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Abstract

Let S be a smooth affine algebraic curve, and let S̊ be the Riemann surface
obtained by removing a point from S. We provide evidence for the congruence
subgroup property of mapping class groups by showing that the congruence kernel

ker
(

M̂od(S̊)→ Out
(

π̂1(S̊)
))

lies in the centralizer of every braid in Mod(S̊). As a corollary, we obtain a new
proof of Asada’s theorem that the congruence subgroup property holds in genus
one. We also obtain simple–connectivity of Boggi’s procongruence curve com-
plex Č (S̊) when S is affine, and a new proof of Matsumoto’s theorem that the
congruence kernel depends only on the genus in the affine case.

1 Introduction
Let S be a Riemann surface of finite type, and let Mod(S) = π0

(
Homeo+(S)

)
be its

mapping class group. If C is a finite index characteristic subgroup of π = π1(S), there
is a natural map

Mod(S)→ Out(π/C),

and a subgroup containing the kernel of such a map is called a congruence subgroup of
Mod(S)—the kernels themselves are principal congruence subgroups. Ivanov’s con-
gruence subgroup problem asks if every finite index subgroup of Mod(S) is congru-
ence, and we say that Mod(S) has the congruence subgroup property if they are—this
is Problem 2.10 of Kirby’s List [1], see [25, 21, 22]. The mapping class group is known
to possess this property when S has genus no more than two. In genus zero, the theorem
is due to Diaz, Donagi, and Harbater [14] (see also [31] and Section 4 here); in genus
one, to Asada [5] (see also [13], [9], and Section 10 here); and, in genus two, to Boggi
[9, 11].

If G is a group, we let Ĝ denote its profinite completion. There is a natural map

M̂od(S)→ Out(π̂)
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whose kernel K = K(S) is the congruence kernel. Vanishing of K is equivalent to the
congruence subgroup property.

Due to issues related to torsion, it is advantageous to replace Mod(S) with a nice
subgroup of finite index. To that end, let G (S) be the congruence subgroup of Mod(S)
consisting of those mapping classes acting trivially on H1(S;F3). As intersections
of congruence subgroups are congruence (see Lemma 1), a finite index subgroup of
Mod(S) contains a congruence subgroup if and only if its intersection with G (S) does.
So, letting Ĝ (S) = Ĝ (S), we need only check injectivity of

Ĝ (S)→ Out(π̂)

to establish the congruence subgroup property. Thanks to a theorem of Grossman [16],
the group G (S) injects into Out(π̂), and we let Ǧ (S) be the closure of its image. By the
universal property of profinite completions, Ǧ (S) is the image of Ĝ (S)→ Out(π̂).

Let C (S) be the curve complex of S—the simplicial flag complex whose vertices
are isotopy classes of nonperipheral simple loops on S joined by an edge if they may
be realized as disjoint loops on S. In his attack on the congruence subgroup problem
[8], Boggi introduced profinite versions of this complex, subsequently studied in [12,
27, 28], which we now discuss.

Let A = A (S) be the inverse system of all finite index subgroups of G (S) under
inclusion and let K = K (S) be the inverse system of all congruence subgroups of
G (S). The group G (S) is torsion–free [39]. Not only that, but G (S) is pure, meaning
that its elements fix a simplex of C (S) if and only if they fix all of the vertices of that
simplex, see Corollary 1.8 of [23]. It follows that if a lies in A , the quotient

C a = C (S)/a

is naturally a finite simplicial complex. The profinite curve complex is the limit

Ĉ (S) = lim
A

C a

and the procongruence curve complex is

Č (S) = lim
K

C κ .

These limits may be taken in the topological category, but the resulting spaces are
quite unruly. A natural solution, that we adopt, is to consider the C a simplicial finite
sets and take limits in the category of simplicial profinite sets. The objects of this
category are simplicial objects in the category of profinite sets, called profinite spaces,
and the morphisms are the natural transformations between them. See Section 5 and
[8, 28, 34, 35].

Passing to limits, the action of G (S) on C (S) yields an action of Ĝ (S) on Ĉ (S) and
of Ǧ (S) on Č (S). The zero–skeleton of C (S) injects into the zero–skeleta of Ĉ (S) and
Č (S), and we let context determine of which space a simple loop is to be considered a
vertex.

If G is a group acting on a set X , we let Gx denote the stabilizer in G of an element
x in X . Most often, X is the curve complex or one of its profinite cousins, and x is a
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vertex. If X and Y are subsets of Ĝ (S) and Ǧ (S), we let X and Y ? denote their closures,
respectively.

Let S̊ denote the surface obtained from S by removing a point, let S̊̊ denote the
surface obtained from S̊ by removing a point, and let π̊ = π1(S̊).

Our main theorem is the following, proven in Section 8.

Theorem. Let S be a smooth affine curve. Let P be the set of nonperipheral simple
loops on S̊ that are peripheral in S. Then

K(S̊)⊂
⋂

γ∈P
Ĝ (S̊)

γ
.

In particular, the kernel K(S̊) lies in the centralizer of every braid in Mod(S̊).

In Section 10, we show that the congruence subgroup property in genus one follows
quickly from this theorem.

The Birman exact sequence [6]

1 π G (S̊) G (S) 1

has a profinite analog

1 π̂ Ĝ (S̊) Ĝ (S) 1.

Our techniques provide a new proof of M. Matsumoto’s procongruence version of this
sequence (which follows from Theorem 2.2 of [30]). See Section 9.

Theorem (Matsumoto). For affine curves, the congruence kernel depends only on the
genus. In other words, K(S̊)∼= K(S) when S is affine. In this case, there is a short exact
sequence

1 π̂ Ǧ (S̊) Ǧ (S) 1.

It is a more difficult theorem of Boggi [11] and, independently, Hoshi–Mochizuki [19]
that this is still the case when S is projective. Note that Matsumoto’s theorem immedi-
ately implies that the congruence subgroup property holds when the genus is zero, as
a thrice–punctured sphere has trivial mapping class group. In fact, and as first shown
by Asada [5], one does not need the full strength of Matsumoto’s theorem to obtain the
congruence subgroup property in genus zero, see Section 4.

