says that some vector (a⃗) is equal to some number (in this case: 3). Vectors
and numbers are never equal!

1.5. Algebraic properties of vector addition and multiplication. Addition of vec-
tors and multiplication of numbers and vectors were defined in such a way that the fol-
lowing always hold for any vectors a⃗, b⃗, c⃗ (of the same size) and any real numbers s, t

a⃗+ b⃗ = b⃗+ a⃗ [vector addition is commutative](68a)

a⃗+ (⃗b+ c⃗) = (a⃗+ b⃗) + c⃗ [vector addition is associative](68b)

t(a⃗+ b⃗) = ta⃗+ t⃗b [first distributive property](68c)

(s+ t)a⃗ = sa⃗+ ta⃗ [second distributive property](68d)
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Prove (68a). Let a⃗ =
(

a1
a2
a3

)
and b⃗ =

(
b1
b2
b3

)
be two vectors, and consider both possible

ways of adding them:a1a2
a3

+

b1b2
b3

 =

a1 + b1
a2 + b2
a3 + b3

 and

b1b2
b3

+

a1a2
a3

 =

b1 + a1
b2 + a2
b3 + a3


We know (or we have assumed long ago) that addition of real numbers is commutative,
so that a1 + b1 = b1 + a1, etc. erefore

a⃗+ b⃗ =

(
a1+b1
a2+b2
a3+b3

)
=

(
b1+a1

b2+a2

b3+a3

)
= b⃗+ a⃗.

is proves (68a).

e properties (68a), …, (68d), are used to facilitate the manipulation of vectors. e
following are examples of how the arithmetic of vectors works.

1.6. Example. If v⃗ and w⃗ are two vectors, we define

a⃗ = 2v⃗ + 3w⃗, b⃗ = −v⃗ + w⃗.

1.6.1. Problem. Compute a⃗+ b⃗ and 2a⃗− 3b⃗ in terms of v⃗ and w⃗.
Solution:

a⃗+ b⃗ = (2v⃗ + 3w⃗) + (−v⃗ + w⃗) = (2− 1)v⃗ + (3 + 1)w⃗ = v⃗ + 4w⃗

2a⃗− 3b⃗ = 2(2v⃗ + 3w⃗)− 3(−v⃗ + w⃗) = 4w⃗ + 6w⃗ + 3v⃗ − 3w⃗ = 7v⃗ + 3w⃗.

1.6.2. Problem. Find s, t so that sa⃗+ t⃗b = v⃗.
Solution: Simplifying sa⃗+ t⃗b you find

sa⃗+ t⃗b = s(2v⃗ + 3w⃗) + t(−v⃗ + w⃗) = (2s− t)v⃗ + (3s+ t)w⃗.

Oneway to ensure that sa⃗+ t⃗b = v⃗ holds is therefore to choose s and t to be the solutions
of

2s− t = 1

3s+ t = 0

e second equation says t = −3s. e first equation then leads to 2s+3s = 1, i.e. s = 1
5 .

Since t = −3s we get t = −3
5 . e solution we have found is therefore

1
5 a⃗− 3

5 b⃗ = v⃗.

2. Geometric description of vectors

Vectors originally appeared in physics, where they represented forces: a force acting
on some object has a magnitude and a direction. us a force can be thought of as an
arrow in the direction of the force, where the length of the arrow indicates how strong
the force is (how hard it pushes or pulls).

So we will think of vectors as arrows: if you specify two points P and Q, then the
arrow pointing from P to Q is a vector and we denote this vector by

−−→
PQ.

e precise mathematical definition is as follows:
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2.1. Definition. For any pair of points P andQwhose coordinates are (p1, p2, p3) and
(q1, q2, q3) one defines a vector

−−→
PQ by

−−→
PQ =

q1 − p1
q2 − p2
q3 − p3

 .

If the initial point of an arrow is the origin O, and the final point is any point Q, then the
vector

−−→
OQ is called the position vector of the point Q.

p⃗ q⃗

P
Q−−→

PQ

q1 − p1

q 2
−
p
2

P

Q

−−→
PQ

If p⃗ and q⃗ are the position vectors of P and Q, then one can write
−−→
PQ as

−−→
PQ =

q1q2
q3

−

p1p2
p3

 = q⃗ − p⃗.

For plane vectors we define
−−→
PQ similarly, namely,

−−→
PQ =

( q1−p1
q2−p2

)
. e old formula for

the distance between two points P and Q in the plane

distance from P to Q =
√
(q1 − p1)2 + (q2 − p2)2

says that the length of the vector
−−→
PQ is just the distance between the points P andQ, i.e.

distance from P to Q =
∥∥∥−−→PQ∥∥∥ .

is formula is also valid if P and Q are points in space, in which case it is given by

distance from P to Q =
√
(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2.

a⃗

a1

a2

a3

A

O

a⃗

a1

a2

O

A

Figure 1. Position vectors in the plane and in space
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2.2. Example. epointP has coordinates (2, 3); the pointQ has coordinates (8, 6).
e vector

−−→
PQ is therefore

−−→
PQ =

(
8− 2
6− 3

)
=

(
6
3

)
.

is vector is the position vector of the point R whose coordinates are (6, 3). us

−−→
PQ =

−−→
OR =

(
6
3

)
.

e distance from P to Q is the length of the vector
−−→
PQ, i.e.

distance P to Q =

∥∥∥∥(63
)∥∥∥∥ =

√
62 + 32 = 3

√
5.

−−→
PQ

−−→
OR

O

P R

Q

2 4 6 8

2

4

6

2.3. Example. Find the distance between the pointsA andB whose position vectors

are a⃗ =
(

1
1
0

)
and b⃗ =

(
0
1
1

)
respectively.

Solution: One has

distance A to B = ∥
−−→
AB∥ = ∥b⃗− a⃗∥ =

∥∥∥∥∥∥
−1

0
1

∥∥∥∥∥∥ =
√
(−1)2 + 02 + 12 =

√
2

2.4. Geometric interpretation of vector addition and multiplication. Suppose you
have two vectors a⃗ and b⃗. Consider them as position vectors, i.e. represent them by
vectors that have the origin as initial point:

a⃗ =
−→
OA, b⃗ =

−−→
OB.

en the origin and the three endpoints of the vectors a⃗, b⃗ and a⃗+b⃗ form a parallelogram.
See figure 2.

To multiply a vector a⃗ with a real number t you multiply its length with |t|; if t < 0
you reverse the direction of a⃗.

a⃗
b⃗

a⃗+ b⃗

a⃗+ b⃗

a⃗

b⃗

z

a⃗

b⃗

a⃗+ b⃗

x

y

Figure 2. Two ways of adding plane vectors, and an addition of space vectors

2.5. Example. In example 1.6 we assumed two vectors v⃗ and w⃗were given, and then
defined a⃗ = 2v⃗ + 3w⃗ and b⃗ = −v⃗ + w⃗. In figure 4 the vectors a⃗ and b⃗ are constructed
geometrically from some arbitrarily chosen v⃗ and w⃗. We also found algebraically in
example 1.6 that a⃗+ b⃗ = v⃗ + 4w⃗. e third drawing in figure 4 illustrates this.
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a⃗

2a⃗

−a⃗

a⃗

b⃗

−a⃗

−b⃗

a⃗− b⃗

b⃗− a⃗

Figure 3. Multiples of a vector, and the difference of two vectors.

v⃗

w⃗

a⃗
b⃗

a⃗+ b⃗ v⃗ + 4w⃗

Figure 4. Picture proof that a⃗+ b⃗ = v⃗ + 4w⃗ in example 2.5.

3. Parametric equations for lines and planes

Given two distinct points A and B we consider the line segment AB. If X is any
given point on AB then we will now find a formula for the position vector of X .

Define t to be the ratio between the lengths of the line segments AX and AB,

t =
length AX
length AB

.

en the vectors
−−→
AX and

−−→
AB are related by

−−→
AX = t

−−→
AB. Since AX is shorter than AB

we have 0 < t < 1.

