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Abstract. For any surface Σ of infinite topological type, we study the
Torelli subgroup I(Σ) of the mapping class group MCG(Σ), whose ele-
ments are those mapping classes that act trivially on the homology of
Σ. Our first result asserts that I(Σ) is topologically generated by the
subgroup of MCG(Σ) consisting of those elements which have compact
support. In particular, using results of Birman [4], Powell [22], and Put-
man [23] we deduce that I(Σ) is topologically generated by separating
twists and bounding pair maps. Next, we prove the abstract commensu-
rator group of I(Σ) coincides with MCG(Σ). This extends the results
for finite-type surfaces [8, 6, 7, 14] to the setting of infinite-type surfaces.

1. Introduction

Let Σ be a connected orientable surface of infinite topological type – that
is a surface with fundamental group that is not finitely generated. The
mapping class group of Σ is the group:

MCG(Σ) = Homeo(Σ, ∂Σ)/Homeo0(Σ, ∂Σ),

where Homeo(Σ, ∂Σ) is the group of self-homeomorphisms of Σ which fix
∂Σ pointwise. The group Homeo(Σ, ∂Σ) is equipped with the compact–open
topology, and Homeo0(Σ, ∂Σ) is the connected component of the identity in
Homeo(Σ, ∂Σ). We equip MCG(Σ) with the quotient topology.

There is a natural homomorphism MCG(Σ) → Aut(H1(Σ,Z)), whose
kernel is commonly referred to as the Torelli group I(Σ) < MCG(Σ). While
Torelli groups of finite–type surfaces have been the object of intense study
(see for example [3, 4, 10, 13, 15, 18, 20, 22, 24]) not much is known about
them in the case of surfaces of infinite type. The present article aims to be
a first step in this direction.

Generation. In a recent article, Patel–Vlamis [21] give a (topological) gen-
erating set for the pure mapping class group PMCG(Σ), namely the sub-
group of MCG(Σ) consisting of those mapping classes which fix every end
of Σ; see Section 2. More concretely, they show that PMCG(Σ) is generated
by the subgroup of elements with compact support if Σ has at most one
end accumulated by genus; otherwise, PMCG(Σ) is generated by the union
of the set of compactly–supported elements and the set of handle–shifts; see
Section 2.
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Observe that I(Σ) < PMCG(Σ). Our first result asserts that, for any
infinite–type surface Σ, the set of compactly–supported mapping classes
suffices to generate the Torelli group:

Theorem 1. Let Σ be a connected orientable surface of infinite topological
type. Every element of I(Σ) is a limit of compactly–supported mapping
classes in I(Σ).

Birman [4] and Powell [22] showed that the Torelli group of a closed
finite–type surface is generated by separating twists (i.e. Dehn twists about
separating curves), plus bounding pair maps (that is, products of twists of the
form TγT

−1
δ , where γ and δ are non-separating but their union separates).

Putman then proved that the same is true for finite–type surfaces with
boundary [23]. In light of this, an immediate consequence of Theorem 1 is:

Corollary 2. Let Σ be a connected orientable surface of infinite topological
type. Then I(Σ) is topologically generated by separating twists and bounding-
pair maps.

Theorem 1 implies I(Σ) is a closed subgroup of MCG(Σ). Since MCG(Σ)
is a Polish group [1] and closed subgroups of Polish groups are Polish, we
have the following corollary.

Corollary 3. Let Σ be a connected orientable surface of infinite topological
type. Then I(Σ) is a Polish group.

Commensurations. Recall that, given a group G, its abstract commensu-
rator Comm(G) is the group of equivalence classes of isomorphisms between
finite-index subgroups of G; here, two isomorphisms are equivalent if they
agree on a finite-index subgroup. Observe that there is a natural homomor-
phism

Aut(G)→ Comm(G).

We will prove:

Theorem 4. For any connected orientable surface Σ of infinite topological
type we have

Comm I(Σ) ∼= Aut I(Σ) ∼= MCG(Σ).

Historical context and idea of proof. Theorem 4 was previously known
to hold for finite–type surfaces. Indeed, Farb–Ivanov [8] proved it for closed
surfaces of genus at least five, which was then extended (and generalized to
the Johnson Kernel) by Brendle–Margalit to all closed surfaces of genus at
least three [6, 7]. Kida extended the result of Brendle–Margalit to all finite–
type surfaces of genus at least four [14]. Finally, recent work of Brendle–
Margalit and McLeay has further generalized the result to apply to a large
class of normal subgroups of finite–type surfaces [5, 19].

In order to prove the theorem, we closely follow Brendle–Margalit’s strat-
egy. First, we adapt ideas to Bavard–Dowdall–Rafi [2] to show that every
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commensuration of the Torelli group respects the property of being a sep-
arating twist or a bounding pair map. From this we deduce that every
commensuration induces an automorphism of a combinatorial object called
the Torelli complex. This complex was originally introduced, for closed sur-
faces, by Brendle–Margalit [6], who proved that its automorphism group
coincides with the mapping class group; this was later extended by Kida
[14] to finite–type surfaces with punctures. Using this, plus an inductive
argument due to Ivanov [12], we will show that every automorphism of the
Torelli complex of an infinite–type surface is induced by a surface homeo-
morphism. At this point, Theorem 4 will follow easily using a well-known
argument of Ivanov [12].
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2. Definitions

In this section we introduce the main objects needed for the proofs of our
results.