We conjecture that the braid subgroup b(S̊) of Ĝ (S̊) has trivial centralizer. This
may prove difficult to establish, as it is unknown if the center of Ĝ (S̊) vanishes, though
it is known that Ǧ (S̊) is center–free (see Corollary 6.7 of [28] for the affine case and
Theorem 6.13 of [20] for the general case). By the Boggi–Matsumoto short exact
sequence

1 π̂ Ǧ (S̊) Ǧ (S) 1,
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our main theorem would imply the congruence subgroup property in general if, after
adding any number of punctures, there were always a braid whose centralizer in Ĝ (S̊)
lied in π̂ . We expect that a generic pseudo-Anosov braid in π should suffice. We record
these observations in a theorem. Let Sg,n be the closed Riemann surface of genus g with
n punctures, and let πg,n denote π1(Sg,n).

Theorem. Suppose that 2g+ n ≥ 3, let k > 1 be a natural number, and consider the
Birman sequence

1 π̂g,n+k−1 Ĝ (Sg,n+k) Ĝ (Sg,n+k−1) 1.

Then Mod(Sg,n) has the congruence subgroup property if there is a B in πg,n+k−1 whose
centralizer in Ĝ (Sg,n+k) lies in π̂g,n+k−1. For example, a B in πg,n+k−1 whose central-
izer equals 〈B〉 implies the congruence subgroup property for Mod(Sg,n).

. . .

G. Quick has developed the homotopy theory of profinite spaces [34]. In particular,
he defines a covariant functor Π1( · ) serving as the fundamental group that assigns
a profinite group Π1(X ) to a profinite space X .◦ For a simplicial finite set X , the
group Π1(X ) agrees with the profinite completion π̂1(X ) of the usual fundamental
group π1(X ). Furthermore, the fundamental group Π1( ·) commutes with cofiltered
limits of simplicial finite sets. See Section 5.

Boggi has observed that Π1(Ĉ (S)) = limA π̂1
(
C a(S)

)
vanishes unless S is of small

complexity, see Theorem 12. He has also shown that the Congruence Subgroup Prob-
lem holds for all surfaces S if and only if the profinite space Č (F) is simply–connected
for all surfaces F , see Corollary 7.2 of [10].◦◦ We refer the reader to [28] for an
in–depth discussion of the interaction of profinite Teichmüller theory and Quick’s ho-
motopy theory.

The proof of our main theorem shows that Č (S̊) is simply–connected when S is
affine, see Theorem 13.

Theorem. Let S = Sg,n be a smooth affine curve with χ(S) < 0 and 3g− 3+ n ≥ 1.
Then Č (S̊) is simply–connected:

Π1(Č (S̊)) = lim
K

π̂1(C
κ(S̊)) = 1.

Corollary. If S = Sg,n is affine with χ(S)< 0 and 3g−3+n ≥ 1, then, for any prime
number p,

H1(Č (S̊);Fp) := lim
K

H1
(
C κ(S̊);Fp

)
= 0.

◦Quick uses the notation πn( ·) for his homotopy groups, but, to avoid confusion, we do not.
◦◦It is important to emphasize that simple–connectivity of Č (S) alone is not enough to deduce the con-

gruence subgroup property for Mod(S): one really needs simple–connectivity of Č (F) for all surfaces F of
lower or equal complexity.
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In Section 11, we record some thoughts on the fundamental groups of the finite–
level complexes C a.
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Chris Leininger, Pierre Lochak, Ben McReynolds, Andy Putman, Gereon Quick, and
Ben Wieland for many useful conversations. The author thanks the referees for their
careful readings and many helpful comments. The author also thanks the Institute for
Advanced Study and the Park City Math Institute, where some of this work was carried
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2 Point pushing
We make extensive use of the Birman exact sequence [6]:

1 π G (S̊) G (S) 1.
τ F (2.1)

The map F is the natural map obtained by “forgetting the puncture,” or, in other words,
by extending homeomorphisms from S̊ to S. The image of π in G (S̊) is the subgroup B
of elements represented by point–pushing homeomorphisms, defined as follows—see
Section 4.2 of [15] for details. Let {x} = S− S̊, and pick an isomorphism π1(S) ∼=
π1(S,x). A loop h : [0,1]→ S based at x is an isotopy of the inclusion map {x} →
S. Such an isotopy may be extended to an ambient isotopy H : S× [0,1]→ S. The
homeomorphism H( · ,1) at time one is a homeomorphism of S fixing x, which induces
a homeomorphism H̊ of S̊. We call H( · ,1) and H̊ point–pushing homeomorphisms.
The isotopy class of H̊ depends only on the pointed homotopy class of h, and so yields
a well defined element of Mod(S̊). This mapping class acts trivially on homology, and
so lies in G (S̊).

The Birman exact sequence fits naturally into a commutative diagram

1 π G (S̊) G (S) 1

1 Inn(π) Aut(π) Out(π) 1

F

where the vertical maps are injections and the map π → Inn(π) is the natural isomor-
phism. A consequence is that every inner automorphism of π1(S,x) is realized by a
point–pushing homeomorphism fixing x.

3 Pulling and pushing congruence subgroups
Lemma 1. Finite intersections of congruence subgroups are congruence.

Proof. It suffices to prove that the intersection of two principal congruence subgroups
is congruence.
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Let C and D be finite index characteristic subgroups of π , and let

E =
⋂

ϕ∈Aut(π)

ϕ(C∩D)

be the characteristic core of C∩D. Our maps to Out(π/C) and Out(π/D) both factor
through Out(π/E):

G (S) Out(π/E) Out(π/C)

Out(π/D)

and so ker
(
G (S)→Out(π/E)

)
lies in the intersection of ker

(
G (S)→Out(π/C)

)
and

ker
(
G (S)→ Out(π/D)

)
.

Lemma 1 shows that K forms an inverse system and allows us to replace Mod(S)
with G (S) when considering the congruence subgroup problem, replacing congruence
subgroups of Mod(S) with their intersections with G (S), called congruence subgroups
of G (S).

Lemma 2. If κ is a congruence subgroup of G (S), then F−1(κ) is a congruence sub-
group of G (S̊).

