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Abstract

We study the existence and possible cardinalities of Maximal Almost Disjoint (MAD) families

of functions in the Baire space ωω that satisfy certain strong combinatorial and topological

properties. We do this both in ZFC and in various models of set theory constructed using

forcing. We prove in ZFC that there is a Van Douwen MAD family of size c. This answers

a long standing question of E. van Douwen. Using ideas from this proof we show that any

analytic MAD families that may exist in ωω must satisfy strong constraints.

We introduce a notion called the strongness of an almost disjoint family. We prove that

under Martin’s Axiom, for every κ ≤ c, there is an almost disjoint family with strongness equal

to κ.

We study the indestructibility properties of strongly MAD families. We prove that all

strongly MAD families stay strongly MAD after forcing with any member of a certain large

class of posets that do not make the ground model reals into a meager set. This class includes

Cohen, Sacks and Miller forcings. We show that countable support iterations of such posets

also preserve the strong MADness of strongly MAD families. En route to this result, we show

that a countable support iteration of proper forcings of limit length does not make the ground

model reals into a meager set if no inital segment of it does. We give a partial answer to

Steprans’ question of whether strongly MAD families always exist by showing that all strongly

MAD families have size ℵ1 < c in the Cohen Model.

We prove a conjecture of Brendle by showing that if cov (M) < ae, then very MAD families

do not exist, showing thereby that they do not exist in the Random, Laver or Blass-Shelah

models. We also show that strongly MAD families exist under b = c, proving that they exist

in the Laver Model.
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Jointly with Kunen, we prove in Chapter 4 that it is consistent to have no Gregory Trees

while having c > ℵ2.
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Chapter 1

Introduction

1.1 General Background

Two countably infinite objects a and b are said to be almost disjoint or a.d. if a∩b is finite. This

notion has been considered for several different kinds of countably infinite objects, including

infinite subsets of some fixed countable set X, functions from ω to ω and permutations of

ω. The latter two are examples of countably infinite objects because, following standard

convention in set theory, we identify functions with their graphs, turning a function f from

ω to ω into the countably infinite subset {〈n, f(n)〉 : n ∈ ω} ⊂ ω × ω. We say that a family

A of countably infinite objects of the same kind is almost disjoint or a.d. if its members are

pairwise a.d. Such an a.d. family A is said to be Maximal Almost Disjoint, or MAD, if it

is not properly contained within a larger a.d. family of infinite objects of the same kind. In

the set theory literature, a MAD family is also required to be an infinite family. In this thesis

we will take the somewhat unusual step of relaxing this requirement because it turns out that

finite MAD families, when they happen to exist, are useful for our work, and their use makes

certain proofs go more smoothly. This non standard terminology will matter only in Section

2.1, Section 2.2 and Section 3.7

Our work in this thesis focuses on MAD families of functions of ω to ω. We also make use of

MAD families of infinite subsets of certain countable sets, and we point out some connections

and differences between these two notions.

In this section we will illustrate some of the basic ideas involved using a.d. families of
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infinite subsets of ω as an example. Examples of such a.d. families include { {n : n is even}, {n :

n is odd} } and {{ pk : k ∈ ω} : p is a prime}. Observe that the first of these is maximal in

the sense that it cannot be extended to a larger a.d. family of infinite subsets of ω. However, as

noted above, one is usually interested only in infinite examples that have this property. Note

that any infinite a.d. family, such as the second example above, can be extended to a MAD

family using Zorn’s Lemma.

Now, any family of pairwise disjoint subsets of ω must be countable. But it is a remarkable

combinatorial fact that there are uncountable a.d. collections of infinite subsets of ω. Here is a

quick proof. Let A = {an : n ∈ ω} be a countable a.d. family of infinite subsets of ω. We define

a sequence of natural numbers k0 < k1 < · · · by recursion as follows. k0 is the least element

of a0. Given kn, we define kn+1 to be the least element of an+1 \ (a0 ∪ · · · ∪ an) that is greater

than kn. This definition makes sense because an+1 is almost disjoint from a0, . . . , an, and so

an+1 \ (a0 ∪ · · · ∪ an) is an infinite set. Now, it is easy to see that the set a = {kn : n ∈ ω} is

an infinite set almost disjoint from all an. Thus, we have shown that no countably infinite a.d.

family is maximal. Therefore, any MAD family of infinite subsets of ω must be uncountable.

