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Abstract

We show that if the totally geodesic boundary of a compact hyperbolic 3–
manifold M has a collar of depth d� 0, then the diameter of the skinning map of
M is no more than Ae−d for some A depending only on the genus and injectivity
radius of ∂M.

Given a discrete group G, we equip Hom(G,PSL2(C)) with the compact–open topol-
ogy. This induces a topology on the space Hom(G,PSL2(C))/PSL2(C) of conju-
gacy classes of representations called the algebraic topology. If N is a connected
3–manifold, we let

AH(N)⊂ Hom(π1(N),PSL2(C))/PSL2(C)

be the subset of conjugacy classes of discrete and faithful representations with the
subspace topology. Each such conjugacy class corresponds to a hyperbolic structure
on a 3–manifold homotopy equivalent to N. Let AH(N)◦ be the interior of AH(N).

Let S be a closed connected oriented surface of negative Euler characteristic.∗ By
work of Marden [14] and Sullivan [23], the space AH(S×R)◦ equals the set QF(S)
of convex cocompact, or quasifuchsian, hyperbolic structures on S×R. By the Simul-
taneous Uniformization Theorem [3], the space QF(S) is naturally homeomorphic to
the product of Teichmüller spaces T (S)×T (S). If (X ,Y ) is a point of T (S)×T (S),
we let qf(X ,Y ) denote S×R with the corresponding convex cocompact hyperbolic
structure.

Let M be a compact hyperbolic 3–manifold with totally geodesic boundary home-
omorphic to S. A generalization of the Simultaneous Uniformization Theorem due to
Ahlfors, Bers, Marden, and Sullivan (see [5] or [8]) tells us that the space AH(M)◦ of
convex cocompact hyperbolic metrics on M◦ is naturally homeomorphic to the Teich-
müller space T (S). If X is a point in T (S), we let MX denote M◦ equipped with the
corresponding convex cocompact hyperbolic structure.

This research was partially supported by NSF grants DMS–1104871 and DMS–1005973. The authors
acknowledge support from U.S. National Science Foundation grants DMS–1107452, 1107263, 1107367
“RNMS: GEometric structures And Representation varieties” (the GEAR Network).

∗We assume that S is connected for convenience. Defining the Teichmüller space of a disconnected
surface to be the product of the Teichmüller spaces of the components, and adapting the proofs accordingly,
we could dispense with this assumption.
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The inclusion ∂M → M induces a map AH(M)◦ → QF(S). Identifying AH(M)◦

with T (S) and QF(S) with T (S)×T (S), this map is given by X 7→ (X ,σM(X)) for
some function

σM : T (S)→T (S).

The function σM is Thurston’s skinning map associated to M. This map is a key in-
gredient in Thurston’s proof of Geometrization for Haken Manifolds [17, 20, 21, 11].
Thurston’s Bounded Image Theorem [24, 12] states that the image of σM is bounded,
and we call the diameter of the image with respect to the Teichmüller metric the diam-
eter of σM . In [12], the first author proved that if ∂M has a large collar, then σM carries
a large ball to a set of very small diameter (Theorem 29 there). We greatly improve
that theorem here.

We say that the totally geodesic boundary ∂M in a hyperbolic 3–manifold M has a
collar of depth d if the d–neighborhood of ∂M is homeomorphic to ∂M× [0,d].

Theorem 1. If ε and m are positive numbers, then there are positive numbers A and
T such that the following holds. If M is a compact hyperbolic 3–manifold with totally
geodesic boundary Y with χ(Y ) ≥ −m and injrad(Y ) ≥ ε , and M contains a collar of
depth d ≥ T about Σ, then the skinning map σM has diameter less than Ae−d .

We pause to sketch the proof.
Consider the hyperbolic manifolds qf(X ,Y ) and qf(Y,Y ). Very far out toward their

Y –ends, these manifolds are very nearly isometric. In fact, the proximity of the met-
rics decays exponentially in the distance from the convex core. Using foliations con-
structed by C. Epstein, the metrics near the Y –ends of qf(X ,Y ) and qf(Y,Y ) may be
written down explicitly in terms of the Schwarzian derivatives associated to the projec-
tive structures on Y , see Section 2. This allows us to explicitly glue the “X–side” of
qf(X ,Y ) to the “Y –side” of qf(Y,Y ) to obtain a metric η on S×R which is hyperbolic
away from a shallow gluing region of the form S× [n,n+1], see Figure 1. Calculations
(in Sections 3.2.1 and 3.2.3) show that the resulting metric has sectional and traceless
Ricci curvatures exponentially close to−1 and 0, respectively. Moreover, the L2–norm
of the traceless Ricci curvature of this metric is exponentially small (see Section 3.2.2).

Given a hyperbolic manifold MY with totally geodesic boundary Y possessing a
large collar about its boundary, we may glue the “X–side” of qf(X ,Y ) to a compact
piece of MY in the same way to obtain a metric ω on M◦ with the same curvature
bounds, see Figure 2.

It is a theorem of Tian that a Riemannian metric on a closed 3–manifold whose
sectional curvatures are very close to −1 and whose traceless Ricci curvature has very
small L2–norm is C 2–close to a hyperbolic metric, where the proximity depends only
on the curvatures and their norms and not the topology of the 3–manifold. As our man-
ifold is noncompact, Tian’s theorem is not directly applicable. A theorem of Brooks
[7] allows us to circumvent this problem by performing a small quasiconformal defor-
mation of qf(X ,Y ) to obtain a manifold covering a closed one, and we find that ω is
C 2–close to the convex cocompact manifold MX ∼= M◦ with conformal boundary X .
See Section 5.