A loop on a Riemann surface of finite type is peripheral if it is freely homotopic into
a subsurface that is conformally equivalent to a punctured disk. An element of the
fundamental group is peripheral if its representatives are. Note that we consider a
null–homotopic loop to be peripheral. Letting ι : S̊→ S be the inclusion map, we have
the following short exact sequence

1 N π̊ π 1
ι∗ (3.1)

where N is the normal closure of a peripheral element corresponding to the distin-
guished puncture of S̊ (the puncture located at {x}= S− S̊).

Proof of Lemma 2. Pick a point z on S̊. Identify π̊ with π1(S̊,z) and π with π1(S,z).
Let D be a characteristic subgroup of π and let κ be the associated principal con-

gruence subgroup.
Let ϕ lie in G (S̊) and let H : S→ S be a homeomorphism fixing x and z such that

h = H
∣∣
S̊ represents ϕ . Let c lie in ι−1

∗ (D). We have ι∗h∗(c) = H∗ι∗(c). Since D is
characteristic, H∗ι∗(c) lies in D, and so h∗(c) lies in ι−1

∗ (D). Therefore ι−1
∗ (D) is

h∗–invariant, and so the conjugacy class of ι−1
∗ (D) is G (S̊)–invariant. We thus have a

representation

ρ : G (S̊)→ Out
(
π̊/ι

−1
∗ (D)

)
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that fits into a commuting diagram:

F−1(κ) G (S̊) Out
(
π̊/ι−1
∗ (D)

)

1 κ G (S) Out
(
π/D

)
ρ

F

Exactness of the bottom row yields F−1(κ)⊃ kerρ . So F−1(κ) is congruence.•

If M and N are subgroups of a group G, we let

MN = M ·N = {mn | m ∈M and n ∈ N}.

If G acts on a set X , our notation for stabilizers becomes ambiguous when applied to
products MN ⊂ G. To remedy this, we adopt the convention that, whenever we write
MNx, we always mean MNx = M · (Nx), and not (MN)x.

Theorem 3. Let S be a smooth affine curve, and let γ be a nonperipheral simple loop
in S̊ that is peripheral in S. Let κ be a congruence subgroup of G (S̊). Let Bκ = κ ∩B
and κγ = κ ∩G (S̊)γ . Then Bκ κγ = Bκ · (κγ) is a congruence subgroup.

As Bκ κγ ⊂ κ , the following corollary is immediate.

Corollary 4. For S a smooth affine curve, the inverse system of subgroups

{Bκ
κγ

∣∣ κ in K (S̊)}

is cofinal in K (S̊).

Lemma 5. Let S be a smooth affine curve, and let γ be a nonperipheral simple loop
in S̊ that is peripheral in S. Let κ be a congruence subgroup of G (S̊). Then Bκγ is a
congruence subgroup of G (S̊).

Proof. As B is normal in G (S̊), the set Baγ is a subgroup for any a in A .
Let κ be a congruence subgroup containing a principal congruence subgroup

p= ker
(
G (S̊)→ Out(π̊/C)

)
for some characteristic subgroup C of π̊ .

Let ι : S̊→ S be the inclusion map. By our choice of γ , there is a π1–injective
subsurface Σ⊂ S̊ with ∂Σ = γ such that

j = ι∗
∣∣
π1(Σ)

: π1(Σ)−→ π

is an isomorphism. Here we choose a basepoint z in γ and identify π̊ and π with π1(S̊,z)
and π1(S,z) respectively.

•While the conjugacy class of ι−1
∗ (D) is G (S̊)–invariant, it is not necessarily characteristic. To see that

this is not an issue, consider the characteristic core D of ι−1
∗ (D). Our kernel kerρ ⊂ F−1(κ) contains the

kernel of the representation G (S̊)→Out
(
π̊/D), which is a principal congruence subgroup in the usual sense.
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We lift G (S̊)γ to Aut(π̊) by identifying the former with the group of homeomor-

phisms of S̊ that are the identity on S̊−Σ up to isotopy relative to S̊−Σ. Since C is
characteristic and π1(Σ,z) is G (S̊)γ –invariant, the subgroup D =C∩π1(Σ,z) is G (S̊)γ –
invariant. It follows that the conjugacy class of ι∗(D) is G (S)–invariant, and we have
an exact sequence

1 D G (S) Out
(
π/ι∗(D)

)
.

The subgroup D is a G (S)–congruence subgroup, and we have the following claim.

Claim. D⊂ F(pγ).

Proof of claim. Let ψ be an element of D. Choose a homeomorphism h : S→ S that
fixes z and represents ψ . As mentioned above, the conjugacy class of ι∗(D) is G (S)–
invariant. By postcomposing with a point–pushing homeomorphism fixing z, we may
assume that h represents an automorphism h∗ of π1(S,z) that preserves ι∗(D). Since
ψ is an element of D, this automorphism h∗ descends to an inner automorphism of
π1(S,z)/ι∗(D). By further postcomposing with a point–pushing homeomorphism fix-
ing z, we may, and do, assume that h∗ in fact represents the trivial automorphism of
π1(S,z)/ι∗(D). We further assume that h is the identity on S− ι(Σ), which may be
achieved by replacing h with a map isotopic to h relative to z.

Restricting h to ι(S̊) yields a homeomorphism H : S̊→ S̊ that fixes γ pointwise,
and hence represents an element ϕ of G (S̊)γ that maps to ψ under the forgetful map
F : G (S̊)→ G (S).

Now,

π1(S̊,z)∼= A∗Z B

where A is the free group π1
(
S̊−Σ,z

)
, B= π1(Σ,z), and the amalgamating Z is π1(γ,z).

Each element of π1(S̊,z) may then be written in a normal form

a1b1 · · ·anbn

where each ai lies in A and each bi lies in B. The homeomorphism H induces an
automorphism H∗ of π1(S̊,z), and since H is the identity on S̊−Σ, we have

H∗(a1b1 · · ·anbn) = a1H∗(b1) · · ·anH∗(bn).

Now, by construction, jH∗
∣∣
B j−1 = h∗, and so H∗

∣∣
B is trivial in Aut(B/D). So, for each

b in B, there is a d in D such that H∗(b) = bd. So, for each i there is a di in D such that

H∗(a1b1 · · ·anbn) = a1H∗(b1) · · ·anH∗(bn)

= a1(b1d1) · · ·an(bndn).