2.1. Surfaces. Throughout, by a surface we mean a connected, orientable,
second-countable topological surface. We say that Σ has finite type if its
fundamental group is finitely generated; otherwise, we say that Σ has infinite
type. In the finite type case, we will sometimes use the notation Σ = Σb

g,p,
where g, p, and b are, respectively, the genus, the number of punctures,
and the number of boundary components of Σ. In this case, we define the
complexity of Σ to be the integer 3g − 3 + p+ b.

A subsurface of Σ is a subset for which the inclusion map is a proper,
π1-injective embedding.

The space of ends of Σ is the set

Ends(Σ) = lim←−π0(Σ \K),

where the inverse limit is taken over the set of compact subsurfaces K ⊂ Σ,
directed with respect to inclusion. Here, the topology on Ends(Σ) is given
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by the limit topology obtained by equipping each π0(Σ\K) with the discrete
topology. See [25] for further details.

We say that e in Ends(Σ) is accumulated by genus if every neighborhood
of e has infinite genus; otherwise, we say that e is planar. We denote by
Endsg(Σ) the subset of Ends(Σ) consisting of ends accumulated by genus.
It is a classical theorem (see [25] for a discussion and proof) that the home-
omorphism type of Σ is determined by the tuple(

g(Σ), b(Σ),Ends(Σ),Endsg(Σ)
)
,

where g(Σ) and b(Σ) denote the genus and the number of boundary compo-
nents of Σ.

2.2. Curves. By a curve on Σ we mean the free homotopy class of a simple
closed curve that does not bound a disk or a disk containing a single planar
end of Σ. Abusing notation, we will not make any distinction between a
curve and any of its representatives.

We say that a curve γ is separating if Σ\γ has two connected components;
otherwise, we say that γ is non-separating. We say that two curves are
disjoint if they have disjoint representatives in Σ. A multicurve is a set of
pairwise disjoint curves.

2.3. Pure mapping class groups. The pure mapping class group
PMCG(Σ) is the subgroup of MCG(Σ) whose elements fix every end of
Σ.

The compactly–supported mapping class group PMCGc(Σ) is the group
whose elements have compact support, that is, they are represented by a
homeomorphism that is the identity outside a compact subsurface of Σ. A
classical result due to Dehn and Lickorish (see [9, Section 4], for instance)
implies that PMCGc(Σ) is generated by Dehn twists.

2.4. Handle–Shifts. For any subgroup Γ < MCG(Σ), we denote by Γ its
topological closure in MCG(Σ).

Patel–Vlamis introduced handle–shifts and showed that handle–shifts and
Dehn twists topologically generate PMCG(Σ) [21]. Subsequently, in [1] it

was shown that PMCG(Σ) = PMCGc(Σ) o H where H is a particular
subgroup generated by pairwise commuting handle–shifts, whose definition
we now recall.

Let Λ be the surface obtained from R × [−1, 1] by removing disks of
radius 1

4 centered at (t, 0) for t in Z and gluing in a torus with one boundary
component, identifying the boundary of the torus with the boundary of the
removed disk. Let σ : Λ→ Λ be the homeomorphism that shifts the handle
at (t, 0) to the handle at (t + 1, 0), and is the identity on R × {−1, 1} (see
[1] or [21] for an image of such a homeomorphism). The isotopy class of σ
is called a handle shift of Λ.

An element h in MCG(Σ) is a handle–shift if there exists a proper em-
bedding ι : Λ → Σ which induces an injective map on ends, and such that
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[h] = [δ] where δ |ι(Λ)= σ and δ is the identity outside ι(Λ). As a consequence
of our definition, we must have |Endsg(Σ)| ≥ 2; also, for each handle–shift
there is an attracting end ε+ and a repelling end ε− in Endsg(Σ), and they
are distinct.

We say a handle–shift h with attracting end ε+ and repelling end ε− is
dual to a separating curve γ if each component of Σ \γ contains exactly one
of ε+ and ε−.

2.5. Principal exhaustions. We now introduce a minor modification of
the the notion of principal exhaustion from [1, 2]:

Definition. A principal exhaustion of Σ is an infinite sequence of connected
subsurfaces {P1, P2, . . . } such that, for every i ≥ 1, one has:

(1) Pi has finite type, and each component of Σ \ Pi has infinite type,
(2) Pi ⊂ Pi+1,
(3) every component of ∂Pi is separating
(4) no component of ∂Pi is isotopic to a component of ∂Pi+1, and
(5) Σ =

⋃
Pi.