X

A

B

−−→
AB

−−→
AX

x⃗ = a⃗+ t(⃗b− a⃗)

b⃗− a⃗

ℓ

B

A

X

a⃗

b⃗

O

ℓ

B

A

a⃗

t(⃗b− a⃗)

O

Figure 5. Constructing points on the line through A and B

e position vector of the point X on the line segment AB is
−−→
OX =

−→
OA+

−−→
AX =

−→
OA+ t

−−→
AB.



3. PARAMETRIC EQUATIONS FOR LINES AND PLANES 115

If we write a⃗, b⃗, x⃗ for the position vectors of A,B,X , then we get
−−→
AX = x⃗ − a⃗ and

−−→
AB = b⃗− a⃗, so that

(69) x⃗ = a⃗+ t(⃗b− a⃗).

which is sometimes also wrien as

x⃗ = (1− t)a⃗+ t⃗b.

is equation is called the parametric equation for the line through A and B.
In our derivation the parameter t satisfied 0 ≤ t ≤ 1, but there is nothing that keeps

us from substituting negative values of t, or numbers t > 1 in (69). e resulting vectors
x⃗ are position vectors of points X which lie on the line ℓ through A and B.

3.1. Example. Find the parametric equation for the line ℓ through the points A(1, 2)
and B(3,−1), and determine where ℓ intersects the x1 axis.

x1

x2

A

B
1 2 3

1

2

3

Solution: e position vectors of A,B are a⃗ = ( 12 ) and b⃗ =
(

3
−1

)
, so the position

vector of any point on ℓ is given by

x⃗ = a⃗+ t(⃗b− a⃗) =

(
1
2

)
+ t

(
3− 1
−1− 2

)
=

(
1
2

)
+ t

(
2
−3

)
=

(
1 + 2t
2− 3t

)
where t is an arbitrary real number.

is vector points to the point X = (1 + 2t, 2 − 3t). By definition, a point lies on
the x1-axis if its x2 component vanishes. us if the point

X = (1 + 2t, 2− 3t)

lies on the x1-axis, then 2 − 3t = 0, i.e. t = 2
3 . When t = 2

3 the x1-coordinate of X is
1 + 2t = 5

3 , so the intersection point ℓ and the x1-axis is X = (1 + 2 · 2
3 , 0) = ( 53 , 0).

3.2. Midpoint of a line segment. If M is the midpoint of the line segment AB,
then the vectors

−−→
AM and

−−→
MB are both parallel and have the same direction and length

(namely, half the length of the line segment AB). Hence they are equal:
−−→
AM =

−−→
MB. If

a⃗, m⃗, and b⃗ are the position vectors of A ,M and B, then this means

m⃗− a⃗ =
−−→
AM =

−−→
MB = b⃗− m⃗.

Add m⃗ and a⃗ to both sides, and divide by 2 to get

m⃗ = 1
2 a⃗+ 1

2 b⃗ =
a⃗+ b⃗

2
.



116 VI. VECTORS

4. Vector Bases

4.1. e Standard Basis Vectors. enotation for vectors whichwe have been using
so far is not the most traditional. In the late 19th century G and H adapted
H’s theory of aternions to deal with vectors. eir notation is still popular in
texts on electromagnetism and fluid mechanics.

Define the following three vectors:

ı⃗ =

1
0
0

 , ȷ⃗ =

0
1
0

 , k⃗ =

0
0
1

 .

en every vector can be wrien as a linear combination of ı⃗, ȷ⃗ and k⃗, namely as follows:a1a2
a3

 = a1⃗ı+ a2ȷ⃗+ a3k⃗.

Moreover, there is only one way to write a given vector as a linear combination of {⃗ı, ȷ⃗, k⃗}.
is means that

a1⃗ı+ a2ȷ⃗+ a3k⃗ = b1⃗ı+ b2ȷ⃗+ b3k⃗ ⇐⇒


a1 = b1

a2 = b2

a3 = b3

For plane vectors one defines

ı⃗ =

(
1
0

)
, ȷ⃗ =

(
0
1

)
and just as for three dimensional vectors one can write every (plane) vector a⃗ as a linear
combination of ı⃗ and ȷ⃗, (

a1
a2

)
= a1⃗ı+ a2ȷ⃗.

Just as for space vectors, there is only one way to write a given vector as a linear combi-
nation of ı⃗ and ȷ⃗.

4.2. A Basis of Vectors (in general)*. e vectors ı⃗, ȷ⃗, k⃗ are called the standard
basis vectors. ey are an example of what is called a “basis”. Here is the definition in
the case of space vectors:

4.3. Definition. A triple of space vectors {u⃗, v⃗, w⃗} is a basis if every space vector a⃗
can be wrien as a linear combination of {u⃗, v⃗, w⃗}, i.e.

a⃗ = au⃗+ bv⃗ + cw⃗,

and if there is only one way to do so for any given vector a⃗ (i.e. the vector a⃗ determines the
coefficients a, b, c). For plane vectors the definition of a basis is almost the same, except
that a basis consists of two vectors rather than three:

4.4. Definition. A pair of plane vectors {u⃗, v⃗} is a basis if every plane vector a⃗ can
be wrien as a linear combination of {u⃗, v⃗}, i.e. a⃗ = au⃗+ bv⃗, and if there is only one way
to do so for any given vector a⃗ (i.e. the vector a⃗ determines the coefficients a, b).
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5. Dot Product

5.1. Definition. e “inner product” or “dot product” of two vectors is given bya1a2
a3

 ·

b1b2
b3

 = a1b1 + a2b2 + a3b3.

Note that the dot-product of two vectors is a number!
e dot product of two plane vectors is (predictably) defined by(

a1
a2

)
·
(
b1
b2

)
= a1b1 + a2b2.

An important property of the dot product is its relation with the length of a vector:

(70) ∥a⃗∥2 = a⃗·a⃗.

5.2. Algebraic properties of the dot product. edot product satisfies the following
rules,

a⃗·⃗b = b⃗·a⃗(71)

a⃗·(⃗b+ c⃗) = a⃗·⃗b+ a⃗·⃗c(72)

(⃗b+ c⃗)·a⃗ = b⃗·a⃗+ c⃗·a⃗(73)

t(a⃗·⃗b) = (ta⃗)·⃗b(74)

which hold for all vectors a⃗, b⃗, c⃗ and any real number t.

As usual, these properties allow us to develop the arithmetic of the dot product, as
in the next example.

5.3. Example. Simplify ∥a⃗+ b⃗∥2.
One has

∥a⃗+ b⃗∥2 = (a⃗+ b⃗)·(a⃗+ b⃗)

= a⃗·(a⃗+ b⃗) + b⃗·(a⃗+ b⃗)

= a⃗·a⃗+ a⃗·⃗b+ b⃗·a⃗︸ ︷︷ ︸
=2a⃗·⃗b by (71)

+b⃗·⃗b

= ∥a⃗∥2 + 2a⃗·⃗b+ ∥b⃗∥2

5.4. e diagonals of a parallelogram. Here is an example of how you can use the
algebra of the dot product to prove something in geometry.

Suppose you have a parallelogram one of whose vertices is the origin. Label the
vertices, starting at the origin and going around counterclockwise, O, A, C and B. Let
a⃗ =

−→
OA, b⃗ =

−−→
OB, c⃗ =

−−→
OC . One has
−−→
OC = c⃗ = a⃗+ b⃗, and

−−→
AB = b⃗− a⃗.

ese vectors correspond to the diagonals OC and AB
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5.5. eorem. In a parallelogram OACB the sum of the squares of the lengths of the
two diagonals equals the sum of the squares of the lengths of all four sides.