Since D⊂C, we conclude that the automorphism H∗ induces the trivial automorphism
of π1(S̊,z)/C. But this means that ϕ lies in p, and as it also lies in G (S̊)γ , it lies in pγ .

Since F(ϕ) = ψ , we conclude that ψ is in F(pγ). Since ψ was arbitrary, we con-
clude that D⊂ F(pγ).
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Since D is congruence, and

Bκγ ⊃Bpγ = F−1(F(pγ))⊃ F−1(D),

the subgroup Bκγ is congruence by Lemma 2.

The claim in the proof of Lemma 5 gives us the following.

Scholium 6. If κ is a congruence subgroup of G (S̊), then F(κγ) is a congruence sub-
group of G (S).

Proof of Theorem 3. The set Bκ κγ lies in κ , and hence in κ ∩Bκγ . Note that, as Bκ

is not necessarily normal in G (S̊), it is not clear that Bκ κγ is a subgroup of G (S̊)—we
are not requiring κ to be normal. We claim that Bκ κγ = κ ∩Bκγ , which will establish
that Bκ κγ is in fact a subgroup, and, by Lemma 5, a congruence one. To see this, let b
in B and k in κγ be such that bk lies in κ . Since κγ lies in κ , the element b must lie in
κ . So b lies in Bκ = κ ∩B.

4 The congruence topology on the Birman kernel

The group G (S̊) not only embeds in Out(π̊), but also as a subgroup of Aut(π). The first
embedding gives rise to the geometric completion Ǧ (S̊), by taking the closure of G (S̊)
in Out(̂̊π). The second embedding gives us a completion G̃ (S̊), by taking the closure
in Aut(π̂).

By Proposition 3 of [3], if G is any finitely generated group, the kernel of Ĝ→
Aut(Ĝ) lies in the center of Ĝ. Now, the center of π̂ is trivial—thanks to a theorem
of Anderson, Proposition 18 of [3]; and, independently, Nakamura, Corollary 1.3.4 of
[32]. So there is a natural short exact sequence

1 π̂ Aut(π̂) Out(π̂) 1.
τ̃

This gives us a short exact sequence

1 π̂ G̃ (S̊) Ǧ (S) 1.
τ̃ (4.1)

When S is affine, it is a theorem of Matsumoto that G̃ (S̊)∼= Ǧ (S̊), and hence that there
is a short exact sequence

1 π̂ Ǧ (S̊) Ǧ (S) 1.

This follows from Theorem 2.2 of [30], and we will provide a new proof of this in
Section 9. We need the fact that π̂ injects into Ǧ (S̊)—in other words, that the closure
B? of B in Ǧ (S̊) is isomorphic to B̂. For this, one constructs a natural epimorphism
Ǧ (S̊)→ G̃ (S̊).
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Theorem 7 (Matsumoto). The closure B? of B in Ǧ (S̊) is isomorphic to B̂.

Proof (Asada). Let τ : π → G (S̊) be as in the Birman exact sequence (2.1), and let
τ̌ : π̂ → Ǧ (S̊) be its natural extension. The image of τ̌ is B?. We claim that τ̃ : π̂ →
G̃ (S̊) factors through τ̌ : π̂ → Ǧ (S̊). This will imply that τ̌ is injective, and hence that
B? ∼= π̂ . So we find a commutative triangle

Ǧ (S̊)

π̂ G̃ (S̊)

ξ

τ̃

τ̌

The argument here is borrowed from the proof of Theorem 1 of [5].
Let F̃ : G̃ (S̊̊)→ G̃ (S̊) be the natural projection. Given an element ϕ of Ǧ (S̊) ⊂

Out
(̂̊π), we may lift it to an element ϕ̃ of G̃ (S̊̊) ⊂ Aut

(̂̊π) that fixes the element c
corresponding to the new puncture of S̊̊, and then project to an element F̃(ϕ̃) of Aut(π̂).
Any two lifts ϕ̃ and ϕ̃ ′ of ϕ differ by an inner automorphism centralizing c. This
centralizer is topologically generated by c, by [18] (see also Lemma 2.1.2 of [32]), and
so we have a well–defined map ξ : Ǧ (S̊)→ G̃ (S̊) given by ξ (ϕ) = F̃(ϕ̃).

The map ξ is clearly a homomorphism. To see that it is continuous, take a sequence
ϕn in Ǧ (S̊) converging to some ϕ . Pick lifts ϕ̃n of the ϕn to Aut(̂̊π) fixing c. After
passing to a subsequence, the ϕ̃n converge to some ϕ̃ 8. Since the projection G̃ (S̊̊)→
Ǧ (S̊) is continuous, the element ϕ̃ 8 is a lift of ϕ . By continuity of multiplication, this
ϕ̃ 8 fixes c, and since F̃ is continuous, we conclude that ξ is continuous.••

Now, every inner automorphism of π is realized by a point–pushing homeomor-
phism of S which is the identity in a neighborhood of the basepoint. Deleting the fixed
points of such homeomorphisms and passing to isotopy classes produces the subgroup
τ(π) = B ⊂ G (S̊), and so

ξ ◦ τ̌
∣∣
π
= τ̃
∣∣
π
.

By the universal property of profinite completions, we have ξ ◦ τ̌ = τ̃ .
Since ξ is continuous, the closure B? of B = τ(π) in Ǧ (S̊) surjects the closed sub-

group τ̃(π̂) of Aut(π̂), as τ̃(π) is dense in the latter. As B? = τ̌(π̂) and τ̃ is injective,
we have B? ∼= π̂ .

See [31] for a different proof.
The continuous epimorphism Ǧ (S̊)→ G̃ (S̊), the short exact sequences

1 π̂ Ĝ (S̊) Ĝ (S) 1,

and (4.1) are all that is needed to establish the congruence subgroup property for map-
ping class groups of punctured spheres. See the proof of Theorem 1 in [5], Section 4
of [8], or Section 6 of [28].
••Alternatively, one may invoke the deep theorem of Nikolov and Segal [33] that homomorphisms from

topologically finitely generated profinite groups to arbitrary profinite groups are always continuous.
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5 Profinite spaces
We quickly review some of the notions from [34]. See also [8, 28, 35].