Lemma 5. Let Σ be a connected infinite–type surface and let {Pi} be a
principal exhaustion of Σ. Then for all i, we have:

• for all j > i, H1(Pj) ∼= H1(Pi)⊕M for some M < H1(Pj \ Pi)
• H1(Σ) ∼= H1(Pi)⊕M ′ for some M ′ < H1(Σ \ Pi)

Proof of lemma. We will let W be either Pj or Σ to prove both cases simul-
taneously.

Let ∂1Pi, . . . ∂mPi be the boundary components of Pi.
Since every component of Σ − Pi is of infinite type, every component of

W − Pi either contains an end of Σ or a boundary component of W . So
there is a collection of pairwise disjoint rays and arcs γ1, . . . , γm properly
embedded in W − Pi such that γk ∩ ∂kPi is a single point for all k.

By the Regular Neighborhood Theorem, we may deformation retract W
along the γk, fixing Pi throughout, to obtain a subsurface ∆ homotopy
equivalent to W that contains Pi and such that Pi ∩ ∆− Pi is a disjoint
union of arcs α1, . . . , αm.

Consideration of the Mayer–Vietoris sequence gives us an exact sequence

0→ H1(Pi)⊕H1(∆− Pi) −→ H1(W )
∂−→H0(α1 t · · · t αm).

This gives us the direct sum decomposition of H1(W ). Since ∂`Pi are sep-
arating, then so are the α`. This implies that the boundary map ∂ is zero,
and since H1(∆ − Pi) is naturally a subgroup of H1(W − Pi), the proof is
complete. �
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3. Compactly generating the Torelli group

Let Σ be an infinite–type surface. We define the compactly supported
Torelli group

Ic(Σ) := {f ∈ I(Σ) |f has compact support}.
The aim of this section is to prove the first main result of the introduction,

whose statement we now recall:

Theorem 1. For any connected orientable surface Σ of infinite type, we
have I(Σ) = Ic(Σ).

We will need to know that certain, possibly infinite, products of handle
shifts are inaccessible by compactly supported mapping classes. For a gen-
eral product of handle–shifts, this is too much to hope for. For example, in
a surface with two ends, the product of two commuting handle shifts with
opposite dynamics is a limit of compactly supported classes.

More generally, there are products of infinitely many commuting handle
shift that are limits of compactly supported classes. For example, there is
the “boundary leaf shift,” which we now explain.

Example (Boundary leaf shift). Start with an infinite regular tree T prop-
erly embedded in the hyperbolic plane H2 with boundary a Cantor set in
∂H2. Orient ∂H2 counterclockwise. Build a surface by taking the boundary
of a regular neighborhood of T in H2×R and attach handles periodically (in
the hyperbolic metric) along each side of T , see Figure 1. The orientation
on ∂H2 defines a product H of handle–shifts by shifting the handles in each
region of H2 − T in the clockwise direction.

To see the boundary leaf shift is in PMCGc(Σ), pick a basepoint ∗ in
T and consider the n–neighborhood B(n) of ∗ in T . Then we may move
the handles incident to B(n) around in a counterclockwise fashion to get a
compactly supported class fn in PMCGc(Σ). The sequence {fn} converges
to the boundary leaf shift.

Let γ be a separating curve in Σ whose complementary components are
both noncompact. Let Σ− and Σ+ be the closures of the two components
of Σ− γ. By the same argument as in Lemma 5, Σ deformation retracts to
a subspace homeomorphic to X ∨ γ ∨ Y , where X and Y are subspaces of
Σ− and Σ+, respectively. It follows that H1(Σ) splits as A⊕〈γ〉⊕B, where
A = H1(X) and B = H1(Y ).

Similarly, if h is a handle–shift dual to γ, then H1(Σ) ∼= L ⊕ 〈γ〉 ⊕
H1(supp(h))⊕R, where L and R are subgroups of A and B.

Definition (Pseudo-handle–shift). We say that a mapping class H is a
pseudo-handle–shift dual to a separating curve γ with associated handle–
shift h if the following hold:

(1) h is a handle–shift dual to γ
(2) H∗ agrees with h∗ on H1(supp(h))
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Figure 1. The boundary leaf shift.

(3) H∗(γ) = γ
(4) H∗(L) < A
(5) H∗(R) < B

In what follows, we always assume that the repelling end of h is on the
“A–side.” We have:

Theorem 6 (Pseudo-handle–shifts are unapproachable). A pseudo-handle–
shift H dual to a separating curve γ is not a limit of compactly supported
mapping classes.

Proof. Let h be the associated handle–shift dual to γ. Let ε− and ε+ be
the ends of Σ corresponding to the repelling and attracting ends of h, re-
spectively, and let Σ− and Σ+ be the complementary components of Σ− γ
containing ε− and ε+, respectively. Choose some principal exhaustion {Pi}
of Σ, and let Σi

− = (Σ− Pi) ∩ Σ− and Σi
+ = (Σ− Pi) ∩ Σ+.

Picking i large enough, we may assume that the term Pi in our principal
exhaustion contains γ and satisfies H(Σi

−) ∩ Σ+ = ∅ and H(Σi
+) ∩ Σ− = ∅.