P. e squared lengths of the diagonals are

∥
−−→
OC∥2 = ∥a⃗+ b⃗∥2 = ∥a⃗∥2 + 2a⃗·⃗b+ ∥b⃗∥2

∥
−−→
AB∥2 = ∥a⃗− b⃗∥2 = ∥a⃗∥2 − 2a⃗·⃗b+ ∥b⃗∥2

Adding both these equations you get

∥
−−→
OC∥2 + ∥

−−→
AB∥2 = 2

(
∥a⃗∥2 + ∥b⃗∥2

)
.

e squared lengths of the sides are

∥
−→
OA∥2 = ∥a⃗∥2, ∥

−−→
AB∥2 = ∥b⃗∥2, ∥

−−→
BC∥2 = ∥a⃗∥2, ∥

−−→
OC∥2 = ∥b⃗∥2.

Together these also add up to 2
(
∥a⃗∥2 + ∥b⃗∥2

)
. □

Figure 6. Proof of the law of cosines

5.6. e dot product and the angle between two vectors. Here is the most impor-
tant interpretation of the dot product:

5.7. eorem. If the angle between two vectors a⃗ and b⃗ is θ, then one has

a⃗·⃗b = ∥a⃗∥ ∥b⃗∥ cos θ.

An important special case is where the vectors a⃗ and b⃗ are perpendicular. In that case
θ = π

2 , so that cos θ = 0 and the dot product of a⃗ and b⃗ vanishes. Conversely, if both
a⃗ and b⃗ are non zero vectors whose dot product vanishes, then cos θ must vanish, and
therefore θ = π

2 . In short, two non-zero vectors are perpendicular if and only if their dot
product vanishes.

P. We need the law of cosines from high-school trigonometry. Recall that for a
triangle OAB with angle θ at the point O, and with sides OA and OB of lengths a and
b, the length c of the opposing side AB is given by

(75) c2 = a2 + b2 − 2ab cos θ.
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In trigonometry this is proved by dropping a perpendicular line from B onto the side
OA. e triangle OAB gets divided into two right triangles, one of which has AB as
hypotenuse. Pythagoras then implies

c2 = (b sin θ)2 + (a− b cos θ)2 .

Aer simplification you get (75).
To prove the theorem you letO be the origin, and then observe that the length of the

side AB is the length of the vector
−−→
AB = b⃗− a⃗. Here a⃗ =

−→
OA, b⃗ =

−−→
OB, and hence

c2 = ∥b⃗− a⃗∥2 = (⃗b− a⃗)·(⃗b− a⃗) = ∥b⃗∥2 + ∥a⃗∥2 − 2a⃗·⃗b.

Compare this with (75), keeping in mind that a = ∥a⃗∥ and b = ∥b⃗∥: you are led to
conclude that −2a⃗·⃗b = −2ab cos θ, and thus a⃗·⃗b = ∥a⃗∥ ∥b⃗∥ cos θ. □

5.8. Orthogonal projection of one vector onto another. e following construction
comes up very oen. Let a⃗ ̸= 0⃗ be a given vector. en for any other vector x⃗ there is a
number λ such that

x⃗
// = λa⃗

x⃗
x⃗⊥ a⃗

Given x⃗ and a⃗,
find x⃗⊥ and x⃗//.

x⃗ = λa⃗+ y⃗

where y⃗ ⊥ a⃗. In other words, you can write any vector x⃗ as the sum of one vector
parallel to a⃗ and another vector orthogonal to a⃗. e two vectors λa⃗ and y⃗ are called the
parallel and orthogonal components of the vector x⃗ (with respect to a⃗), and sometimes
the following notation is used

x⃗// = λa⃗, x⃗⊥ = y⃗,

so that

x⃗ = x⃗// + x⃗⊥.

ere are moderately simple formulas for x⃗// and x⃗⊥, but it is beer to remember the
following derivation of these formulas.

Assume that the vectors a⃗ and x⃗ are given. en we look for a number λ such that
y⃗ = x⃗− λa⃗ is perpendicular to a⃗. Recall that a⃗ ⊥ (x⃗− λa⃗) if and only if

a⃗·(x⃗− λa⃗) = 0.

Expand the dot product and you get this equation for λ

a⃗·x⃗− λa⃗·a⃗ = 0,

whence

(76) λ =
a⃗·x⃗
a⃗·a⃗ =

a⃗·x⃗
∥a⃗∥2

To compute the parallel and orthogonal components of x⃗ w.r.t. a⃗ you first compute λ
according to (76), which tells you that the parallel component is given by

x⃗// = λa⃗ =
a⃗·x⃗
a⃗·a⃗

a⃗.

e orthogonal component is then “the rest,” i.e. by definition x⃗⊥ = x⃗− x⃗//, so

x⃗⊥ = x⃗− x⃗// = x⃗− a⃗·x⃗
a⃗·a⃗ a⃗.
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5.9. Defining equations of lines. In § 3 we saw how to generate points on a line
given two points on that line by means of a “parametrization.” I.e. given points A and B
on the line ℓ the point whose position vector is x⃗ = a⃗ + t(⃗b − a⃗) will be on ℓ for any
value of the “parameter” t.

In this section we will use the dot-product to give a different description of lines in
the plane (and planes in three dimensional space.) We will derive an equation for a line.
Rather than generating points on the line ℓ this equation tells us if any given point X in
the plane is on the line or not.

Here is the derivation of the equation of a line in the plane. To produce the equation
you need two ingredients:

1. One particular point on the line (let’s call this pointA, and write a⃗ for its position
vector),

2. a normal vector n⃗ for the line, i.e. a nonzero vector which is perpendicular to
the line.
Now let X be any point in the plane, and consider the line segment AX .

• Clearly, X will be on the line if and only if AX is parallel to ℓ ¹
• Since ℓ is perpendicular to n⃗, the segment AX and the line ℓ will be parallel if

and only if AX ⊥ n⃗.
• AX ⊥ n⃗ holds if and only if

−−→
AX·n⃗ = 0.

So in the end we see thatX lies on the line ℓ if and only if the following vector equation
is satisfied:

(77)
−−→
AX·n⃗ = 0 or (x⃗− a⃗) ·n⃗ = 0

is equation is called a defining equation for the line ℓ.
Any given line has many defining equations. Just by changing the length of the

normal you get a different equation, which still describes the same line.

ℓ

P
n⃗

A A

P

ℓn⃗

Figure 7. If n⃗ is a normal vector to the line ℓ, and ifA is any point on ℓ, then there is a simple test
which tells you if a point X is on ℓ or not: X is on ℓ if and only if

−−→
AX ⊥ n⃗, i.e. iff

−−→
AX·n⃗ = 0.

5.10. Line through one point and perpendicular to another line. Find a defining
equation for the line ℓ which goes through A(1, 1) and is perpendicular to the line segment
AB where B is the point (3,−1).

Solution. We already know a point on the line, namelyA, but we still need a normal
vector. e line is required to be perpendicular to AB, so n⃗ =

−−→
AB is a normal vector:

n⃗ =
−−→
AB =

(
3− 1

(−1)− 1

)
=

(
2
−2

)
Of course any multiple of n⃗ is also a normal vector, for instance

m⃗ = 1
2 n⃗ =

(
1
−1

)
¹ From plane Euclidean geometry: parallel lines either don’t intersect or they coincide.
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1

2

1 2 3

A

B

ℓ

is a normal vector.
With a⃗ = ( 11 ) we then get the following equation for ℓ

n⃗·(x⃗− a⃗) =

(
2
−2

)
·
(
x1 − 1
x2 − 1

)
= 2x1 − 2x2 = 0.

If you choose the normal m⃗ instead, you get

m⃗·(x⃗− a⃗) =

(
1
−1

)
·
(
x1 − 1
x2 − 1

)
= x1 − x2 = 0.

Both equations 2x1−2x2 = 0 and x1−x2 = 0 are equivalent and they both give defining
equations for the line ℓ.