A profinite set is an inverse limit (in the topological category) of discrete finite
sets. Profinite sets form a category Ê with continuous maps as morphisms. A profinite
space is a simplicial object in this category—a contravariant functor from the simplex
category ∆ to Ê . Profinite spaces form a category Ŝ whose morphisms are the natural
transformations. We let S denote the category of simplicial sets. There is a forgetful
functor | · | : Ŝ →S that sends a profinite space to its underlying simplicial set.

A profinite space X may be considered a sequence X• of profinite sets {Xn} 8

n=0,
called the skeleta, together with all compositions of face di : Xn→Xn−1 and degen-
eracy maps si : Xn→Xn+1. A group G acts on X if it acts on the Xn equivariantly
respecting face and degeneracy maps. If G is a topological group, we say that a G–
action is continuous if G acts continuously on the Xn. Since singletons are closed in
profinite sets, stabilizers Gx are closed for continuous actions.

The action of G (S) on the simplicial set C (S) extends naturally to continuous ac-
tions of Ĝ (S) on Ĉ (S) and Ǧ (S) on Č (S). The forgetful functor | · | has a left adjoint
( ·)◦ : S → Ŝ called profinite completion.2

We warn the reader that the profinite completion C (S)◦ of the simplicial set C (S)
is not the same as Boggi’s profinite curve complex Ĉ (S) of [8]. On the other hand,
there is a variant of ( ·)◦ adapted to the equivariant setting of discrete groups acting on
simplicial sets that does produce Ĉ (S): see section 4 of [35], particularly remark 4.5
there. As we will not need to deal with the subtleties relating the two definitions, we
refer the reader to [34] and [35] for details.

In [34], the homotopy theory of profinite spaces is developed by giving Ŝ the
structure of a model category, which allows us to discuss the homotopy type of the
profinite spaces Ĉ (S) and Č (S). Quick defines profinite homotopy groups Πn( ·) on
the category Ŝ , and we say that a profinite space X is simply–connected if Π0(X )
and Π1(X ) vanish.

If X is a simplicial finite set, then Π1(X ) is the profinite completion π̂1(X ) of
the usual fundamental group π1(X ) of X , by Proposition 2.1 of [34]. Furthermore, it
follows from the proof of Theorem 3.11 of [35] that Π1( ·) commutes with cofiltered
limits of simplicial finite sets, see Proposition 7.1 of [10]. This means that if

{X µ →X λ | µ,λ ∈ Λ}

is a cofiltered system of simplicial finite sets, then

Π1

(
lim
λ∈Λ

X λ

)
= lim

λ∈Λ

Π1
(
X λ

)
.

6 Stabilizers
Any vertex σ of C (S) may be viewed as a vertex of Ĉ (S) or of Č (S), and we let context
determine which is meant.

2Quick [34] uses the notation (̂ ·) for this functor, which conflicts with our use of that notation.
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There is ambiguity in the notation Ĝ (S̊)σ , as it could denote the stabilizer of σ

in the group Ĝ (S̊), or the profinite completion of G (S̊)σ . For arbitrary σ , it remains
unknown if these two groups coincide (but this would follow from the congruence
subgroup property). In the cases we consider here, there is no ambiguity, and we
record the following lemma to alleviate any uneasiness. See Proposition 6.5 of [8] for
a more general statement.

Proposition 8. Let γ be a nonperipheral simple loop in S̊ that is peripheral in S. Then(
Ĝ (S̊)

)
γ

= (G (S̊)γ)∼= Ĝ (S̊)γ ,

and there is a short exact sequence

1 Ẑ Ĝ (S̊)γ Ĝ (S) 1.

Proof. We first establish the isomorphism (G (S̊)γ)∼= Ĝ (S̊)γ .
Consider the short exact sequence

1 Z G (S̊)γ G (S) 1
ι Φ (6.1)

where Φ is the restriction of the forgetful map F to the stabilizer G (S̊)γ and the sub-
group ι(Z) is generated by a Dehn twist in γ , see [24]. Taking profinite completions is
right exact (Proposition 3.2.5 of [36]), and so we have an exact sequence of profinite
completions

Ẑ Ĝ (S̊)γ Ĝ (S) 1.
ι̂ Φ̂

Consider the natural surjection

q : Ĝ (S̊)γ −→ (G (S̊)γ).

By a theorem of Scott, Theorem 3.3 of [37, 38], if G is a finitely generated subgroup
of π , then the natural map Ĝ→ π̂ is injective. Since ι(Z) lies in B, and B ∼= π̂ by
Theorem 7, we have a natural isomorphism between ι(Z) ⊂B ∩ (G (S̊)γ) and Ẑ. So
q◦ ι̂ , and hence ι̂ , is injective, and we have a short exact sequence

1 Ẑ Ĝ (S̊)γ Ĝ (S) 1.
ι̂ Φ̂

The restriction of Ĝ (S̊)→ Ĝ (S) to (G (S̊)γ) is a surjection through which the map

Ĝ (S̊)γ → Ĝ (S) factors. It follows that the kernel of the map (G (S̊)γ)→ Ĝ (S) is pre-

cisely ι(Z)∼= Ẑ, and the Five Lemma gives us (G (S̊)γ)∼= Ĝ (S̊)γ .
We now turn to the equality(

Ĝ (S̊)
)

γ

= (G (S̊)γ).

12



The stabilizer of γ in Ĝ (S̊) is closed. So it suffices to show that G (S̊)γ is dense therein.
Let a be an element of A (S̊) that is normal in G (S̊), and consider the finite simplicial
set C a(S̊) =C (S̊)/a, on which G (S̊)/a acts. The vertices of C a(S̊) are simply a–orbits
of vertices of C (S̊). Let ϕa be an element of

(
G (S̊)/a

)
aγ

. So ϕa · aγ = ϕaγ = aγ .
Now, since a is normal, we have ϕa = aϕ , and so aϕγ = aγ . So there is a ψ in a
such that ψϕγ = γ . But then ψϕ is an element of G (S̊)γ that maps to ϕa, and the map
G (S̊)γ →

(
G (S̊)/a

)
aγ

is surjective. Since a was an arbitrary normal element of A , and

the normal subgroups are cofinal in A , we obtain density of G (S̊)γ in (Ĝ (S̊))γ .