Now, the copy of S×{n+ 1} in (M◦,ω) is conformally equivalent to Y , and, for
large n, the proximity of the metrics implies that the corresponding surface in MX is
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Figure 1: Building the metric η on S×R.
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Figure 2: Building the metric η on M◦.
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very close to both σM(X) and Y in Teichmüller space. We conclude that the image of
σM lies in a small neighborhood of Y .

Generalizations. The hypothesis bounding the injectivity radius is needed in the proof
in two places: to bound the Sobolev norms of the Schwarzian derivatives of developing
maps of the quasifuchsian manifolds, which is needed in the estimation of the curva-
tures of our model metric; and to guarantee that our model metric is Einstein on the
1–thin part, which is required by Tian’s theorem. We suspect that one may dispense
with this hypothesis, though our proof can not.

The dependence of the constants A and T on χ(∂M) is likely necessary, though
we do not have a sequence of examples to demonstrate this. In [12], the first author
shows that there are manifolds with arbitrarily large diameter skinning maps, but the
maximum depth of the collars about their geodesic boundaries tends to zero.

Skinning maps are defined for any orientable hyperbolic manifold with incompress-
ible boundary, and we in fact establish the following generalization of Theorem 1.

If Z is a Riemann surface, let injrad(Z) denote the injectivity radius of the hyper-
bolic metric in its conformal class.

Theorem 2. Let M = MW be a convex cocompact hyperbolic 3–manifold with freely
indecomposable nonelementary fundamental group and conformal boundary W. Let
p : qf(W,Y )→M be the covering map corresponding to W. There are constants A, T ,
and K depending only on χ(W ) and injrad(Y ) such that the following holds.

If d > T and p embeds the d–neighborhood of the convex core of qf(W,Y ) isomet-
rically into M, then σM has diameter no more than Ae−d and the Kd–neighborhood of
the convex core of qf(V,σM(V )) isometrically embeds into MV for any V .

In particular, the manifold M is acylindrical and the totally geodesic boundary has
a large collar (of depth Kd) in the corresponding hyperbolic structure on M.

Note that M being acylindrical would follow from any bound on the diameter of the
skinning map, as cylindrical manifolds always have unbounded skinning maps.

The proof of Theorem 2 roughly follows the sketch given above. The construction
of the Riemannian metric η in the general setting is recorded below in Theorem 4, and
may be of independent interest.

Miscellaneous notation. If f and F are functions of t, we use the Landau notation
f = O(F) to mean that there is a constant L such that | f (t)| ≤ LF(t) for all t. If a,
b, c, . . . are objects, we write f (t) = Oa,b,c,...(F(t)) if | f (t)| ≤ LF(t) for a constant L
depending only on a,b,c, . . . We use the standard notation W k,p(X ) for Sobolev spaces
and follow the Einstein summation convention.

Acknowledgments. The authors thank Ken Bromberg, David Dumas, Hossein Na-
mazi, Sean Paul, and Jeff Viaclovsky for helpful conversations. They also thank the
referee for such careful readings and numerous useful suggestions. In particular, we
are very grateful for the referee’s many careful observations that improved our estimate
from Ae−d/2 to Ae−d .
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1 Tian’s theorem
Theorem 3 (Tian [25]). There are numbers CTian ≥ 1 and εTian > 0 such that the
following holds. If ε < εTian and (M,ω) is a closed Riemannian 3–manifold with
sectional curvatures pinched between −1− ε and −1+ ε , traceless Ricci curvature
Ricω +2ω = 0 on the 1–thin part, and√∫

M
‖Ricω +2ω‖2

ω dVω ≤ ε, (1.1)

then M has a hyperbolic metric ζ such that ‖ω−ζ‖C 2(M,ω) ≤CTianε, where
‖ · ‖C 2(M,ω) is the C 2–norm with respect to ω .

The background metric ω defines the pointwise norm of any tensor on M, and the
pointwise C 2–norm of a smoothly varying bilinear form b is defined by taking the
supremum of the norm of b and its first two covariant derivatives with respect to ω .
The norm ‖b‖C 2(M,ω) is then the supremum of the pointwise norms.

2 Hyperbolic metrics and Epstein surfaces
Most of this section is a review of Section 6.1 of [6] and Sections 3.2–3.4 of [2].

Let ∆ be the open unit disk in C parameterized by the variable z = x+ iy. We model
hyperbolic space H3 as ∆×R with the metric g given by

ds2 =
4cosh2 t
(1−|z|2)2 dx2 +

4cosh2 t
(1−|z|2)2 dy2 + dt2. (2.1)

Note that ∆×{0} is a totally geodesic hyperbolic plane. We encode g in the matrix

g = (gi j) =

 λ 2 cosh2 t 0 0
0 λ 2 cosh2 t 0
0 0 1


where λ = 2/(1−|z|2).

Let ΓY be a fuchsian group uniformizing Y via ∆/ΓY =Y . This gives us the fuchsian
hyperbolic 3–manifold qf(Y,Y ) = H3/ΓY , and a we have a local expression for the
hyperbolic metric on qf(Y,Y ) in (2.1). We let DY be a compact fundamental domain
for ΓY acting on ∆ whose interior contains zero.