5.11. Distance to a line. Let ℓ be a line in the plane and assume a point A on the
line as well as a vector n⃗ perpendicular to ℓ are known. Using the dot product one can
easily compute the distance from the line to any other given point P in the plane. Here
is how:

Draw the line m through A perpendicular to ℓ, and drop a perpendicular line from
P ontom. letQ be the projection of P ontom. e distance from P to ℓ is then equal to
the length of the line segment AQ. Since AQP is a right triangle one has

AQ = AP cos θ.

Here θ is the angle between the normal n⃗ and the vector
−→
AP . One also has

n⃗·(p⃗− a⃗) = n⃗·−→AP = ∥
−→
AP∥ ∥n⃗∥ cos θ = AP ∥n⃗∥ cos θ.

Hence we get

dist(P, ℓ) =
n⃗·(p⃗− a⃗)

∥n⃗∥
.

is argument from a drawing contains a hidden assumption, namely that the point P
lies on the side of the line ℓ pointed to by the vector n⃗. If this is not the case, so that n⃗ and
−→
AP point to opposite sides of ℓ, then the angle between them exceeds 90◦, i.e. θ > π/2.
In this case cos θ < 0, and one hasAQ = −AP cos θ. e distance formula therefore has
to be modified to

dist(P, ℓ) = − n⃗·(p⃗− a⃗)

∥n⃗∥
.

We do not need to know in advance which formula to use. If we compute n⃗·(p⃗− a⃗) and
find that it is negative then we know that the normal vector and the point are on opposite
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P

A

ℓ

d

θ

n⃗

n⃗·−→AP > 0

PA

ℓ

d

θ

n⃗

n⃗·−→AP < 0

π − θ

d = AP cos(π − θ) = −AP cos θ = −n⃗·−→APd = AP cos θ = n⃗·−→AP

Figure 8. The distance from a point P to a line ℓ.

sides of the line ℓ. In either case the distance is given by

dist(P, ℓ) =

∣∣∣∣ n⃗·(p⃗− a⃗)

∥n⃗∥

∣∣∣∣ .
5.12. Defining equation of a plane. Just as we have seen howwe can form the defin-

ing equation for a line in the plane from just one point on the line and one normal vector
to the line, we can also form the defining equation for a plane in space, again knowing
only one point on the plane, and a vector perpendicular to it. If A is a point on some
plane P and n⃗ is a vector perpendicular to P, then any other pointX lies on P if and only
if
−−→
AX ⊥ n⃗. In other words, in terms of the position vectors a⃗ and x⃗ of A and X ,

the point X is on P ⇐⇒ n⃗·(x⃗− a⃗) = 0.

Arguing just as in § 5.11 you find that the distance of a pointX in space to the plane P is

(78) dist(X,P) = ± n⃗·(x⃗− a⃗)

∥n⃗∥
.

Here the sign is “+” ifX and the normal n⃗ are on the same side of the plane P; otherwise
the sign is “−”.

n⃗

A

X

−−→
AX

Figure 9. A point P lies on the plane if the vector
−→
AP is perpendicular to n⃗.
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5.13. Example. Find the defining equation for the planeP through the pointA(1, 0, 2)

which is perpendicular to the vector
(

1
2
1

)
.

Solution: We know a point (A) and a normal vector n⃗ =
(

1
2
1

)
for P. en any point

X with coordinates (x1, x2, x3), or, with position vector x⃗ =
(

x1
x2
x3

)
, will lie on the plane

P if and only if

n⃗·(x⃗− a⃗) = 0 ⇐⇒

1
2
1

 ·


x1x2
x3

−

1
0
2

 = 0

⇐⇒

1
2
1

 ·

x1 − 1
x2

x3 − 2

 = 0

⇐⇒ 1 · (x1 − 1) + 2 · (x2) + 1 · (x3 − 2) = 0

⇐⇒ x1 + 2x2 + x3 − 3 = 0.

1 2 3

1

2

3

1

2

3

n⃗ =
(

1
2
1

)

x1

x2

x3

A

5.14. Example continued. Let P be the plane from the previous example. Which
of the points P (0, 0, 1), Q(0, 0, 2), R(−1, 2, 0) and S(−1, 0, 5) lie on P? Compute the
distances from the points P,Q,R, S to the plane P. Separate the points which do not lie
on P into two group of points which lie on the same side of P.

Solution: We apply (78) to the position vectors p⃗, q⃗, r⃗, s⃗ of the points P,Q,R, S.
For each calculation we need

∥n⃗∥ =
√

12 + 22 + 12 =
√
6.

e third component of the given normal n⃗ =
(

1
2
1

)
is positive, so n⃗ points “upwards.”

erefore, if a point lies on the side of P pointed to by n⃗, we shall say that the point lies
above the plane.
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P : p⃗ =
(

0
0
1

)
, p⃗− a⃗ =

(−1
0
−1

)
, n⃗·(p⃗− a⃗) = 1 · (−1) + 2 · (0) + 1 · (−1) = −2

n⃗·(p⃗− a⃗)

∥n⃗∥
= − 2√

6
= −1

3

√
6.

is quantity is negative, so P lies below P. Its distance to P is 1
3

√
6.

Q: q⃗ =
(

0
0
2

)
, p⃗− a⃗ =

(−1
0
0

)
, n⃗·(p⃗− a⃗) = 1 · (−1) + 2 · (0) + 1 · (0) = −1

n⃗·(p⃗− a⃗)

∥n⃗∥
= − 1√

6
= −1

6

√
6.

is quantity is negative, so Q also lies below P. Its distance to P is 1
6

√
6.

R: r⃗ =
(−1

2
0

)
, p⃗− a⃗ =

(−2
2
−2

)
, n⃗·(p⃗− a⃗) = 1 · (−2) + 2 · (2) + 1 · (−2) = 0

n⃗·(p⃗− a⃗)

∥n⃗∥
= 0.

us R lies on the plane P, and its distance to P is of course 0.

S: s⃗ =
(−1

0
5

)
, p⃗− a⃗ =

(−2
0
3

)
, n⃗·(p⃗− a⃗) = 1 · (−1) + 2 · (0) + 1 · (3) = 2

n⃗·(p⃗− a⃗)

∥n⃗∥
=

2√
6
=

1

3

√
6.

is quantity is positive, so S lies above P. Its distance to P is 1
3

√
6.

We have found that P and Q lie below the plane, R lies on the plane, and S is above the
plane.

5.15. Where does the line through the pointsB(2, 0, 0) andC(0, 1, 2) intersect the
plane P from example 5.13? Solution: Let ℓ be the line throughB and C . We set up the
parametric equation for ℓ. According to §3, (69) every point X on ℓ has position vector
x⃗ given by

(79) x⃗ = b⃗+ t(⃗c− b⃗) =

2
0
0

+ t

0− 2
1− 0
2− 0

 =

2− 2t
t
2t


for some value of t.

e pointX whose position vector x⃗ is given above lies on the plane P if x⃗ satisfies
the defining equation of the plane. In example 5.13 we found this defining equation. It
was

(80) n⃗·(x⃗− a⃗) = 0, i.e. x1 + 2x2 + x3 − 3 = 0.

So to find the point of intersection of ℓ and P you substitute the parametrization (79) in
the defining equation (80):

0 = x1 + 2x2 + x3 − 3 = (2− 2t) + 2(t) + (2t)− 3 = 2t− 1.

is implies t = 1
2 , and thus the intersection point has position vector

x⃗ = b⃗+ 1
2 (⃗c− b⃗) =

2− 2t
t
2t

 =

1
1
2
1

 ,

i.e. ℓ and P intersect at X(1, 12 , 1).
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6. Cross Product

6.1. Algebraic definition of the cross product. Here is the definition of the cross-
product of two vectors. e definition looks a bit strange and arbitrary at first sight – it
really makes you wonder who thought of this. We will just put up with that for now and
explore the properties of the cross product. Later onwewill see a geometric interpretation
of the cross product which will show that this particular definition is really useful. We
will also find a few tricks that will help you reproduce the formula without memorizing
it.