The last paragraph of the proof in fact establishes the following general lemma,
which we record for posterity.

Lemma 9. Let G be a discrete group, G̃ a profinite completion of G, and let U be the
set of subgroups of G corresponding to the open subgroups of G̃. Suppose that G acts
simplicially with finite orbits on a simplicial set X• and define

X̃• = lim←−
U∈U

X•/U.

(This is a profinite space equipped with a natural G–equivariant map ι : X• → X̃•
on which G̃ acts simplicially and continuously.) Then, given a simplex σ of X•, the
stabilizer G̃ι(σ) of ι(σ) is the closure in G̃ of the stabilizer Gσ of σ .

7 Fundamental groups of quotients
We record here some results that we need in the proof of our main theorem (Theorem
13) in the next section.

Let S = Sg,n be a Riemann surface of finite type of genus g with n punctures. If
g = 0, let h = n−4. If n = 0, let h = 2g−2. If g≥ 1 and n 6= 0, let h = 2g−3+n.

Theorem 10 (Harer, Theorem 3.5 of [17]). The space C (S) is homotopy equivalent to
a wedge of spheres of dimension h. In particular, if dimC (S) = 3g− 3+ n ≥ 2, then
C (S) is simply–connected.

Theorem 11 (M. A. Armstrong, Theorem 3 of [4]). Let X be a simply connected
simplicial complex. Let G be a group of simplicial homeomorphisms of X acting
without inversions and let G∗ be the normal subgroup of G generated by elements with
nonempty fixed–point set. Then π1(X /G)∼= G/G∗.

This theorem allows us to view π1(C
a) as a quotient of a by the subgroup generated

by its reducible elements.

8 Cornering the congruence kernel
Boggi has observed the following theorem.
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Theorem 12 (Theorem 7.2 of [10]). If S = Sg,n with χ(S)< 0 and 3g−3+n≥ 2, then

Π1(Ĉ (S)) = lim
A

π̂1
(
C a(S)

)
= 1.

Proof. By Theorem 11, we have a surjection â−� π̂1
(
C a
)
. Since inverse limit func-

tors are exact on profinite groups (see Proposition 2.2.4 of [36]), we have

lim
A

â−� lim
A

π̂1
(
C a
)
.

But limA â= 1.

Given a in A , we let a∗ denote the subgroup of a generated by reducible ele-
ments.22 The rest of this section is devoted to the proof of the following theorem.

Theorem 13. Let S be a smooth affine algebraic curve. Let P be the set of nonperiph-
eral simple loops on S̊ that are peripheral in S. Then

K(S̊)⊂
⋂

γ∈P
Ĝ (S̊)γ

and Π1(Č (S̊)) = limK π̂1(C
κ(S̊)) = 1.

Lemma 14.

lim
K

κ̂ = K.

Proof. The closure κ of κ in Ĝ (S̊) is isomorphic to κ̂ , and so limK κ̂ = limK κ . This
limit is the intersection of all of the finite index subgroups of Ĝ (S̊) obtained by pulling
back finite index subgroups of Ǧ (S̊), which is precisely the congruence kernel K.

Lemma 15. For any h in K , we have limκ∈K Bκ hγ = hγ .

Proof. By Theorem 7,

lim
κ∈K

Bκ hγ = lim
a∈A

Ba hγ ,

and clearly

lim
a∈A

Ba hγ =
⋂
a∈A

Ba hγ ⊃ hγ .

On the other hand, if H is a finite index subgroup of Ĝ (S̊) that contains hγ , then
there is a finite index subgroup of H of the form Ba hγ , obtained by letting a = H∩
G (S̊). But since hγ is closed, it is the intersection of all of the finite index subgroups
containing it, and we conclude that

hγ =
⋂
a∈A

Ba hγ .

22An element is reducible if it preserves an essential 1–dimensional submanifold up to isotopy, or, equiv-
alently, it fixes a simplex in the curve complex.
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Proof of Theorem 13. Consider the short exact sequence

1 κ∗ κ π1(C
κ) 1

given by Theorem 11. Passing to profinite completions is right exact (see Proposition
3.2.5 of [36]), and so we have an exact sequence

κ̂∗ κ̂ π̂1(C
κ) 1.

Inverse limits are exact on profinite groups (Proposition 2.2.4 of [36]), and so, by
Lemma 14, we have an exact sequence

lim
K

κ̂∗ K lim
K

π̂1(C
κ(S̊)) 1. (8.1)

We let R∗ and Rγ ⊂R∗ be the images in K of limK κ̂∗ and limK κ̂γ , respectively.
By Corollary 4, the system of subgroups

{Bκ
κγ | κ in K and Bκ = κ ∩B}

is cofinal in K . Now, Bκ ∼= B̂κ , and making use of the forgetful map G (S̊)→ G (S),
it is easily seen that κγ

∼= κ̂γ . We also have B̂κ κγ
∼= Bκ κγ ⊂ Ĝ , and since Bκ κγ is

dense in Bκ κγ , the two are equal, as both are closed. The congruence kernel K is then

K = lim
κ∈K

B̂κ κγ = lim
κ∈K

Bκ κγ .

Now, for a fixed h in K , the subset {h∩κ | κ ∈K } is cofinal in K , by Lemma 1. It
follows that, for any such h,

lim
κ∈K

Bκ κγ ⊂ lim
κ∈K

Bκ hγ (8.2)

and we have

K = lim
κ∈K

Bκ κγ

⊂ lim
h∈K

lim
κ∈K

Bκ hγ by (8.2)

⊂ lim
h∈K

ĥγ by Lemma 15

⊂Rγ

⊂R∗

Together with (8.1), we have the short exact sequence

K K lim
K

π̂1(C
κ(S̊)) 1.
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Corollary 16. If S is affine, then, for any prime number p,

H1(Č (S̊);Fp) := lim
K

H1
(
C κ(S̊);Fp

)
= 0.

Proof. The surjections π̂1(C
κ(S̊))−� H1

(
C κ(S̊);Fp

)
, exactness of inverse limits on

profinite groups, and Theorem 13 prove the corollary.