We also want to consider the Poincaré ball model B3 of H3, with boundary the Rie-
mann sphere Ĉ. There is a unique isometry ι : ∆×R→B3 which extends continuously
to ∆×{± 8}, taking ∆×{ 8} to ∆⊂ Ĉ by the identity map. Note that on ∆×{ 8} this
extension carries ∂

∂ t to a vector pointing downward, or out of hyperbolic space.
Let ϕ : ∆→ Ĉ be a univalent function,∗∗ let

Sϕ(z) =
(

ϕzz

ϕz

)
z
− 1

2

(
ϕzz

ϕz

)2

∗∗A function ∆→ Ĉ is univalent if it is injective and holomorphic.

5



be its Schwarzian derivative, and let ‖Sϕ(z)‖ = |λ−2Sϕ(z) |. Let Mϕ(z) : Ĉ→ Ĉ be
the osculating Möbius transformation to ϕ at z (the Möbius transformation with the
same 2–jet as ϕ at z). This uniquely extends to an isometry Mϕ(z) : B3→ B3. There is
then a map Φ : ∆×R→ B3 given by

Φ(z, t) = Mϕ(z)(ι(z, t)),

which also admits a continuous extension to ∆× (− 8, 8] with Φ(z, 8) = ϕ(z). We
henceforth identify ∆ with ∆×{ 8}, and identify both ∆×R and B3 with H3.

There is an orthonormal basis e1, e2, ∂

∂ t for the tangent space to H3 at (z, t) and an
orthonormal basis for the tangent space to H3 at Φ(z, t) such that the derivative of Φ at
(z, t) is given by

DΦ
∣∣
(z,t) =

 1+ ‖Sϕ(z)‖
et cosh t 0 0
0 1− ‖Sϕ(z)‖

et cosh t 0
0 0 1

 . (2.2)

(In [6], the eigenvalues of the matrix DΦ− I are off by a factor of 4.) If we normalize
(by conjugation in PSL2C) so that z = 0 and so that the osculating Möbius transforma-
tion at zero is the identity, we have

2cosh t · e1 = cos(θ0)
∂

∂x
+ sin(θ0)

∂

∂y

2cosh t · e2 =−sin(θ0)
∂

∂x
+ cos(θ0)

∂

∂y

(2.3)

where θ0 is the argument of Sϕ(0), see Section 3.3 of [2].
The inequality ‖Sϕ(z)‖ ≤ 3/2 holds for univalent ϕ by a celebrated theorem

of Kraus [13] and Nehari [19], and so Φ is an orientation–preserving immersion on
{(z, t) ∈ ∆×R | t > log

√
2}, by (2.2).

The principal curvatures of Φ(∆×{t}) at (z, t) are given by

κ±(z, t) =
1− (1±2‖Sϕ(z)‖)e−2t

1+(1±2‖Sϕ(z)‖)e−2t , (2.4)

when this is defined, see Proposition 6.3 of [6]. If Sϕ(z) = 1, then κ+(z, t) = coth t by
continuity of the principal curvatures. These curvatures are positive provided t > log2,
thanks to the Kraus–Nehari theorem, and so Φ(∆×{t}) is locally convex for such t.◦

We now specialize to univalent ϕ associated to ends of hyperbolic 3–manifolds.
Let M be a complete hyperbolic 3–manifold with conformally compact incompress-

ible end E = EM compactified by the Riemann surface Y . Let Γ = ΓM ⊂ PSL2(C) be
a Kleinian group uniformizing M.

Blurring the distinction between ends and their neighborhoods, the end E is home-
omorphic to S× (0, 8), and we pick isomorphisms π1(E)← π1(S)→ ΓY compatible

◦The statement in [6] that the Φ(∆×{t}) are convex when t > 0 is an error.
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with the chosen marking of Y . Choose a component U Y of the domain of disconti-
nuity of ΓM corresponding to E, let ϕ : ∆→ U Y be the π1(S)–equivariant Riemann
mapping, and let Φ : ∆× (log2, 8]→H3∪U Y be as above. By the above discussion,
the map Φ is an immersion and the surfaces Φ(∆×{t}) are locally strictly convex.

Given a smooth surface F and a locally strictly convex immersion f : F → H3,
there is an associated Gauss map g : F → Ĉ, defined as follows. For any w in F ,
there is a neighborhood U of w on which f is an embedding. Since f is locally strictly
convex, there is a unique geodesic ray emanating from f (w) that is perpendicular to
f (U) and moves away from the center of curvature. This geodesic ray has a unique
endpoint g(w) in Ĉ, and this defines a map g : F → Ĉ.

Note that it follows from (2.2) that the Gauss map gt : ∆×{t} → Ĉ associated to
the immersion Φt = Φ|∆×{t} is equal to the embedding ϕ ◦ pt , where pt : ∆×{t} → ∆

is the projection pt(z, t) = z. In particular, gt descends to an injective map on ∆/π1(S).
Let Ξ : ∆/π1(S)× (log2, 8]→ E∪Y be the immersion induced by Φ and let Ξ t be

the restriction of Ξ to ∆/π1(S)×{t}.
We claim that Ξ is a diffeomorphism.◦◦

To see this, first note that since Ξ 8 is a diffeomorphism and S is compact, the
implicit function theorem provides a t0 such that Ξ is an embedding when restricted to
∆/π1(S)× [t0, 8].