The handle–shift h is supported on a strip S with equally spaced handles
and standard basis {αp, βp}k∈Z of H1(S) so that h∗(αp) = αp+1 and h∗(βp) =
βp+1. We choose once and for all curves in S representing these classes. After
reindexing the αp and βp by translating p, we assume that α1 and β1 lie in
Σi
−. Since αp and βp tend to ε+, there is some j > 1 such that αj and βj lie

in Σi
+.

Suppose that H is a limit of compactly supported Hn.
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Pick n large enough so that Hn agrees with H on Pi and so that Hn∗
agrees with h∗ on both H1(Pi) and 〈α1, β1, . . . , αj , βj〉. Let Pk be some term
in the exhaustion with k ≥ i that contains the support of Hn.

We have a direct sum decomposition

H1(Pk) ∼= Z` ⊕ Z2j ⊕ Zr

where Z` is a subgroup ofH1(Σ−)⊕〈γ〉, Z2j = 〈α1, β1, . . . , αj , βj〉, and Zr is a
subgroup ofH1(Σ+). Picking a basis 〈x1, . . . , x`, α1, β1, . . . , αj , βj , y1, . . . , yr〉
for H1(Pk) compatible with this decomposition, we see that Hn∗ has a block
decomposition:

Hn∗ =

` 2j − 2 2 r


` ∗ 0 0 Y
2 ∗ 0 0 Z

2j − 2 ∗ I 0 ∗
r X 0 A B

By properties (4) and (5) of a pseudo-handle–shift, and our choice of i, the
blocks X, Y , and Z are all zero. So the matrix is:

Hn∗ =

` 2j − 2 2 r


` ∗ 0 0 0
2 ∗ 0 0 0

2j − 2 ∗ I 0 ∗
r 0 0 A B

This matrix is column equivalent to:

Hn∗ =

` 2j − 2 2 r


` ∗ 0 0 0
2 ∗ 0 0 0

2j − 2 ∗ I 0 0
r 0 0 A B

But the matrix [A B] is an r× (r+2) matrix, and so its Jordan form cannot
have pivot in every column. So the matrix for Hn∗ is equivalent to a matrix
with a zero column. But Hn∗ is an isomorphism, and this contradiction
completes the proof. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. We will first show that I(Σ) < PMCGc(Σ). By [21,
Theorem 1], we only need to consider the case when Σ has at least two ends
accumulated by genus. We observe that I(Σ) < PMCG(Σ). Let g be in
PMCG(Σ) so that g is not a limit of compactly supported mapping classes.
We show that g is not in I(Σ).

By Theorem 3 and Corollary 4 from [1], g can be written g = fk−1 where
f is a limit of compactly supported classes and k is a product of pairwise
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commuting handle–shifts hi. The handle–shifts hi have the property that the
support of hi is disjoint from the dual curve γj for hj whenever i 6= j. Such a
g cannot be in the Torelli group, for then f would be a pseudo-handle–shift
dual to a separating curve that is a limit of compactly supported classes,
violating Theorem 6. Therefore

I(Σ) < PMCGc(Σ).

If φn is a sequence in Ic(Σ) that converges to φ, then φ lies in I(Σ), since
φn(α) eventually agrees with φ(α) for any given simple closed curve α. So

Ic(Σ) < I(Σ).

For the other containment, let φ be an element of I(Σ) and let {ψn} be a
sequence in PMCGc(Σ) converging to φ. We would like to convert ψn into
a sequence of compactly supported φn in I(Σ) converging to φ. The idea
is that the homology classes affected by ψn must move further and further
away from a given basepoint, and so we can precompose the ψn with a
mapping class supported far from the basepoint to produce the desired φn.

Fix a principal exhaustion {Pi} of Σ. For each i, pick a j > i such that
Pj contains φ−1(Pi). Pick an N large enough so that, for all n ≥ N , the
map ψn has a representative that agrees with a fixed representative of φ on
Pj . Note that ψn∗ agrees with φ∗ on H1(Pj).

By Lemma 5, we have H1(Pk) ∼= H1(Pi)⊕Q⊕R for some Q a subgroup
of H1(Pj − Pi) and R a subgroup of H1(Pk − Pj). Let α be element of
H1(Pk) and write α = γ+µ+ ν where γ, µ, and ν are in H1(Pi), Q, and R,
respectively. So ψn∗(α) = γ + µ+ ψn∗(ν).

The class ν is represented by a 1–manifold N in Pk − Pj . By our choice
of j and n, the 1–manifold ψn(N ) is disjoint from Pi. So ψn∗(ν) is in Q⊕R.
Therefore ψn∗ : H1(Pk)→ H1(Pk) may be represented by a square matrix

A =

[
I 0
0 B

]
where I is the identity on H1(Pi) and B is a square matrix. Since A is
the induced map on homology associated to a homeomorphism of Pk, it is
invertible and respects the intersection form, and so the same is true of B.
The action on homology surjects mapping class groups of compact surfaces
onto their symplectic groups. Therefore the matrix B is represented by a
homeomorphism F : Pk − Pi → Pk − Pi that is the identity on ∂Pi∩Pk − Pi.
We extend this by the identity to all of Σ and continue to call the extension
F .