Let S be an affine curve and let Σ be its projective completion. The complement
Σ− S is a finite set of n points, for some n. There is a map G (S)→ G (Σ) obtained
by extending homeomorphisms from S to Σ. The kernel b(S) of this map is the braid
group of Σ on n strands. The elements of b(S) are called braids.

If γ is a nonperipheral simple closed loop in S̊ that is peripheral in S, then a Dehn
twist Tγ in γ lies in b(S̊). In fact, the Dehn twists in such curves generate b(S̊). Since
Ĝ (S̊)γ lies in the centralizer of Tγ , we have the following corollary of Theorem 13.

Corollary 17. When S is affine, the congruence kernel K(S̊) centralizes b(S̊).

9 Kernels depend only on the genus of affine curves
If S is affine, it follows from Matsumoto’s exact sequence

1 π̂ Ǧ (S̊) Ǧ (S) 1

that K(S̊) and K(S) are isomorphic, and so the congruence subgroup problem depends
only on the genus in the affine case. It is a deeper theorem of Boggi [11] and, indepen-
dently, Hoshi and Mochizuki [19], that this is true in all cases.

We provide a new proof of this fact in the affine case. We are grateful to Marco
Boggi for suggesting that our techniques should accomplish this.

Theorem 18 (Matsumoto). If S is affine, then K(S̊)∼= K(S) and there is a short exact
sequence

1 π̂ Ǧ (S̊) Ǧ (S) 1. (9.1)

Proof of Theorem 18. By Theorem 13, we have K(S̊)⊂ Ĝ (S̊)γ , where γ bounds a pair
of pants in S̊.

By Proposition 8, we have the short exact sequence

1 Ẑ Ĝ (S̊)γ Ĝ (S) 1
Φ̂ (9.2)

where Φ̂ is the restriction of the forgetful map F̂ to Ĝ (S̊)γ . Exactness on the left follows
from Theorem 7 and Scott’s theorem that π is subgroup separable (see the proof of
Proposition 8). In fact, these two theorems imply that the Ẑ in this exact sequence
injects into Ǧ (S̊). In particular, K(S̊) intersects this Ẑ trivially. So K(S̊) injects into
Ĝ (S).
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Given a congruence subgroup η ⊂ G (S), the subgroup F̂−1(η) is a congruence
subgroup of G (S̊), by Lemma 2. So,

K(S̊) =
⋂

K (S̊)

κ

⊂
⋂

K (S)

F̂−1(η)

= F̂−1
⋂

K (S)

η

= F̂−1(K(S))

and so F̂(K(S̊))⊂K(S).
On the other hand, by Scholium 6, for every κ in K (S̊), the subgroup Φ̂(κγ) is a

congruence subgroup of G (S). So

K(S) =
⋂

K (S)

η ⊂
⋂

K (S̊)

Φ̂(κγ),

which yields

Φ̂
−1(K(S))⊂ Φ̂

−1

( ⋂
K (S̊)

Φ̂(κγ)

)

=
⋂

K (S̊)

Φ̂
−1
(

Φ̂(κγ)
)

=
⋂

K (S̊)

Ẑκγ .

Now, let x be an element of
⋂

K (S̊) Ẑκγ . So for each κ in K (S̊), there are zκ in

Ẑ and xκ in κγ such that x = zκ xκ . By Lemma 1, we may enumerate the elements of
K (S̊) and take intersections to obtain a nested sequence {κn} in K (S̊) such that

8⋂
n=1

κn
γ =

⋂
K (S̊)

κγ = K(S̊).

Let zn = zκn and xn = xκn . After passing to a subsequence, the zn converge to some z in
Ẑ, since Ẑ is compact. Since the κn

γ are compact and nested, we may pass to a further
subsequence so that the xn converge to some x 8 in K(S̊). We conclude that x = zx 8,
which transparently lies in ẐK(S̊). So⋂

K (S̊)

Ẑκγ = Ẑ ·
⋂

K (S̊)

κγ = ẐK(S̊).

All together, we have

Φ̂
−1(K(S))⊂

⋂
K (S̊)

Ẑκγ = Ẑ ·
⋂

K (S̊)

κγ = ẐK(S̊)
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and so

K(S)⊂ F̂(ẐK(S̊)) = F̂(K(S̊)).

We conclude that F̂
∣∣
K(S̊) : K(S̊)→K(S) is an isomorphism.

To see that we recover the exact sequence, consider the diagram

1 ̂̊π G̃ (S̊̊) Ǧ (S̊) Ĝ (S̊)

1 π̂ G̃ (S̊) Ǧ (S) Ĝ (S)

F̃ F̌ξ F̂

ρ̊

q ρ

where the diagonal map ξ is the map from the proof of Theorem 7 and F̌ = q◦ξ . Other
than the right–most square, the diagram commutes by definition. To see that this square
commutes, note that

F̌ ◦ ρ̊
∣∣
G (S̊) = F = ρ ◦ F̂

∣∣
G (S̊) ,

and that, by the universal property of the profinite completion, there is a unique contin-
uous homomorphism to Ǧ (S) extending F , which must be F̌ ◦ ρ̊

∣∣
G (S̊) = ρ ◦ F̂

∣∣
G (S̊).

Suppose that ϕ is an element of ker(F̌)−B?. Pick an element ϕ ′ in Ĝ (S̊) in the
preimage of ϕ . Since the diagram commutes, we know that F̂(ϕ ′) lies in K(S). Since

F̂
∣∣
K(S̊) : K(S̊)→K(S)

is an isomorphism, we may choose an element ψ of B = ker(F̂) such that ψϕ ′ lies in
K(S̊). But this means that we may multiply ϕ by an element of B? to obtain the trivial
element, contradicting our choice of ϕ . We conclude that ker(F̌) = B? ∼= π̂ .

10 The congruence subgroup problem in genus one
In this section, marked points are more convenient than punctures. We let Sg,n be
the oriented surface of genus g with a set Xg,n of n marked points, and let πg,n =
π1(Sg,n−Xg,n). From this viewpoint, Mod(Sg,n) is the group of orientation preserving
homeomorphisms of the pair (Sg,n,Xg,n) up to isotopy of pairs, see Chapter 2 of [15].
We let Gg,n = G (Sg,n) be the kernel of the action of Mod(Sg,n) on H1(Sg,n−Xg,n;F3).
If σ is an essential simple closed curve in Sg,n, we let Tσ be the positive Dehn twist in
σ .