Suppose that Ξ is not a diffeomorphism, and let t1 be the largest t in (log2, 8) such
that Ξ is not injective on ∆/π1(S)× [t, 8). So Ξ t1 is not injective, and we have points
a and b in ∆/π1(S)×{t1} for which Ξ t1(a) = Ξ t1(b). Local strict convexity implies
that Ξ t1 must have a self–tangency at these points, or else there would be a slightly
later time t2 at which Ξt2 failed to be an embedding. Furthermore, the normal vectors
pointing away from the centers of curvature must agree, or else there would again be a
slightly later time when Ξt failed to embed. Lifting the map Ξ t1 to the map Φ t1 , we find
distinct points ã and b̃ in ∆×{t1} such that gt1(ã) = gt1(b̃), contradicting injectivity of
the Gauss map gt1 . We conclude that Ξ is a diffeomorphism.

Let Et = E M
t be the image of Ξ t . We call the Et Epstein surfaces, in honor of their

study by C. Epstein [9], who calls them Weingarten surfaces.

3 Gluing hyperbolic metrics
We prove the following gluing theorem for hyperbolic manifolds, which says roughly
the following. If two hyperbolic manifolds M1 and M2 contain separating product
regions S× I isometric to products taken from far out in conformally compact Y –ends
of two other hyperbolic manifolds N1 and N2, then these regions cut M1 and M2 into
convex pieces A 1 and A 2 and concave pieces B1 and B2. The theorem says that one
may glue A 1 to B2 so that the resulting manifold admits a Riemannian metric that is
very nicely behaved near the gluing site and hyperbolic elsewhere. In particular, if the
resulting manifold is closed, this Riemannian metric satisfies the hypotheses of Tian’s
theorem, and is thus close to the unique hyperbolic metric. See Figure 3.
◦◦The argument given here is implicit in Sections 3 and 6 of [6].
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Figure 3: Building M with the metric η . The case M1 = N1 is shown for simplicity.

Theorem 4 (Model manifold for convex cocompact gluings). Given positive numbers
ε and m, there is a constant A0 = A0(m,ε) such that the following holds.

Let Y be a marked Riemann surface with χ(Y )≥−m and injrad(Y )≥ ε .
For i in {1,2}, let (Ni,ζ i) be a complete hyperbolic 3–manifold with a conformally

compact (marked) incompressible end E i conformally compactified by Y . Let E i
t be the

foliation of E i by Epstein surfaces. For log2 < a < b, let E i
[a,b] be the compact region

of E i bounded by E i
a and E i

b.
Let (Mi,ξ i) be a complete hyperbolic manifold containing a separating submani-

fold isometric to E i
[n,n+3]. For t in [a,b], let A i

t be the closure of the convex component
of Mi−E i

t , and let Bi
t be the closure of the concave component.

Let M be the topological manifold obtained by gluing A 1
n to B2

n along their bound-
aries respecting the marking of Y .

Then there is a Riemannian metric η on M that satisfies the following.

1. The inclusions of (A 1
n ,ξ

1) and (B2
n+3,ξ

2) into (M,η) are isometric embed-
dings.

2. The sectional curvatures of η are within A0e−2n of −1.

3. The L2–norm of the traceless Ricci curvature of η is no more than A0e−n.

4. The injectivity radius of η on E2
[n,n+3] is at least (1−A0e−2n)injrad(Y )coshn.

Proof. We begin by assuming that M1 = N1 and that M2 = N2 = qf(Y,Y ).
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3.1 The proof of Theorem 4 when M1 = N1 and that M2 = N2 =
qf(Y,Y ).

Let s0(t) be a smooth nonincreasing function on R such that s0(t) = 1 when t ≤ 0
and s0(t) = 0 when t ≥ 1. Let sn(t) = s0(t− n). As the Sobolev norms of the sn are
independent of n, we write s(t) for sn(t) and let context dictate n.

Let Φ : ∆×R→ B3 be the map associated to E1 constructed in Section 2, and let
h = Φ∗g be the pullback of the hyperbolic metric via Φ. We interpolate between the
hyperbolic metrics g and h on ∆× [n,n+1] using the metric

η = (1− s(t))g+ s(t)h, (3.1)

which descends to a metric on S× [n,n+1] that we also call η , see Figure 1.
By (2.2), (3.1), and the Kraus–Nehari theorem, we have the following proposition,

which provides Part 4 of Theorem 4.

Proposition 5. The identity map ι : (S × [n,n + 1],g) → (S × [n,n + 1],η) is
(1+Os(e−2n))–bilipschitz with Jacobian determinant 1+Os(e−4n).

To prove the other parts of Theorem 4 when M1 = N1 and M2 = N2 = qf(Y,Y ),
we begin by showing that the traceless Ricci curvature of our metric η is on the order
of e−2n. The region where η is nonhyperbolic has volume on the order of e2n, and so
it will follow that the L2–norm of the traceless Ricci curvature is on the order of e−n.
Since we are in dimension three, having Ricci curvature on the order of e−2n implies
that the difference between the sectional curvatures and −1 is on the order of e−2n as
well.

The intuition for the estimate of the Ricci curvature is as follows. The Ricci cur-
vature measures the infinitesimal defect in volume of a sharp geodesic cone compared
to the corresponding Euclidean cone: the volume element of a metric ω at a point p
admits an asymptotic expansion in ω–geodesic normal coordinates

dVω =

(
1− 1

6
Ricω(u)ε2 +O(ε3)

)
ε

2 dε dA(u) (3.2)

where Ricω is the Ricci curvature of ω considered a quadratic form, and dA(u) is the
canonical spherical measure on the unit tangent space T1

pM, see section 3.H.4 of [10].
Our metric η is obtained by gluing two hyperbolic metrics on S×R together fiberwise.
The original metrics on the fibers are exponentially close, as are the original normal
curvatures to the fibers, and so, after interpolating to obtain η , the volumes of cones
are disturbed an exponentially small amount. One may try to make this precise using
(3.2) and Proposition 5. This shows that the Ricci curvatures are close, but depends on
the precise rate of decay of the O(ε3) term in dVη . Fortunately, the Ricci curvatures
are fairly easy to estimate directly.