6.2. Definition. e “outer product” or “cross product” of two vectors is given bya1a2
a3

×

b1b2
b3

 =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


Note that the cross-product of two vectors is again a vector!

6.3. Example. If you set b⃗ = a⃗ in the definition you find the following important
fact: e cross product of any vector with itself is the zero vector:

a⃗×a⃗ = 0⃗ for any vector a⃗.

6.4. Example. Let a⃗ =
(

1
2
3

)
, b⃗ =

(−2
1
0

)
and compute the cross product of these

vectors.
Solution:

a⃗×b⃗ =

1
2
3

×

−2
1
0

 =

 2 · 0− 3 · 1
3 · (−2)− 1 · 0

1 · 1− 2 · (−2)

 =

−3
−6
5


6.5. Algebraic properties of the cross product. Unlike the dot product, the cross

product of two vectors behaves much less like ordinary multiplication. To begin with,
the product is not commutative – instead one has

(81) a⃗×b⃗ = −b⃗×a⃗ for all vectors a⃗ and b⃗.

is property is sometimes called “anti-commutative.” ı⃗×(⃗ı×ȷ⃗) = −ȷ⃗,
but
(⃗ı×ı⃗)×ȷ⃗ = 0⃗,
so ı⃗×(⃗ı×ȷ⃗) ̸= (⃗ı×ı⃗)×ȷ⃗
Conclusion:
“×” is not associative

Since the crossproduct of two vectors is again a vector you can compute the cross
product of three vectors a⃗, b⃗, c⃗. You now have a choice: do you first multiply a⃗ and b⃗, or
b⃗ and c⃗, or a⃗ and c⃗? With numbers it makes no difference (e.g. 2× (3×5) = 2×15 = 30
and (2× 3)× 5 = 6× 5 = also 30) but with the cross product of vectors it does maer:
the cross product is not associative, i.e.

a⃗×(⃗b×c⃗) ̸≠≠= (a⃗×b⃗)×c⃗ for most vectors a⃗, b⃗, c⃗.

e distributive law does hold, i.e.

a⃗×(⃗b+ c⃗) = a⃗×b⃗+ a⃗×c⃗, and (⃗b+ c⃗)×a⃗ = b⃗×a⃗+ c⃗×a⃗

is true for all vectors a⃗, b⃗, c⃗.
Also, an associative law, where one of the factors is a number and the other two are

vectors, does hold. I.e.
t(a⃗×b⃗) = (ta⃗)×b⃗ = a⃗×(t⃗b)

holds for all vectors a⃗, b⃗ and any number t. We were already using these properties when
we multiplied (a1⃗ı+ a2ȷ⃗+ a3k⃗)×(b1⃗ı+ b2ȷ⃗+ b3k⃗) in the previous section.
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Finally, the cross product is only defined for space vectors, not for plane vectors.

6.6. Ways to compute the cross product. In terms of the standard basis vectors you
can check themultiplication table. An easy way to remember the multiplication table is to
put the vectors ı⃗, ȷ⃗, k⃗ clockwise in a circle. Given two of the three vectors their product is
either plus or minus the remaining vector. To determine the sign you step from the first
vector to the second, to the third: if this makes you go clockwise you have a plus sign, if
you have to go counterclockwise, you get a minus.

× ı⃗ ȷ⃗ k⃗

ı⃗ 0⃗ k⃗ −ȷ⃗

ȷ⃗ −k⃗ 0⃗ ı⃗

k⃗ ȷ⃗ −⃗ı 0⃗

i

jk

e products of ı⃗, ȷ⃗ and k⃗ are all you need to know to compute the cross product.
Given two vectors a⃗ and b⃗ write them as a⃗ = a1⃗ı+ a2ȷ⃗+ a3k⃗ and b⃗ = b1⃗ı+ b2ȷ⃗+ b3k⃗,
and multiply as follows

a⃗×b⃗ =(a1⃗ı+ a2ȷ⃗+ a3k⃗)×(b1⃗ı+ b2ȷ⃗+ b3k⃗)

= a1⃗ı×(b1⃗ı+ b2ȷ⃗+ b3k⃗)

+a2ȷ⃗×(b1⃗ı+ b2ȷ⃗+ b3k⃗)

+a3k⃗×(b1⃗ı+ b2ȷ⃗+ b3k⃗)

= a1b1⃗ı×ı⃗ + a1b2⃗ı×ȷ⃗ + a1b3⃗ı×k⃗ +

a2b1ȷ⃗×ı⃗ + a2b2ȷ⃗×ȷ⃗ + a2b3ȷ⃗×k⃗ +

a3b1k⃗×ı⃗ + a3b2k⃗×ȷ⃗ + a3b3k⃗×k⃗

= a1b10⃗ + a1b2k⃗ − a1b3ȷ⃗

−a2b1k⃗ + a2b20⃗ + a2b3⃗ı +

a3b1ȷ⃗ − a3b2⃗ı + a3b30⃗

=(a2b3 − a3b2)⃗ı+ (a3b1 − a1b3)⃗ȷ+ (a1b2 − a2b1)k⃗

is is a useful way of remembering how to compute the cross product, particularly when
many of the components ai and bj are zero.

6.7. Example. Compute k⃗×(p⃗ı+ q⃗ȷ+ rk⃗):

k⃗×(p⃗ı+ q⃗ȷ+ rk⃗) = p(k⃗×ı⃗) + q(k⃗×ȷ⃗) + r(k⃗×k⃗) = −q⃗ı+ p⃗ȷ.

ere is another way of remembering how to find a⃗×b⃗. It involves the “triple prod-
uct” and determinants. See § 6.8.

6.8. e triple product and determinants.

6.9. Definition. e triple product of three given vectors a⃗, b⃗, and c⃗ is defined to be

a⃗·(⃗b×c⃗).

In terms of the components of a⃗, b⃗, and c⃗ one has

a⃗·(⃗b×c⃗) =

a1a2
a3

 ·

b2c3 − b3c2
b3c1 − b1c3
b1c2 − b2c1


= a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1.

is quantity is called a determinant, and is wrien as follows

(82)

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1
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a1 a2 a3 a1 a2

b1 b2 b3 b1 b2

c1 c2 c3 c1 c2

+ + +---

ere’s a useful shortcut for computing such a determinant: aer writing the deter-
minant, append a fourth and a fih column which are just copies of the first two columns
of the determinant. e determinant then is the sum of six products, one for each dot-
ted line in the drawing. Each term has a sign: if the factors are read from top-le to
boom-right, the term is positive, if they are read from top-right to boom le the term
is negative. is shortcut is also very useful for computing the crossproduct. To com-
pute the cross product of two given vectors a⃗ and b⃗ you arrange their components in the
following determinant

(83) a⃗×b⃗ =

∣∣∣∣∣∣
ı⃗ a1 b1
ȷ⃗ a2 b2
k⃗ a3 b3

∣∣∣∣∣∣ = (a2b3 − a3b2)⃗ı+ (a3b1 − a1b3)⃗ȷ+ (a1b2 − a2b1)k⃗.

is is not a normal determinant since some of its entries are vectors, but if you ignore
that odd circumstance and simply compute the determinant according to the definition
(82), you get (83).

An important property of the triple product is that it is much more symmetric in the
factors a⃗, b⃗, c⃗ than the notation a⃗·(⃗b×c⃗) suggests.

6.10. eorem. For any triple of vectors a⃗, b⃗, c⃗ one has

a⃗·(⃗b×c⃗) = b⃗·(⃗c×a⃗) = c⃗·(a⃗×b⃗),

and

a⃗·(⃗b×c⃗) = −b⃗·(a⃗×c⃗) = −c⃗·(⃗b×a⃗).

In other words, if you exchange two factors in the product a⃗·(⃗b×c⃗) it changes its sign.
If you “rotate the factors,” i.e. if you replace a⃗ by b⃗, b⃗ by c⃗ and c⃗ by a⃗, the product doesn’t
change at all.