We give a new proof of Asada’s theorem [5] that the congruence kernel vanishes
in genus one. Our proof uses properties of centralizers in free profinite groups due to
Herfort and Ribes [18] (also featured in the proof given in [13]) and our theorem on
congruence kernels centralizing braids. It was inspired by the proofs of Lemmata 3.8
and 3.9 of [12]. A novel feature of the argument is that it deduces the general case from
the case of Mod(S1,2) using Matsumoto’s exact sequence (9.1), rather than beginning
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α β

α ′ β ′

z z

γ

γ ′

with Mod(S1,1). A similar strategy of increasing the number of punctures is taken in
Boggi’s proof of the genus–2 case [9, 11], and this leads us to speculate that the general
case may yield to imposing greater and greater restrictions on the congruence kernel in
more and more highly punctured surfaces. Boggi’s argument in [9] also applies to the
genus–one case (see remark 3.4 of [9] and the following observation there).

Theorem 19 (Asada [5]). Mod(S1,n) has the congruence subgroup property if n≥ 1.

Proof. The quotient S1,2 → S0,5 by the hyperelliptic involution induces an injection
G0,5 → Mod(S1,2) onto a finite index subgroup κ ⊂ Mod(S1,2) (see [7] and [29] for
more general discussions of maps induced by branched covers). The subgroup κ

contains the kernel of the action of Mod(S1,2) on H1(S1,2−X1,2;F2) and is hence a
congruence subgroup. We let ζ : κ̂ → Ĝ0,5 be the induced isomorphism. Since κ is
congruence, κ̂ contains K1,2 = K(S1,2).

Let α and β be the essential simple closed curves on S1,2 in the figure. Each bounds
a disk containing both marked points. By Corollary 17, the congruence kernel K1,2 lies
in the κ̂–centralizers of Tα and Tβ . The curves α and β descend to curves α ′ and β ′

on S0,5 as shown. We have ζ (Tα) = T 2
α ′ and ζ (Tβ ) = T 2

β ′ , and so ζ (K1,2) lies in the
Ĝ0,5–centralizers of T 2

α ′ and T 2
β ′ .

Let z be the marked point in S0,5 as pictured. Forgetting z gives us an exact sequence

1 π̂0,4 Ĝ0,5 Ĝ0,4 1.
f0,5

The curves α ′ and β ′ descend to curves α ′′ and β ′′ on S0,4 with f0,5(Tα ′) = Tα ′′ and
f0,5(Tβ ′) = Tβ ′′ . So f0,5

(
ζ (K1,2)

)
centralizes T 2

α ′′ and T 2
β ′′ . Now, Ĝ0,4 is the free profi-

nite group generated by Tα ′′ and Tβ ′′ . By the main theorem of [18], the centralizer of
any power xm of a basis element x in a free profinite group is the closed subgroup gen-
erated by x, see also Lemma 2.1.2 of [32]. It follows that the centralizers of the squares
of two elements of a basis intersect trivially, and so ζ (K1,2) lies in π̂0,4.
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We now pick a curve γ in S1,2 descending to a curve γ ′ in S0,5 as in the figure.
Again, the congruence kernel K1,2 centralizes Tγ and ζ (K1,2) centralizes T 2

γ ′ . The
Dehn twist Tγ ′ is a basis element in the free profinite group π̂0,4, and so the centralizer
of T 2

γ ′ is the subgroup 〈Tγ ′〉, again by [18]. Since ζ
(
K1,2) lies in π̂0,4 and centralizes

T 2
γ ′ , we conclude that ζ (K1,2) lies in 〈Tγ ′〉. Now, we have ζ (κ̂)∩〈Tγ ′〉= 〈T 2

γ ′〉, and so

ζ (K1,2)⊂ 〈T 2
γ ′〉. Since 〈T 2

γ ′〉= ζ
(
〈Tγ〉

)
, we conclude that K1,2 ⊂ 〈Tγ〉. But 〈Tγ〉 lies in

the kernel of

1 π̂1,1 Ĝ1,2 Ĝ1,1 1,
f1,2

and, by Theorem 7, the congruence kernel K1,2 intersects π̂1,1 trivially. We conclude
that K1,2 = 1.

By Theorem 18, we have K(S1,n) = 1 for all n≥ 1.

11 Thoughts on the fundamental group at each level
Boggi has proven the beautiful theorem that if a is a finite index subgroup of Mod(S),
then the rational homology Hk(C

a ;Q) vanishes in the range 0 ≤ k ≤ −χ(S) if S is
closed and 0 ≤ k ≤ −χ(S)− 1 otherwise, see Lemma 5.5 of [8].† In light of this and
the fact that Ĉ (S) is simply–connected, it is reasonable to ask if the C a are simply–
connected. The proofs that Ĉ (S) and Č (S̊̊) are simply–connected leave open the possi-
bility that π1(C

a) is nontrivial (perhaps infinite) and so new ideas are needed to answer
this question. We record some of our thoughts here.

The simplicial complex C (S) comes equipped with the weak topology. There is an-
other natural topology; the topology induced by declaring each simplex to be a regular
Euclidean simplex with edges of length one, and taking the induced path metric.

Let S be such that dimC (S)≥ 2.
Let a be in A and σ a nonperipheral simple loop in S. The group aσ has finite

index in G (S)σ , which acts cocompactly on the star of σ , and so the simplicial complex
C a∗ = C (S)/a∗ is locally finite. In particular, the complex C a∗ is compact if and only
if it has finite diameter in the metric induced by that of C (S). By Armstrong’s theorem,
π1(C

a) is finite if and only if C a∗ is compact.
There is a Serre fibration C (S̊)→ C (S) whenever S is projective [26]. When S is

affine, there is no map from C (S̊) to C (S), but there is a 1–dense subcomplex D(S̊) for
which there is a map

p : D(S̊)→ C (S),

see [26]. Each fiber of this map is 1–dense in C (S̊), and so π1(C
a) will be finite if and

only if a fiber T of p projects to a set of finite diameter in C a∗ .

†The proof of the main theorem of [8] contains a gap, but the proof of Lemma 5.5 of [8] is complete.
See [2].
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