3.2 Bounds on curvatures
If ω = ωi j dxi dx j is a Riemannian metric, we have Christoffel symbols

Γ
`
i j(ω) =

1
2

ω
k`
(

∂

∂xi ωk j +
∂

∂x j ωik−
∂

∂xk ωi j

)
, (3.3)
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where (ω i j) = (ωi j)
−1.

3.2.1 Bounding the Ricci curvature

The Ricci curvature tensor Ricω = Rω
i j dxi dx j of a metric ω in coordinates xi is given

by

Rω
i j =

(
∂Γ`

i j

∂x`
−

∂Γ`
i`

∂x j +Γ
`
i jΓ

m
`m−Γ

m
i`Γ

`
jm

)
(ω).

Theorem 6. If u is an η–unit vector at (z, t) in S× [n,n+1], then

Ricη(u)−Ricg(u) = O(e−2n). (3.4)

Theorem 6 follows immediately from the following theorem.

Theorem 7. We have ‖η−g‖C 2(S×[n,n+1],g) = O(e−2n).

Proof. Since the norms ‖Sϕ(z)‖ and arguments arg(Sϕ(z)) are smooth functions
away from the zeroes of Sϕ , and the set of points (z, t) such that Sϕ(z) = 0 is a finite
set of lines in S×R, we restrict attention to points (z, t) such that Sϕ(z) 6= 0.

Let Q(Y ) be the vector space of holomorphic quadratic differentials on Y . By the
Kraus–Nehari theorem, the subset of Q(Y ) consisting of Schwarzian derivatives of
developing maps of Kleinian projective structures on Y is compact, see [4]. So there
is a number B0 = B0(Y ) bounding the values and first few partial derivatives of the
norms ‖Sϕ(z)‖ and arguments arg(Sϕ(z)) on the fundamental domain DY . In other
words, the functions ‖Sϕ(z)‖ and arg(Sϕ(z)) have Sobolev norms ‖ · ‖W 2, 8(DY ) at
most B0. In fact, if we fix a compact subset X of T (Y ) containing Y , we obtain a
uniform bound B1 = B1(X ) on these Sobolev norms over all of X . As the thick
part of the moduli space M (Y ) is compact [18], the action of the mapping class group
Mod(S) on T (Y ) provides a bound B = B(χ(S), injrad(Y )) on these Sobolev norms
over the entire thick part of T (Y ).

The notation O( · ) will now always mean Oχ(S), injrad(Y )( · ).
Consider a point (w, t) in ∆× [0, 8) with Sϕ(w) 6= 0. Composing ϕ on both sides

with Möbius transformations, we may assume that w = 0 and Mϕ(0) = Id.
We work with a small ball B⊂DY ⊂ ∆ centered at 0 containing no zeroes of Sϕ .
Let z be a point of B, and let ψz be the hyperbolic element of PSL2C stabilizing ∆

that carries 0 to z and whose axis in ∆ contains 0. By the invariance of the Schwarzian,
we have

S(ϕ ◦ψz)(0) = Sϕ(ψz(0))ψ ′z(0)
2 = Sϕ(z)ψ ′z(0)

2. (3.5)

Note that ψ ′z(0) = 1/(1−|z|2). We may postcompose ϕ ◦ψz with a Möbius transfor-
mation to ensure that the osculating Möbius transformation to ϕ ◦ψz at 0 is the identity,
and this has no effect on the Schwarzian. Let

θz = arg(Sϕ(z))− arg
(
ψ
′
z(0)

2) .
10



A change of variables allows us to assume that θ0 = 0. Let

Az =

 cos(θz) −sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

 . (3.6)

Consider coordinates u1 = cosh(t)x, u2 = cosh(t)y, and u3 = t. In these coordi-
nates, the metric g is given by

g = (gi j) =

 λ 2 0 0
0 λ 2 0
0 0 1

 ,

where λ = 2/(1−|z|2).
By (2.3), we have

DΦ
∣∣
(z,t) = Az

 1+ ‖Sϕ(z)‖
et cosh t 0 0
0 1− ‖Sϕ(z)‖

et cosh t 0
0 0 1

A−1
z (3.7)

in B×R with respect to the orthonormal basis 1
λ

∂

∂u1 , 1
λ

∂

∂u2 , ∂

∂u3 to H3 at (z, t) and
an orthonormal basis at Φ(z, t). Note that (gi j), a scalar matrix when restricted to the
subspace ∂

∂u1 and ∂

∂u2 , commutes with the matrix DΦT = DΦ.
Writing the metric η = (1− s(t))g+ s(t)h in these coordinates, we have

(ηi j) = (1− s(t))(gi j)+ s(t)DΦ
T · (gi j) ·DΦ (3.8)

= (1− s(t))(gi j)+ s(t) · (gi j) · (DΦ)2. (3.9)

Expanding this, we have

(ηi j) = (gi j)+
1

et cosh t
· s(t)λ 2‖Sϕ(z)‖ ·P, (3.10)

where

P =


2cos(2θz)+

‖Sϕ(z)‖
et cosh t 2sin(2θz) 0

2sin(2θz) −2cos(2θz)+
‖Sϕ(z)‖
et cosh t 0

0 0 0

 . (3.11)

Proposition 8. For all i, j, k, and `, we have∣∣ηi j−gi j
∣∣= O(e−2n),

11



∣∣∣∣ ∂

∂xk ηi j−
∂

∂xk gi j

∣∣∣∣= O(e−2n),

and ∣∣∣∣ ∂

∂x`
∂

∂xk ηi j−
∂

∂x`
∂

∂xk gi j

∣∣∣∣= O(e−2n),

in coordinates u1 = cosh(t)x, u2 = cosh(t)y, and u3 = t on S× [n,n+1].