Now consider the homeomorphism φn = ψn ◦ F−1. By construction of
F , this homeomorphism φn acts trivially on the homology of Σ, and agrees
with ψn on Pi.

This completes the proof. �
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4. Abstract commensurators of the Torelli group

In this section we prove Theorem 4. As mentioned in the introduction, the
first step of the argument consists of proving that an element of Comm I(Σ)
induces a simplicial automorphism of a combinatorial object associated to
Σ, called the Torelli complex, introduced by Brendle–Margalit in [6].

4.1. Torelli complex. Recall that the curve complex of Σ is the (infinite-
dimensional) simplicial complex whose vertex set is the set of isotopy classes
of curves in Σ, and where a collection of vertices spans a simplex if and only
if the corresponding curves are pairwise disjoint. The curve complex was
used by Ivanov [12], Korkmaz [16], and Luo [17] to prove that, for all but a
few finite–type surfaces Σ,

Comm MCG(Σ) ∼= Aut MCG(Σ) ∼= MCG(Σ).

Subsequently, Bavard–Dowdall–Rafi [2] established the analogous result for
infinite–type surfaces. In a similar fashion, Farb-Ivanov [8], Brendle–Margalit
[6, 7, 5], and Kida [14] proved that, for all but a few finite–type surfaces,

Comm I(Σ) ∼= Aut I(Σ) ∼= I(Σ).

Here, we will adapt the ideas of Brendle–Margalit [6] to the infinite–type
setting. Given an infinite–type surface Σ, we define its Torelli complex to
be the (infinite-dimensional) simplicial complex whose vertex set is the set
of isotopy classes of separating curves and bounding pairs in Σ, and where a
collection of vertices spans a simplex if and only if the corresponding curves
are pairwise disjoint. In order to relax notation, we will blur the distinction
between vertices of T (Σ) and the curves (or multicurves) they represent.
We record the following folklore observation as a separate lemma, as we will
need to make use of it later:

Lemma 7. The Torelli complex T (Σ) has infinite diameter if and only if Σ
has finite type.

Proof. If Σ has finite type, a slick limiting argument due to Feng Luo (see
the comment after Proposition 4.6 of [18]) shows that the curve complex has
infinite diameter. The obvious adaptation of this method to the case of the
Torelli complex also implies that T (Σ) has infinite diameter.

For the other direction, suppose Σ has infinite type. Since curves are
compact, given multicurves γ, δ ⊂ Σ, we can find a separating curve η ⊂ Σ
which is disjoint from both γ and δ. In particular, T (Σ) has diameter
two. �

4.2. Automorphisms of the Torelli complex. Denote by Aut(T (Σ))
the group of simplicial automorphisms of T (Σ), and observe that there is a
natural homomorphism MCG(Σ)→ Aut(T (Σ)). We want to prove:

Theorem 8. Let Σ be an infinite–type surface. The natural homomorphism
MCG(Σ)→ Aut T (Σ) is an isomorphism.
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As noted above, the finite–type case is due to Brendle–Margalit [6, 7, 5]
and Kida [14]. Indeed, the notion of sides which is used in this section is
adapted from arguments that may be found in Brendle-Margalit [6], and
which find their way back to ideas of Ivanov [12].

Sides. Recall that the link of a vertex v of a simplicial complex X is the
set of all vertices of X that span an edge with v. In particular, v is not an
element of its link. For any finite-dimensional simplex σ let Link(σ) be the
intersection of the links of each of the vertices in σ. We say that two vertices
α, β in Link(σ) lie on the same side of σ if there exists a vertex γ in Link(σ)
that fails to span an edge with both α and β, that is, if there exists a curve
in Link(σ) that intersects both α and β. Observe that “being on the same
side” defines an equivalence relation ∼σ on Link(σ), that is, the sides of σ
are the equivalence classes of ∼σ in Link(σ).

In particular, we may consider the sides of a vertex of T (Σ). We say that
γ in T (Σ) is k-sided if there are k equivalence classes with respect to ∼γ .
As we shall see, k is in {1, 2}.

For any vertex γ of T (Σ) there exist two subsurfaces R,L ⊂ Σ obtained
by cutting Σ along γ such that γ is isotopic to the boundary components
of both R and L. Suppose R is of finite type. We call γ a pants curve if γ
is a separating curve and R ∼= Σ1

0,2, a sphere with two punctures and one
boundary component. We call γ a genus curve if γ is a separating curve and
R ∼= Σ1

1,0, a torus with one boundary component. If γ is any other type of
separating curve then we say it is type S.

If γ is a bounding pair and one of the associated subsurfaces of Σ is
homeomorphic to Σ2

1,0 then we call it a genus bounding pair.

Lemma 9. A vertex γ in T (Σ) is 2-sided if and only if it is type S or it is
a genus bounding pair. Otherwise, γ is 1-sided.