MAD families have been intensively studied in set theory (for example, see [10], [8], [32] or

[25]). They have numerous applications in set theory as well as general topology. For example,

the technique of almost disjoint coding has been used in forcing theory (see [24]) and MAD

families are used in the construction of the Isbell-Mrówka space in topology (see [11]). Another

connection with topology is the relation between almost disjoint refinements and c-points in

the Stone-Čech compactification of ω (see [3] and [2]).

In addition to studying purely combinatorial questions about MAD families, set theorists

have also addressed the question of how “concrete” or definable MAD families can be (see

[26] and [25]). This question assumes significance because the axiom of choice (in the guise

of Zorn’s Lemma) is necessary to construct a MAD family. One way to make this question
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precise is to topologize the world where MAD families live. Let ωω denote the Cartesian power

of ω by itself. Note that ωω is just the set of all functions from ω to ω. Give ω the discrete

topology and ωω the product topology. It is well known that this space is homeomorphic to the

irrationals (as a subspace of the reals) (see [28, pp. 1-3]). Similarly, we give the set {0, 1} = 2,

the discrete topology and the power 2ω the product topology. Thus, 2ω is a subspace of ωω

and it is well known that it is homeomorphic to the Cantor Set. By identifying subsets of ω

with their characteristic functions, we can identify MAD families with certain subsets of 2ω.

Now, we can phrase the question “Is there a concrete MAD family?” as the question “Can an

infinite MAD family of infinite subsets of ω be a borel or an analytic subset of the space 2ω?”.

It is known that the answer to this is no (Mathias [25]).

Many of these considerations also apply to MAD families of functions from ω to ω. For

example, it is easy to see, as above, that any MAD family in ωω must be uncountable. Many

other combinatorial properties of MAD families of sets extends to MAD families of functions.

However, there are also significant differences. There has been some work on understanding

such combinatorial differences (Zhang [32]). One significant difference concerns the question of

“concreteness”. One can also ask whether MAD families of functions can be “concrete”. That

is, is there a MAD family in ωω that is a borel or analytic subset of the space ωω? Unlike for

MAD families of subsets of ω, this question remains open despite several attempts (see [20]).

Indeed, it is not even known if there is a MAD family of functions which is a closed set in ωω.

1.2 Summary of Main Results

1.2.1 Background and Summary for Chapter 2

In chapter 1 we solve a long standing problem of Van Douwen and apply ideas from this solution

to the question of whether analytic MAD families of functions exist. Van Douwen’s question
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asks whether there exists a MAD family of functions satisfying a certain strong combinatorial

property. Let us say that p is an infinite partial function if p is a function from an infinite

subset of ω to ω. Is there a MAD family of functions which is also maximal with respect to

infinite partial functions – that is, one such that there are no infinite partial functions almost

disjoint from all the (total) functions in the family? This was the question posed by the late

E. van Douwen. We call such a MAD family a Van Douwen MAD family. The question

was included by A. Miller in his problem list [27, Problem 4.2], and an attempt to answer it

was made by Zhang [33]. It is easy to construct Van Douwen MAD families if the Continuum

Hypothesis (CH) is assumed. But the question of their existence in the absence of any such

additional assumption remained open for at least 20 years, until its solution in this thesis. In

Section 2.1 of Chapter 2 We prove:

Theorem 1.2.1 (see Theorem 2.1.13). There is a Van Douwen MAD family of size Contin-

uum.

In Section 2.2, we use the idea of trace (cf. Definition 1.3.8 and Definition 2.1.11) introduced

in Section 2.1 to the question of whether analytic MAD families exist. Given an a.d. family

A ⊂ ωω and a function f ∈ ωω, let us say that f avoids A if for any finite collection

{h0, . . . , hk} ⊂ A , |f \ (h0 ∪ · · · ∪ hk)| = ω. Let us say that a MAD family A ⊂ ωω has

trivial trace if for every f ∈ ωω avoiding A , there is an infinite partial function p ⊂ f such

that p is almost disjoint from everything in A . We prove:

Theorem 1.2.2 (see Theorem 2.2.1). If A ⊂ ωω is an analytic MAD family, then A has

trivial trace.