Proof. The estimates hold on B by inspection of (3.10) and (3.11), and, since the zeroes
of Sϕ are isolated and our metrics are smooth, they hold on all of S× [n,n+ 1] by
continuity.

Now, in the coordinates ui, the first few derivatives of the gi j and gi j are O(1), and
so Proposition 8 implies that ‖η − g‖C 2(S×[n,n+1],g) = O(e−2n), by definition of the
C 2–norm.

This completes the proof of Theorem 7 (and hence of Theorem 6).

3.2.2 L2–norm of the traceless Ricci curvature

To estimate the L2–norm of the traceless Ricci curvature of η , we begin by estimating
the volume of the nonhyperbolic part.

Lemma 9. We have∫
S×[n,n+1]

1 dVη ≤−18πχ(S)e2n. (3.12)

Proof. Let ι : (S× [n,n+1],g)→ (S× [n,n+1],η) be the identity map. By (2.2), the
Jacobian determinant of ι at (z, t) is

| Jac ι |= 1−
(
‖Sϕ(z)‖
et cosh t

)2

. (3.13)

So∫
S×[n,n+1]

1 dVη =
∫

S×[n,n+1]
| Jac ι | dVg

≤
∫

S×[n,n+1]
1 dVg

=
∫

DY×[n,n+1]

√
detg dxdydt

=
∫

DY×[n,n+1]
λ

2 cosh2 t dxdydt

=
∫

S

(∫
[n,n+1]

cosh2 t dt
)

dAY

≤−2πχ(S)e2n+2

≤−18πχ(S)e2n.

12



For an η–unit vector u at (z, t), we have

Ricη(u)+2η(u) = Ricg(u)+2g(u)+O(e−2t) = O(e−2t), (3.14)

by Theorem 6. So there is a constant A1 = A1(χ(S), injrad(Y )) such that

‖Ricη +2η‖η ≤ A1e−2n. (3.15)

Lemma 10. We have√∫
M
‖Ricη +2η‖2

η dVη ≤−18π A1χ(S)e−n. (3.16)

Proof. Since η is hyperbolic away from S× [n,n+1], Lemma 9 and (3.15) give us√∫
M
‖Ricη +2η‖2

η dVη ≤
√∫

S×[n,n+1]
A2

1e−4n dVη

= A1e−2n

√∫
S×[n,n+1]

1 dVη

≤ A1e−n
√
−18π χ(S)

≤−18π A1χ(S)e−n.

3.2.3 Sectional curvatures

In dimension three, the sectional curvatures are determined by the Ricci curvatures.
More specifically, if u, v, and w are orthonormal tangent vectors at a point in a 3–
manifold, we have

2K(u,v) = Ric(u)−Ric(w)+Ric(v). (3.17)

Theorem 6 and (3.17) give us

2Kη(u,v)
∣∣
(z,t) =−2+2−2+O(e−2t) (3.18)

for any η–orthonormal vectors u and v at any (z, t) in ∆× [n,n+1]. So

Kη(u,v)
∣∣
(z,t) =−1+O(e−2n) (3.19)

for all (z, t), since Kη = −1 on M − (∆× [n,n + 1]). So there is a constant A2 =
A2(χ(S), injrad(Y ))≥ A1 such that

−1−A2e−2n ≤ Kη ≤−1+A2e−2n. (3.20)

Let A3 = max{−18π A1χ(S), A2,1}.
Setting A0 = A3 completes the proof of Theorem 4 in the case when M1 = N1 and

that M2 = N2 = qf(Y,Y ).

13



3.3 The proof of Theorem 4 in the remaining cases
Since the gluing takes place locally on the region E2

[n,n+1], the proof above provides all
of the cases where N2 = qf(Y,Y ). The cases when N1 = qf(Y,Y ) are then obtained by
replacing s(t) with 1− s(t) in the proof. The general case is then obtained as follows.
Let E be the Y –end of qf(Y,Y ). First glue A 1

n+1 to E[n, 8) ⊂ qf(Y,Y ) along E[n,n+1] as
above. Then glue qf(Y,Y )−E[n+3, 8) to B2

n+2 along E[n+2,n+3] as above. The resulting
manifolds both contain an isometric copy of E[n+1,n+2] , and a simple cut and paste
completes the proof of the general case.

4 Curvatures of surfaces and normal projections
Letting w = x1+ ix2, we compactify hyperbolic space by attaching the Riemann sphere
Ĉ via the upper half-space model

H3 = {(x1,x2,x3) ∈ R3 | x3 > 0}.