Proof. We first prove that if γ is type S then it has exactly two sides. Let
R and L be the two subsurfaces of Σ obtained by cutting along γ. Let α, β
lie in Link(γ). If α ⊂ R and β ⊂ L, then any vertex of T (Σ) that intersects
both α and β must also intersect γ. This implies that γ has at least two
sides. If α, β ⊂ R then there exists an element of the MCG(Σ)-orbit of α
that intersects both α and β and is contained in R. An identical argument
holds for two vertices contained in L and so it follows that γ has exactly
two sides.

Now let γ be a genus one separating curve or a pants curve. Define
L,R ⊂ Σ as above. Recall that neither Σ1

0,2 nor Σ1
1,0 contains any non-

peripheral separating curves or bounding pairs. Therefore Link(γ) does not
contain any curves in R. As above, all vertices contained in L are on the
same side and so γ is 1-sided.

We now move on to the case where γ is a bounding pair. We define R and
L as above. Assume that neither R nor L is homeomorphic to Σ2

0,1 or Σ2
1,0.
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γβ αδL δR

Figure 2. A general bounding pair γ is 1-sided. For any two
vertices α, β in T (Σ) adjacent to γ, we can find a bounding
pair not adjacent to α and β but adjacent to γ. Informally,
bounding pairs can “pass through” each other.

Let α, β in Link(γ) be such that α ⊂ R and β ⊂ L. As shown in Figure 2,
there exists a bounding pair γ′ = {δR, δL} such that:

• any pair of curves in γ or γ′ forms a bounding pair,
• δR ⊂ R and δL ⊂ L, and
• δR ∩ α 6= ∅ and δL ∩ β 6= ∅.

That is, γ′ is in Link(γ) and there is no edge between γ′ and α or between
γ′ and β. It follows that γ has exactly one side.

If γ is a genus bounding pair then no such γ′ exists. Indeed, every non-
separating curve in R that forms a bounding pair with a curve in γ is also
isotopic to a curve in γ. By the same argument as for type S vertices, we
conclude that γ is 2-sided.

If R is homeomorphic to Σ2
0,1 then γ is 1-sided. Indeed, the only vertex

of T (Σ) contained in R is γ and so all vertices of Link(γ) are contained in
L. This completes the proof. �

Let σ be a finite-dimensional simplex of T (Σ) consisting entirely of curves
of type S. Using similar methods to the above proofs it is straightforward
to show that the set of sides of σ is in bijective correspondence with the
subsurfaces of Σ obtained by cutting Σ along σ.

We are finally in a position to prove Theorem 8:

Proof of Theorem 8. Let

Φ : MCG(Σ)→ Aut(T (Σ))

be the natural homomorphism; that is, for f in MCG(Σ), Φ(f) is the auto-
morphism of T (Σ) determined by the rule

Φ(f)(γ) = f(γ)

for every separating curve or bounding pair γ.
First, we show that Φ is injective. To this end, suppose Φ(f) = Id. Then

we argue that f(γ) = γ for every curve γ. Indeed, if γ is separating, then γ
is a vertex of T (Σ), so Φ(f)(γ) = γ and we are done. If γ is nonseparating,
there is some curve γ′ such that γ and γ′ form a bounding pair. Because
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Φ(f) fixes the vertex corresponding to γ∪γ′, it must be the case that either
f(γ) = γ and f(γ′) = γ′ or f(γ) = γ′ and f(γ′) = γ. But there exists a
separating curve η that intersects γ but not γ′. Because f(η) = η, it cannot
be the case that f(γ) = γ′. Therefore f(γ) = γ as desired.

By the Alexander method for infinite–type surfaces, due to Hernández–
Moralez–Valdez [11], we deduce that f is the identity.

We now show that Φ is surjective. Let φ : T (Σ) → T (Σ) be an auto-
morphism. Fix a principal exhaustion {P1, P2, . . . } of Σ such that P1 has
complexity at least six. Define σi to be the simplex of T (Σ) corresponding
to the multicurve ∂Pi. Note that by construction, σi contains only type S
vertices. Denote by Pi the subcomplex of T (Σ) spanned by the curves and
bounding pairs contained in Pi. By Lemma 7, we know that Pi is the unique
side of σi whose diameter is infinite. By construction, Pi is connected for
all i.

Since φ is a simplicial automorphism, it induces a bijection between the
sides of σi and the sides of φ(σi). Because all simplicial automorphisms
of T (Σ) are isometries, φ(σi) has a unique side of infinite diameter. From
Lemma 9 we have that every vertex of φ(σi) is of type S or it is a genus
bounding pair. If φ(σi) contains a genus bounding pair, then the unique
side of φ(σi) with infinite diameter is disconnected. This contradicts the
fact that φ is an isometry, and so no vertex of φ(σi) is a genus bounding
pair.

We write Qi ⊂ Link(φ(σi)) for the side of φ(σi) with infinite diameter,
and Qi ⊂ Σ for the finite–type subsurface which it defines. By construction,
Pi ∼= T (Pi) and Qi ∼= T (Qi) (note that if σi contains a bounding pair then
this may not be the case). Furthermore, φ restricts to an isomorphism

φi : Pi → Qi.