6.11. Geometric description of the cross product.

6.12. eorem.

a⃗×b⃗ ⊥ a⃗, b⃗

P. We use the triple product:

a⃗·(a⃗×b⃗) = b⃗·(a⃗×a⃗) = 0⃗

since a⃗×a⃗ = 0⃗ for any vector a⃗. It follows that a⃗×b⃗ is perpendicular to a⃗.

a⃗×b⃗

θ

a⃗

b⃗

Similarly, b⃗·(a⃗×b⃗) = a⃗·(⃗b×b⃗) = 0⃗ shows that a⃗·⃗b is perpendicular to b⃗. □



128 VI. VECTORS

a⃗

b⃗

a⃗×b⃗

Figure 10. The right hand rule for the cross product.

6.13. eorem.
∥a⃗×b⃗∥ = ∥a⃗∥ ∥b⃗∥ sin θ

P. Bruce² just slipped us a piece of paper with the following formula on it:

(84) ∥a⃗×b⃗∥2 + (a⃗·⃗b)2 = ∥a⃗∥2∥b⃗∥2.

Aer seing a⃗ =
(

a1
a2
a3

)
and b⃗ =

(
b1
b2
b3

)
and diligently computing both sides we find that

this formula actually holds for any pair of vectors a⃗, b⃗! e (long) computation which
implies this identity will be presented in class (maybe).

If we assume that Lagrange’s identity holds then we get

∥a⃗×b⃗∥2 = ∥a⃗∥2∥b⃗∥2 − (a⃗·⃗b)2 = ∥a⃗∥2∥b⃗∥2 − ∥a⃗∥2∥b⃗∥2 cos2 θ = ∥a⃗∥2∥b⃗∥2 sin2 θ

since 1− cos2 θ = sin2 θ. e theorem is proved. □

ese two theorems almost allow you to construct the cross product of two vectors
geometrically. If a⃗ and b⃗ are two vectors, then their cross product satisfies the following
description:

(1) If a⃗ and b⃗ are parallel, then the angle θ between them vanishes, and so their
cross product is the zero vector. Assume from here on that a⃗ and b⃗ are not
parallel.

(2) a⃗×b⃗ is perpendicular to both a⃗ and b⃗. In other words, since a⃗ and b⃗ are not par-
allel, they determine a plane, and their cross product is a vector perpendicular
to this plane.

(3) the length of the cross product a⃗×b⃗ is ∥a⃗∥ ∥b⃗∥ sin θ.

ere are only two vectors that satisfy conditions 2 and 3: to determine which one
of these is the cross product you must apply the Right Hand Rule (screwdriver rule,
corkscrew rule, etc.) for a⃗, b⃗, a⃗×b⃗: if you turn a screw whose axis is perpendicular to a⃗

and b⃗ in the direction from a⃗ to b⃗, the screw moves in the direction of a⃗×b⃗.
Alternatively, without seriously injuring yourself, you should be able to make a fist

with your right hand, and then stick out your thumb, index and middle fingers so that

²It’s actually called Lagrange’s identity. Yes, the same Lagrangewho found the formula for the remainder
term in Taylor’s formula.
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your thumb is a⃗, your index finger is b⃗ and your middle finger is a⃗×b⃗. If you do this with
your le hand you will get −a⃗×b⃗ instead of a⃗×b⃗.

7. A few applications of the cross product

7.1. Area of a parallelogram. Let ABCD be a parallelogram. Its area is given by
“height times base,” a formula which should be familiar from high school geometry.

θ

height

base BA

D C

Figure 11. The area of a parallelogram

If the angle between the sides AB and AD is θ, then the height of the parallelogram
is ∥−−→AD∥ sin θ, so that the area of ABCD is

(85) area of ABCD = ∥
−−→
AB∥ ∥

−−→
AD∥ sin θ = ∥

−−→
AB×−−→

AD∥ .

e area of the triangle ABD is of course half as much,

area of triangle ABD = 1
2 ∥

−−→
AB×−−→

AD∥ .

ese formulae are valid even when the points A,B,C , and D are points in space.
Of course they must lie in one plane for otherwise ABCD couldn’t be a parallelogram.

7.2. Example. Let the points A(1, 0, 2), B(2, 0, 0), C(3, 1,−1) and D(2, 1, 1) be
given.

Show that ABCD is a parallelogram, and compute its area.
Solution: ABCD will be a parallelogram if and only if

−→
AC =

−−→
AB +

−−→
AD. In terms

of the position vectors a⃗,⃗b, c⃗ and d⃗ of A,B,C,D this boils down to

c⃗− a⃗ = (⃗b− a⃗) + (d⃗− a⃗), i.e. a⃗+ c⃗ = b⃗+ d⃗.

For our points we get

a⃗+ c⃗ =

1
0
2

+

 3
1
−1

 =

4
1
1

 , b⃗+ d⃗ =

2
0
0

+

2
1
1

 =

4
1
1

 .

So ABCD is indeed a parallelogram. Its area is the length of

−−→
AB×−−→

AD =

2− 1
0

0− 2

×

2− 1
1− 0
1− 2

 =

 1
0
−2

×

 1
−1
−1

 =

−2
−1
−1

 .

So the area of ABCD is
√
(−2)2 + (−1)2 + (−1)2 =

√
6.
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7.3. Finding the normal to a plane. If you know two vectors a⃗ and b⃗ which are
parallel to a given plane P but not parallel to each other, then you can find a normal
vector for the plane P by computing

n⃗ = a⃗×b⃗.

We have just seen that the vector n⃗must be perpendicular to both a⃗ and b⃗, and hence³ it
is perpendicular to the plane P.

n⃗ = a⃗×b⃗

b⃗
a⃗

is trick is especially useful when you have three points A, B and C , and you want
to find the defining equation for the plane P through these points. We will assume that
the three points do not all lie on one line, for otherwise there are many planes through
A, B and C .

To find the defining equation we need one point on the plane (we have three of them),
and a normal vector to the plane. A normal vector can be obtained by computing the cross
product of two vectors parallel to the plane. Since

−−→
AB and

−→
AC are both parallel to P, the

vector n⃗ =
−−→
AB×−→

AC is such a normal vector.
us the defining equation for the plane through three given points A, B and C is

n⃗·(x⃗− a⃗) = 0, with n⃗ =
−−→
AB×−→

AC = (⃗b− a⃗)×(⃗c− a⃗).

7.4. Example. Find the defining equation of the planeP through the pointsA(2,−1, 0),
B(2, 1,−1) and C(−1, 1, 1). Find the intersections of P with the three coordinate axes,
and find the distance from the origin to P.

Solution: We have

−−→
AB =

 0
2
−1

 and
−→
AC =

−3
2
1


so that

n⃗ =
−−→
AB×−→

AC =

 0
2
−1

×

−3
2
1

 =

4
3
6


is a normal to the plane. e defining equation for P is therefore

0 = n⃗·(x⃗− a⃗) =

4
3
6

 ·

x1 − 2
x2 + 1
x3 − 0


i.e.

4x1 + 3x2 + 6x3 − 5 = 0.

e plane intersects the x1 axis when x2 = x3 = 0 and hence 4x1 − 5 = 0, i.e. in the
point ( 54 , 0, 0). e intersections with the other two axes are (0, 53 , 0) and (0, 0, 56 ).

e distance from any point with position vector x⃗ to P is given by

dist = ± n⃗·(x⃗− a⃗)

∥n⃗∥
,

so the distance from the origin (whose position vector is x⃗ = 0⃗ =
(

0
0
0

)
) to P is

distance origin to P = ± a⃗·n⃗
∥n⃗∥

= ±2 · 4 + (−1) · 3 + 0 · 6√
42 + 32 + 62

=
5√
61

(≈ 1.024 · · · ).