Let F be a smooth surface in H3 equipped with a smooth unit normal field, and let
q be in F . Applying an element of PSL2(C), we assume that q = (0,0,1), that the unit
normal to F at q is −k, and that the principal directions at q are i and j. Let ν be the
normal projection (or Gauss map) of F to Ĉ that sends each point of F to the point
of Ĉ at the end of the geodesic ray given by our normal field. Picking an orthonormal
basis for TqF along its principal directions and the usual basis for T0Ĉ, the derivative
of ν at q is given by

Dνq =

( 1+κ1
2 0
0 1+κ2

2

)
(4.1)

where the κi are the principal curvatures of F at q. Our convention is that normal
curvatures are positive when the surface is curving away from the normal vector.

Lemma 11. Let S× [0,∞) be a closed smoothly concave neighborhood of a convex
cocompact end E of a hyperbolic manifold and let Z be the conformal boundary at E.
If the principal curvatures of G = S×{0} are within ε of 1 for some 0 < ε < 1, then
G and Z are (1+ ε)2–quasiconformal.

Proof. Lift G to a surface G̃ in H3 and normalize as above so that the derivative of the
normal projection at a point q in G̃ is

Dνq =

(
1+κ1(q)

2 0
0 1+κ2(q)

2

)

where the κi(q) are the principal curvatures of G̃ at q. The usual Euclidean metrics
on the tangent spaces TqG̃ and T0Ĉ are conformally compatible with the Riemannian
metrics on G̃ and Z̃, respectively. Since the dilatation of the linear map Dνq is at most
(1+ ε/2)/(1− ε/2)< (1+ ε)2 at the origin, the dilatation of the quasiconformal map
ν is no more than (1+ ε)2 at q, see Chapter 1 of [1].
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Lemma 12. Let qf(W,Z) be a quasifuchsian manifold, let Sϕ be the Schwarzian
derivative of the developing map ϕ : ∆→U Z , and let Et be the Epstein surface at time
t in the Z–end of qf(W,Z). If t ≥ log9, then the principal curvatures κ±(z, t) of Et at
(z, t) satisfy

|κ±(z, t)−1| ≤ 9e−2t . (4.2)

Proof. This follows immediately from (2.4) and the Kraus–Nehari Theorem.

5 Proof of Theorem 2
Proof. Let MW ∼= M be a convex cocompact hyperbolic manifold with conformal in-
compressible boundary W , let p : qf(W,Y )→MW be the covering map corresponding
to W , and assume that p embeds the d–neighborhood of the convex core of qf(W,Y )
isometrically into MW . Let n = bdc−8. We make the crude choice of 8 to be sure that
S× [n,n+3] avoids the thin part of MW .

First assume that X is such that the 2n–neighborhood of the convex core of qf(X ,Y )
together with the Y –end of qf(X ,Y ) isometrically embeds into a convex cocompact
hyperbolic 3–manifold N1 with conformal boundary Y , see Figure 4. Letting M1 = N1,
N2 = qf(W,Y ), and M2 = M, let M, η , and A0 = A0(χ(S), injrad(Y )) be as in Theorem
4. Note that while the topology of M depends on X , our estimates do not. Since M
is closed, it follows from Tian’s theorem that there is a T = T (χ(S), injrad(Y ))≥ log9
such that, when n≥ T , the metric η on M is within CTianA0e−n < 1/2 of a hyperbolic
metric ρ on M in the C 2–norm.• In particular, an η–unit vector has ρ–length within
CTianA0e−n of 1. The metrics are then (1+A4e−n)–bilipschitz for A4 = CTianA0. We
summarize this discussion in a proposition.

Proposition 13. The metrics η and ρ satisfy

‖η−ρ‖C 2(M,η) ≤ A4e−n (5.1)

and are therefore (1+A4e−n)–bilipschitz.

Let Mη = (M,η) and Mρ = (M,ρ), and henceforth identify their tangent spaces.
The cover of Mρ corresponding to ∂M is a quasifuchsian manifold qf(Z,σM(Z)),

see Figure 5.
We now show that there is a constant A5 = A5(χ(S), injrad(Y ))≥ A4 such that the

Teichmüller distance between σM(Z) and Y is less than 2A5e−n.
Consider the surface E 2

n+3 in Mη . Let Fn be the image of E 2
n+3 in Mρ , see Figure

5. A small neighborhood of Fn lifts isometrically to qf(Z,σM(Z)), and we continue to
use Fn to denote this lift. Let n be the field of η–unit normal vectors to E 2

n+3 in Mη

pointing toward Y . Let u be an η–unit vector field tangent to E 2
n+3 on some open patch

of E 2
n+3. The normal curvature of E 2

n+3 along u is given by

NE 2
n+3

(u) =
IIE 2

n+3
(u,u)

‖u‖2
η

=−η(n,∇η
u u)

‖u‖2
η

=−η(n,∇η
u u) (5.2)

•Note that T does depend on injrad(Y ), for we must be at a certain depth in the collar to ensure that the
traceless Ricci curvature of our metric vanishes on the thin parts.
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Y

N1

M2 = MW

W

Figure 4: Building M with the metric η .

σM(Z)

Fn

G−n

Z

Fn

G−n

id
Mρ Mη

E 2
n+3

E X
−n

Y

E 2
n+3

E X
−n

X

Figure 5: The manifold M with its two metrics ρ and η . At left is the covering map
qf(Z,σM(Z))→Mρ , together with the projections G−n → Z and Fn → σM(Z). At
right are partial covering maps from subsets of qf(Y,Y ) and qf(X ,Y ) to Mη with cor-
responding projections E 2

n+3→ Y and E X
−n→ X .
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where ∇η is the Levi–Civita connection for η . By Lemma 12, this curvature is within
9e−2n of 1.