Since each Pi is assumed to have complexity at least six, the combination
of results of Kida [14] and Korkmaz [16] implies that φi is induced by a
homeomorphism fi. Moreover, the homeomorphism fi+1 restricts to fi on
the subsurface Pi. Since Σ =

⋃
Pi, we deduce that φ is induced by the limit

of the fi, completing the proof. �

4.3. Algebraic characterization of twists and bounding pair maps.
Before proving Theorem 4 we will need one more ingredient. Notice that the
vertices of T (Σ) define supports of elements in I(Σ). We must now show
that commensurations of I(Σ) preserve such elements and therefore define
a permutation of the vertices of the complex. We will adapt the algebraic
characterization of Dehn twists of Bavard–Dowdall–Rafi [2] to our setting.

We first introduce some terminology to facilitate the characterization of
twists and bounding pairs. Let G < MCG(Σ). We denote by FG the set of
elements of G whose conjugacy class (in G) is countable. Bavard–Dowdall–
Rafi prove that if G is finite-index in MCG(Σ) then f is in FG if and only if
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it has compact support [2, Proposition 4.2]. Using similar methods, we will
show:

Proposition 10. Let G < I(Σ) be a finite-index subgroup. An element f
in G has compact support if and only if f is in FG.

Proof. It is clear that compactly-supported mapping classes have countable
conjugacy classes. For the opposite direction, the argument in [2, Proposi-
tion 4.2] exhibits a infinite sequence of pairwise-disjoint curves ai such that
the Dehn twists about the ai give rise to uncountably many conjugates of f .
Since S has infinite type, the curves ai may be chosen to be separating, so
that the corresponding twists belong to I(S). Hence the result follows. �

Given a group H and a subgroup H ′, we denote by Z(H ′) the center of
H ′ in H. If h is in H, we write CH(h) for the centralizer of h in H.

Given a finite-index subgroup G < I(Σ) we write MG for the set of
elements f in G which satisfy the following three conditions:

(1) f ∈ FG,
(2) Z(FG ∩ CG(f)) is an infinite cyclic group, and
(3) CG(f) = CG(fk) for every k > 0.

We now prove that, for any G, powers of Dehn twists and bounding pair
maps belong to the set MG.

Lemma 11. Let G < I(Σ) be a finite-index subgroup. If f in G is a power
of a Dehn twist or a bounding pair map then f in MG.

Proof. Since f has compact support, we have that f is in FG. Suppose first
f is a power of a Dehn twist about the separating curve γ. We have that

CI(Σ)(T
k
γ ) = {g ∈ I(Σ) | g(γ) = γ},

for k 6= 0. It follows that all powers of Tγ have equal centralizer in I(Σ)
and hence, in any subgroup. A similar argument holds if f is a power of
bounding pair map. This implies the third condition in the definition of
MG.

To see that f satisfies the second condition, once again assume first that
f is a power of the Dehn twist Tγ about a separating curve. Let g be a
nontrivial element of Z(FG ∩ CG(f)) and assume that g is not a power of
Tγ . Then there exists a curve δ disjoint from γ such that g(δ) 6= δ. If δ is a

separating curve then T kδ is in CG(f), for some k > 0, and gT kδ 6= T kδ g, which
is a contradiction. Suppose now that, on the other hand, δ is a nonseparating
curve; without loss of generality, we may assume that δ is contained in a
connected component of Σ \γ of infinite topological type. Then there exists
a curve δ̄ that is disjoint from γ that forms a bounding pair with δ, and
once again we arrive at contradiction in our choice of g.

Using a similar argument, one can show that if f is a power of a bounding
pair Tγ1Tγ−1

2
then any choice of g as above leads to a contradiction. �
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When G is a finite-index subgroup of MCG(Σ), all elements of MG are
powers of Dehn twists, see [2, Lemma 4.5]. In stark contrast, this is no
longer true in our setting, as the set MG contains elements which are not
powers of Dehn twists or bounding pair maps. Moreover, MG may contain
elements which are not supported on a disjoint union of annuli: for example,
we may take a pure braid on a nonseparating planar subsurface with at least
three boundary components.

In other words, we need some further work in order to obtain the desired
algebraic characterization of separating twists and bounding pair maps. We
will need the following terminology from [2]. Given f in G we set

(MG)f = {g ∈MG | fg = gf}.
Note that if g is in (MG)f , then g(∂Y ) = ∂Y , as otherwise f and g do not
commute. Moreover, since f is in MG, then ∂Y consists only of nonsepa-
rating curves, no two of which form a bounding pair. In particular, no pair
of boundary components of Y are homologous to each other and therefore
f and g both fix ∂Y pointwise. In other words, we have proved:

Lemma 12. Let f inMG have support Y . Then every g in (MG)f (and in
particular f) fixes every connected component of ∂Y . As a consequence, f
preserves every connected component of Y , and every finite-type component
of Σ \ Y .