³is statement needs a proof which we will skip. Instead have a look at the picture



8. NOTATION 131

7.5. Volume of a parallelepiped.

base
A

D

H

E

C

G

F

B

A
height

E

D

H

F

B

C

G

A parallelepiped is a three dimensional body whose sides are parallelograms. For in-
stance, a cube is an example of a parallelepiped; a rectangular block (whose faces are
rectangles, meeting at right angles) is also a parallelepiped. Any parallelepiped has 8
vertices (corner points), 12 edges and 6 faces.

Let ABCD
EFGH be a parallelepiped. If we call one of the faces, say ABCD, the base of

the parallelepiped, then the other face EFGH is parallel to the base. e height of the
parallelepiped is the distance from any point in EFGH to the base, e.g. to compute the
height of ABCD

EFGH one could compute the distance from the point E (or F , or G, or H) to
the plane through ABCD.

e volume of the parallelepiped ABCD
EFGH is given by the formula

Volume
ABCD

EFGH
= Area of base× height.

Since the base is a parallelogram we know its area is given by

Area of baseABCD = ∥
−−→
AB×−−→

AD∥

We also know that n⃗ =
−−→
AB×−−→

AD is a vector perpendicular to the plane throughABCD,
i.e. perpendicular to the base of the parallelepiped. If we let the angle between the edge
AE and the normal n⃗ be ψ, then the height of the parallelepiped is given by

height = ∥
−→
AE∥ cosψ.

erefore the triple product of
−−→
AB,

−−→
AD,

−→
AE is

Volume
ABCD

EFGH
= height× Area of base

= ∥
−→
AE∥ cosψ ∥

−−→
AB×−−→

AD∥ ,
i.e.

Volume
ABCD

EFGH
=

−→
AE·(−−→AB×−−→

AD).

8. Notation

When we use vectors to describe the real world it is very important to distinguish
between a point A, its position vector a⃗ =

−→
OA, and its coordinates a1, a2, a3.

• A point can be any point in space. For instance,A could be the top of the Lincoln
statue on Bascom Hill. at is a well-defined location.

• To specify the position vector for a point we must also specify which point we
decide to call the origin (the center of the Capitol; or the center of the Earth; or
the center of the Sun; etc.). Different choices of origins give us different position
vectors for the same point.
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• To specify the coordinates of the point A we not only need an origin, but we
also have to specify three perpendicular axes, which we call the x, y, and z axes
(or we can give them different names).

Given a point in the plane, or in space we can form its position vector. So associated
to a point we have three different mathematical objects: the point, its position vector and
its coordinates. Table 1 summarises these different notations.

Common abuses of notation that should be avoided. Sometimes students will write
things like

a⃗ =

3
1
2

 = 6, (aargh!)

which really can’t be true because
(

3
1
2

)
is a vector and 6 is a number. Vectors and num-

bers are not equal!
More subtle is the mistake 0

0
0

 = 0
�

which looks , but it isn’t: it’s still an equation that says that some vector and some

number are equal. In this case the vector
(

0
0
0

)
is the zero vector for which we use the

symbol 0⃗. So 0
0
0

 = 0⃗

is correct.

Object Notation

Point Upper case leers, A, B, etc.

Position vector Lowercase leers with an arrow on top. The po-
sition vector

−→
OA of the point A should be a⃗, so

that leers match across changes from upper to
lower case.

Coordinates of a point The coordinates of the point A are the same as
the components of its position vector a⃗: we use
lower case leers with a subscript to indicate
which coordinate we have in mind: (a1, a2).

Table 1. The different notations that we have used in this chapter
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9. Problems–Computing and drawing vectors

1. Simplify the following

a⃗ =

 1
−2
3

+ 3

0
1
3

 ;

b⃗ = 12

(
1

1/3

)
− 3

(
4
1

)
;

c⃗ = (1 + t)

(
1

1− t

)
− t

(
1
−t

)
,

d⃗ = t

1
0
0

+ t2

 0
−1
2

−

0
0
1

 .

2. If a⃗, b⃗, c⃗ are as in the previous prob-
lem, then which of the following expressions
mean anything? Compute those expressions
that are well defined.

(a) a⃗+ b⃗ (b) b⃗+ c⃗ (c) πa⃗

(d) b⃗
2

(e) b⃗/c⃗ (f) ∥a⃗∥+ ∥b⃗∥

(g) ∥b⃗∥2 (h) b⃗/ ∥c⃗∥

3. Let a⃗ =

 1
−2
2

 and b⃗ =

 2
−1
1

.

Compute:

(a) ||⃗a||
(b) 2a⃗
(c) ||2a⃗||2

(d) a⃗+ b⃗

(e) 3a⃗− b⃗

[A]

4. Let u⃗, v⃗, w⃗ be three given vectors, and
suppose

a⃗ = v⃗+w⃗, b⃗ = 2u⃗−w⃗, c⃗ = u⃗+v⃗+w⃗.

(a) Simplify p⃗ = a⃗ + 3b⃗ − c⃗ and q⃗ =
c⃗− 2(u⃗+ a⃗).

(b) Find numbers r, s, t such that ra⃗+ sb⃗+
t⃗c = u⃗.

(c) Find numbers k, l,m such that ka⃗+ l⃗b+
mc⃗ = v⃗.

5. Prove the Algebraic Properties (68a),
(68b), (68c), and (68d) in section 1.5.

6. (a) Does there exist a number x such that(
1
2

)
+

(
x
x

)
=

(
2
1

)
?

(b) Make a drawing of all points P whose
position vectors are given by

p⃗ =

(
1
2

)
+

(
x
x

)
.

(c) Do there exist a numbers x and y such
that

x

(
1
2

)
+ y

(
1
1

)
=

(
2
1

)
?

[A]

7. Given points A(2, 1) and B(−1, 4) com-
pute the vector

−→
AB. Is

−→
AB a position vector?

[A]

8. Given: points A(2, 1), B(3, 2), C(4, 4)
andD(5, 2). IsABCD a parallelogram? [A]

9. Given: points A(0, 2, 1), B(0, 3, 2),
C(4, 1, 4) and D.

(a) If ABCD is a parallelogram, then what
are the coordinates of the point D? [A]

(b) If ABDC is a parallelogram, then what
are the coordinates of the point D? [A]

10. You are given three points in the plane:
A has coordinates (2, 3), B has coordinates
(−1, 2) and C has coordinates (4,−1).

(a) Compute the vectors
−→
AB,

−→
BA,

−→
AC ,

−→
CA,

−−→
BC and

−−→
CB.

(b) Find the points P,Q,R and S whose po-
sition vectors are

−→
AB,

−→
BA,

−→
AC , and

−−→
BC ,

respectively. Make a precise drawing in fig-
ure 12.

11. Have a look at figure 13

(a) Draw the vectors 2v⃗ + 1
2
w⃗, − 1

2
v⃗ + w⃗,

and 3
2
v⃗ − 1

2
w⃗

(b) Find real numbers s, t such that sv⃗ +
tw⃗ = a⃗.

(c) Find real numbers p, q such that pv⃗ +

qw⃗ = b⃗.

(d) Find real numbers k, l,m, n such that
v⃗ = ka⃗+ l⃗b, and w⃗ = ma⃗+ nw⃗.
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Figure 12. Your drawing for problem 10

a⃗

b⃗

v⃗

w⃗

Figure 13. Drawing for problem 11
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O

A

B

10. Problems–Parametric equations for a line

1. In the figure above draw the points whose
position vectors are given by x⃗ = a⃗+ t(⃗b−
a⃗) for t = 0, 1, 1

3
, 3
4
,−1, 2. (as always,

a⃗ =
−→
OA, etc.)

2. In the figure above also draw the points
whose position vector are given by x⃗ = b⃗+

s(a⃗− b⃗) for s = 0, 1, 1
3
, 3
4
,−1, 2.