Letting m be the ρ–unit normal field to Fn pointing toward the skinning surface
σM(Z), the normal curvature of Fn is given by

NFn(u) =
IIFn(u,u)
‖u‖2

ρ

=−
ρ
(
m,∇

ρ
uu
)

‖u‖2
ρ

(5.3)

where ∇ρ is the Levi–Civita connection for ρ . The proximity (5.1) of the metrics
provides the following estimate.

Claim. The normal curvatures satisfy∣∣∣NE 2
n+3

(u)−NFn(u)
∣∣∣= O(e−n). (5.4)

Proof of claim. We have
∥∥∇

η
u u
∥∥

η
= O(1), and so (5.1) gives us∥∥∇

ρ
uu
∥∥

η
+
∥∥∇

ρ
uu
∥∥

ρ
= O(1). (5.5)

Together with (5.1), this yields∣∣∣η(n,∇η
u u)−ρ

(
n,∇ρ

uu
)∣∣∣= O(e−n). (5.6)

Proposition 13 gives us

‖n−m‖η +‖n−m‖ρ = O(e−n), (5.7)

and then (5.5) and the Cauchy–Schwarz inequality give us∣∣∣ρ(n,∇ρ
uu
)
−ρ
(
m,∇

ρ
uu
)∣∣∣≤ ‖n−m‖ρ

∥∥∇
ρ
uu
∥∥

ρ
= O(e−n). (5.8)

Now,∣∣∣‖u‖2
ρ −1

∣∣∣≤ A4e−n ≤ 1
2
,

by (5.1), and we conclude that

∣∣∣NE 2
n+3

(u)−NFn(u)
∣∣∣= ∣∣∣∣∣ η(n,∇η

u u)
‖u‖2

η

−
ρ
(
m,∇

ρ
uu
)

‖u‖2
ρ

∣∣∣∣∣= O(e−n) (5.9)

by the triangle inequality. Claim

So there is an A5 = A5(χ(S), injrad(Y ))≥ A4 such that the normal curvatures of Fn
are within A5e−n of 1. It follows that there is an n0 = n0(χ(S), injrad(Y )) such that, for
n ≥ n0, the normal projection νn : Fn → σM(Z) is defined and nonsingular. Lemma
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11 tells us that νn is (1 + A5e−n)2–quasiconformal and that E 2
n+3 is (1+9e−2n)2–

quasiconformally equivalent to Y . Since the map E 2
n+3 →Fn is (1+A4e−n)2–quasi-

conformal, we conclude that the Teichmüller distance between σM(Z) and Y is no more
than log(1+A4e−n)+ log(1+9e−2n)+ log(1+A5e−n)≤ 3A5e−n.

We now claim that there is an A6 = A6(χ(S), injrad(Y ))≥ A5 such that Z is within
3A6e−n of X . To see this, let E X

−n be the Epstein surface in the X–end of qf(X ,Y ) at
distance n. By our assumption on X , a small neighborhood of this surface embeds
isometrically in N1, and hence Mη . We let G−n denote this surface considered in
Mρ . By (4.2), the principal curvatures of E X

−n are within 9e−2n of 1. So the princi-
pal curvatures of G−n are 1+O(e−n), as in the above argument. By Lemma 11, the
projection ν−n : G−n → Z is (1+A6e−n)2–quasiconformal for some A6. Since prox-
imity of the metrics tells us that G−n and E X

−n are (1+A4e−n)2–quasiconformal, and
E X
−n is (1+ e−n)2–quasiconformally equivalent to X , we conclude that the Teichmüller

distance between Z and X is less than 3A6e−n.
By Royden’s theorem that the Teichmüller and Kobayashi metrics agree [22], the

skinning map is 1–lipschitz, as it is holomorphic.•• We conclude that the distance
between σM(X) and σM(Z) is at most 3A6e−n, and so the distance between σM(X) and
Y is at most 6A6e−n.

Using circle packings with very small circles in the proof of Brooks’s theorem [7]
(as done in Theorems 31 and 33 of [12]) demonstrates that any Riemann surface V is
within A6e−n of an X such that the 2n–neighborhood of the convex core of Q(X ,Y )
together with the Y –end of Q(X ,Y ) embeds into a convex cocompact hyperbolic 3–
manifold N1 with conformal boundary Y . Since skinning maps are 1–lipschitz, we con-
clude that the diameter of σM is no more than 7A6e−n = 7A6e−(bdc−8) ≤ 56722A6e−d .

Since the metrics η and ρ are within CTianA0e−n of each other, the images Ft
of the E 2

t in Mρ are convex for t greater than our chosen T . It follows that there
is a K0 = K0(χ(S), injrad(Y )) such that the K0d–neighborhood of the convex core of
qf(Z,σM(Z)) embeds in MZ . Since X is within 3A6e−n of Z, Corollary B.23 and Propo-
sition 2.16 of [16]M provide a K1 = K1(χ(S), injrad(Y )) such that the K1d–neighbor-
hood of the convex core of qf(X ,σM(X)) embeds in MX . As any Riemann surface is
within A6e−n of such an X , another application of Corollary B.23 and Proposition 2.16
of [16] provide a K =K(χ(S), injrad(Y )) such that the Kd–neighborhood of the convex
core of qf(V,σM(V )) embeds in MV for any V .

This completes the proof of Theorem 2.
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