We now define a further subset; if the support of f is Y we define

(PG)f = {g ∈ (MG)f | g is supported in Σ \ Y }.
It follows from Lemma 12 that each element of (MG)f can be written as
the product of an element supported on Y with an element supported in a
finite-type subsurface of Σ \ Y . The next lemma tells us that the elements
supported in Y are precisely those which are central.

Lemma 13. For any element f in MG we have that

(MG)f = Z((MG)f )⊕ (PG)f .

Proof. Consider g in (MG)f . Denoting Y the support of f , we want to
show that if g has support in Y, then g is in Z((MG)f ). To this end, let
h lie in (MG)f . If the support of h is contained in Σ \ Y then the result
is clear, so assume this is not the case. By Lemma 12, the mapping classes
f, g and h all preserve every component of Y and of ∂Y . Let Y1, . . . , Ys be
the components of Y . Then there exists k ≥ 1 such that

fk = f1f2 . . . fs,

gk = g1g2 . . . gs,

hk = h1h2 . . . hs,

where fi (resp. gi, hi) denotes the restriction of fk (resp. gk, hk) to Yi, and
is either the identity or a pseudo-Anosov. Note that, in the latter case, each
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restriction must be a power of the same pseudo-Anosov, as fk commutes
with gk and hk. It follows that gk and hk commute, and therefore so do g
and h, by condition (3) in the definition of the set MG. �

Finally, we can prove the characterization of Dehn twists and bounding
pair maps.

Proposition 14. Let G < I(Σ) be a finite-index subgroup, and let f lie in
G. Then f is a power of a Dehn twist or of a bounding pair map if and only
f is in MG, and for all g in MG such that (PG)g = (PG)f we have that
f i = gj.

Proof. The forward direction is clear.
For the other direction, we prove the contrapositive. If f is not a power of

a Dehn twist or bounding pair map, we find g inMG with the same support
as f such that no powers of f and g are equal, but (PG)f = (PG)g.

Let Y for the support of f . Since f is inMG, we may assume that Y has
at least one connected component Z on which f |Z is a pseudo-Anosov. The
Torelli group I(Σ) is normal in MCG(Σ). Therefore, for every h in MCG(Σ)
that preserves each connected component of Y and ∂Y we have hfh−1 in
I(Σ) with support contained in Y .

Since Z supports a pseudo-Anosov, we may choose an h in MCG(Σ) that
is pseudo-Anosov on Z, agrees with f on the rest of Y , and such that the
restriction to Z of f and g = hfh−1 are two independent pseudo-Anosovs.
In particular, f and g have no power in common and Lemma 13 implies that
(PG)f = (PG)g, as desired. �

4.4. Abstract commensurators of the Torelli group. We can now fi-
nally prove Theorem 4. For a bounding pair γ = {γ1, γ2} we use the short-
hand Tγ for the bounding pair map Tγ1T

−1
γ2 .

Proof of Theorem 4. Let [ψ] be an element of Comm I(Σ) representing the
isomorphism of finite index subgroups

ψ : G1 → G2.

Let γ be a separating curve or a bounding pair and choose n in N so that
Tnγ is in G1. By Proposition 14, Tnγ in MG1 and for all g in MG1 such

that (PG1)g ⊂ (PG1)γn , we have that (γn)i = gj . Since these conditions are
preserved by isomorphism, we have that ψ(Tγ) lies in MG2 , Proposition 14
implies there exists some m in N such that

ψ(Tnγ ) = Tmδ ,

where δ is a separating curve or a bounding pair.
At this point, and again with respect to the above notation, we obtain

that ψ induces a map

ψ∗ : T (Σ)→ T (Σ);

γ 7→ δ.
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We observe that ψ∗ is a simplicial map, since powers of Dehn twists and
bounding pair maps commute if and only if the underlying curves are dis-
joint. Moreover, the map is also bijective, with inverse the simplicial map
associated to the inverse of ψ−1.

By Theorem 8, there exists an f MCG(Σ) such that ψ∗(γ) = f(γ) for
every separating curve or bounding pair γ. Now, for any g in G1 we have

ψ(gTnγ g
−1) = ψ(g)ψ(Tnγ )ψ(g−1) = ψ(g)Tnf(γ)ψ(g−1) = Tnψ(g)f(γ),

and therefore

Tnψ(g)f(γ) = ψ(gTnγ g
−1) = ψ(Tng(γ)) = Tnfg(γ).

Therefore ψ(g)f(γ) = fg(γ). By use of the Alexander method [11] we
conclude that ψ(g) = fgf−1. This shows that every abstract commensurator
is defined by conjugation by a mapping class, and in particular, so is every
automorphism.

On the other hand, suppose there exists an f in MCG(Σ) and a finite-
index subgroup H < I(Σ) such that conjugation by f induces the identity
map on H. For any separating curve or bounding pair γ, there exists some
m ≥ 1 such that Tmγ lies in H. Thus

Tmγ = fTmγ f
−1 = Tmfγ .

By [2, Lemma 2.5], fγ = γ, and thus f is the identity by Theorem 8. This
completes the proof. �
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