3. (a) Find a parametric equation for the
line ℓ through the points A(3, 0, 1) and
B(2, 1, 2).

(b) Where does ℓ intersect the coordinate
planes? [A]

4. (a) Find a parametric equation for the line
which contains the two vectors

a⃗ =

 2
3
1

 and b⃗ =

 3
2
3

.

(b) The vector c⃗ =

 c1
1
c3

 is on this line.

What is c⃗?

[A]

5. [Group Problem] Consider a triangle
ABC and let a⃗, b⃗, c⃗ be the position vectors
of A,B, and C .

(a) Compute the position vector of the mid-
point P of the line segment BC . Also com-
pute the position vectors of the midpointsQ
of AC and R of AB. (Make a drawing.)

(b) Let M be the point on the line segment
AP which is twice as far fromA as it is from
P . Find the position vector of M .

(c) Show that M also lies on the line seg-
ments BQ and CR.

[A]

6. [Group Problem] Let ABCD be a
tetrahedron, and let a⃗, b⃗, c⃗, d⃗ be the posi-
tion vectors of the points A,B,C,D.

(a) Find position vectors of the midpoint P
of AB, the midpoint Q of CD and the mid-
point M of PQ.

(b) Find position vectors of the midpoint R
of BC , the midpoint S of AD and the mid-
point N of RS.

D

A

B

C
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11. Problems–Orthogonal decomposition
of one vector with respect to another

1. Given the vectors a⃗ =
(

2
1
3

)
and b⃗ =(

1
1
0

)
find a⃗//, a⃗⊥, b⃗

//
, b⃗

⊥
for which

a⃗ = a⃗// + a⃗⊥, with a////b⃗, a⊥ ⊥ b⃗,

and

b⃗ = b⃗
//
+ b⃗

⊥
, with b////a⃗, b⊥ ⊥ a⃗.

[A]

2. Bruce le his backpack on a hill, which in
some coordinate system happens to be the
line with equation 12x1 + 5x2 = 130.

The force exerted by gravity on the
backpack is f⃗ grav =

(
0

−mg

)
. Decompose

this force into a part perpendicular to the
hill, and a part parallel to the hill.

[A]

3. An eraser is lying on the plane P with
equation x1 + 3x2 + x3 = 6. Gravity pulls
the eraser down, and exerts a force given by

f⃗ grav =

 0
0

−mg

 .

(a) Find a normal n⃗ for the plane P.

(b) Decompose the force f⃗ into a part per-
pendicular to the plane P and a part perpen-
dicular to n⃗.

12. Problems–e dot product

1. (a) Simplify ∥a⃗− b⃗∥2.

(b) Simplify ∥2a⃗− b⃗∥2.

(c) If a⃗ has length 3, b⃗ has length 7 and
a⃗·⃗b = −2, then compute ∥a⃗+ b⃗∥, ∥a⃗− b⃗∥
and ∥2a⃗− b⃗∥. [A]

2. Simplify (a⃗+ b⃗)·(a⃗− b⃗).

3. Find the lengths of the sides, and the an-
gles in the triangle ABC whose vertices are
A(2, 1), B(3, 2), and C(1, 4).

[A]

4. [Group Problem] Given: A(1, 1),
B(3, 2) and a point C which lies on the line
with parametric equation c⃗ = ( 0

3 )+t
(

1
−1

)
.

If △ABC is a right triangle, then where is
C? (There are three possible answers, de-
pending on whether you assume A, B or C
is the right angle.) [A]

5. (a) Find the defining equation and a nor-
mal vector n⃗ for the line ℓwhich is the graph
of y = 1 + 1

2
x. [A]

(b) What is the distance from the origin to
ℓ? [A]

(c) Answer the same two questions for the
line m which is the graph of y = 2 − 3x.
[A]

(d) What is the angle between ℓ and m? [A]

6. Let ℓ and m be the lines with
parametrizations

ℓ : x⃗ =

(
2
0

)
+ t

(
1
2

)
,

m : x⃗ =

(
0
−1

)
+ s

(
−2
3

)
Where do they intersect, and find the angle
between ℓ and m.
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7. Let ℓ and m be the lines with
parametrizations

ℓ : x⃗ =

 2
1
−4

+ t

1
2
0

 ,

m : x⃗ =

 0
1
−1

+ s

−2
0
3


Do ℓ and m intersect? Find the angle be-
tween ℓ and m.

8. Let ℓ and m be the lines with
parametrizations

ℓ : x⃗ =

2
α
1

+ t

1
2
0

 ,

m : x⃗ =

 0
1
−1

+ s

−2
0
3


Here α is some unknown number.

If it is known that the lines ℓ and m in-
tersect, what can you say about α?

13. Problems–e cross product

1. Compute the following cross products

(a)

3
1
2

×

3
2
1



(b)

 12
−71
3 1
2

×

 12
−71
3 1
2



(c)

1
0
0

×

1
1
0



(d)

√
2
1
0

×

 0√
2
0


2. Compute the following cross products

(a) ı⃗×(⃗ı+ ȷ⃗)

(b) (
√
2⃗ı+ ȷ⃗)×

√
2⃗ȷ

(c) (2⃗ı+ k⃗)×(⃗ȷ− k⃗)

(d) (cos θ⃗ı+ sin θk⃗)×(sin θ⃗ı− cos θk⃗)

3. (a) Simplify (a⃗+ b⃗)×(a⃗+ b⃗). [A]

(b) Simplify (a⃗− b⃗)×(a⃗− b⃗).

(c) Simplify (a⃗+ b⃗)×(a⃗− b⃗). [A]

4. True or False: If a⃗×b⃗ = c⃗×b⃗ and b⃗ ̸= 0⃗
then a⃗ = c⃗? [A]

5. [Group Problem] Given A(2, 0, 0),
B(0, 0, 2) andC(2, 2, 2). Let P be the plane
through A, B and C .

(a) Find a normal vector for P. [A]

(b) Find a defining equation for P. [A]

(c) What is the distance from D(0, 2, 0) to
P? What is the distance from the origin
O(0, 0, 0) to P? [A]

(d) Do D and O lie on the same side of P?
[A]

(e) Find the area of the triangle ABC . [A]

(f) Where does the plane P intersect the
three coordinate axes? [A]

6. (a) Does D(2, 1, 3) lie on the plane P

through the points A(−1, 0, 0), B(0, 2, 1)
and C(0, 3, 0)? [A]

(b) The point E(1, 1, α) lies on P. What is
α? [A]
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7. Given points A(1,−1, 1), B(2, 0, 1) and
C(1, 2, 0).

(a) Where is the point D which makes
ABCD into a parallelogram? [A]

(b) What is the area of the parallelogram
ABCD? [A]

(c) Find a defining equation for the plane P

containing the parallelogram ABCD. [A]

(d) Where does P intersect the coordinate
axes? [A]

8. Given points A(1, 0, 0), B(0, 2, 0) and
D(−1, 0, 1) and E(0, 0, 2).

(a) If P = ABCD
EFGH

is a parallelepiped, then
where are the points C,F,G and H? [A]

(b) Find the area of the base ABCD of P.
[A]

(c) Find the height of P. [A]

(d) Find the volume of P. [A]

B C

A

E

F G

H

D

9. [Group Problem] Let ABCD
EFGH

be the
cube with A at the origin, B(1, 0, 0),
D(0, 1, 0) and E(0, 0, 1).

(a) Find the coordinates of all the points A,
B, C , D, E, F , G, H .

(b) Find the position vectors of the mid-
points of the line segments AG, BH , CE
and DF . Make a drawing of the cube with
these line segments.

(c) Find the defining equation for the plane
BDE. Do the same for the plane CFH .
Show that these planes are parallel.

(d) Find the parametric equation for the line
through AG.

(e) Where do the planes BDE and CFH
intersect the line AG?

(f) Find the angle between the planes BDE
and BGH .

(g) Find the angle between the planesBDE
and BCH . Draw these planes.
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