This result shows that if analytic MAD families in ωω exist, then they must satisfy a strong

combinatorial constraint. However, we also prove that it is consistent to have MAD families

that satisfy this constraint (see Theorem 2.2.12). So Theorem 1.2.2 by itself does not rule
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out the existence of analytic MAD families. We use Theorem 1.2.2 to place some additional

constraints on analytic MAD families in ωω. Given an a.d. family A ⊂ ωω consider the ideal

I0 (A ) = {a ∈ P(ω) : ∃p ∈ ωa [p is a.d. from A ]}. Clearly, A is a MAD family iff ω /∈ I0 (A )

iff I0 (A ) 6= P(ω). Thus if A is an analytic a.d. family, to show that it is not MAD, it suffices

to prove that I0 (A ) = P(ω). While we have not been able to do this, we show in Section

2.2 that if A ⊂ ωω is an analytic a.d. family, then I0 (A ) must be “large”. In particular, we

prove that I0 (A ) must contain a copy of the ideal 0×Fin (see Theorem 2.2.24 and Corollary

2.2.25). This means that there is a partition {cn : n ∈ ω} of ω into countably many infinite

pieces such that any set a ⊂ ω that is a.d. from all the cn is in the ideal I0 (A ).

1.2.2 Background and Summary for Chapter 3

Juris Steprāns [20] introduced the notion of a strongly MAD family and asked whether they

exist. This notion is a “σ version” of the notion of a MAD family of functions. Very roughly,

this means that instead of requiring the family to be maximal just with respect to elements of

ωω, we require it to be maximal with respect to countable subsets of ωω. “σ versions” of various

types of subfamilies of [ω]ω = {a ⊂ ω : | a | = ω} have been considered in the literature. For

example, Kamburelis and W
‘
eglorz [18] have studied the “σ version” of the notion of a splitting

family. Recall that a set a ∈ [ω]ω splits a set b ∈ [ω]ω if both a∩ b and b \ a are infinite. Recall

also that a family F ⊂ [ω]ω is a splitting family if every b ∈ [ω]ω is split by some a ∈ F . Now,

the “σ version” of this notion, called an ℵ0–splitting family, is simply a family F ⊂ [ω]ω such

that for every countable set {bi : i ∈ ω} ⊂ [ω]ω, there is a ∈ F which splits all the bi. We

cannot simply lift this definition to the case of MAD families. That is, we cannot define a

strongly MAD family to simply be an a.d. family A ⊂ ωω such that for every countable set

of functions {fi : i ∈ ω} ⊂ ωω, there is h ∈ A such that ∀i ∈ ω [|h ∩ fi| = ω]. To see this,

suppose A ⊂ ωω is an a.d. family with atleast 2 elements. Choose h0 6= h1 ∈ A and consider
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the set {h0, h1}. It is clear that no element of A can intersect both h0 and h1 in an infinite

set. Hence we must put some restriction on the countable sets of functions we are allowed to

consider. It turns out that the restriction we need is that of avoiding discussed above. An a.d.

family A ⊂ ωω is said to be strongly MAD if for any countable collection {fi : i ∈ ω} ⊂ ωω

of functions avoiding A , there is h ∈ A such that ∀i ∈ ω [|h ∩ fi| = ω]. Steprāns [20] showed

that strongly MAD families cannot be analytic and Kastermans [19] proved that strongly MAD

families exist under Martin’s Axiom (MA).

Soon after Steprāns introduced the notion of a strongly MAD family, Kastermans and

Zhang [19] introduced a strenthening of this notion, called a very MAD family. Let A be

an a.d. family and put κ = |A |. We say that A is very MAD if for every cardinal λ < κ

and for every collection {fα : α < λ} of functions avoiding A , there is h ∈ A such that

∀α < λ [|h ∩ fα| = ω]. Obviously, every very MAD family is strongly MAD, and a strongly

MAD family of size ℵ1 must be very MAD. It turns out that every strongly MAD family is

Van Douwen MAD. Thus we have a natural spectrum of combinatorial properties of increasing

strength, starting with MADness, going through Van Douwen and strong MADness to very

MADness. In Section 3.1, we introduce a notion which allows for systematic investigation of

this spectrum. Given an a.d. family A ⊂ ωω, we define the strongness of A , written st (A ),

to be the least cardinal κ such that there is a family of functions {fα : α < κ} avoiding A so

that ∀h ∈ A ∃α < κ [|h ∩ fα| < ω]. Thus to say that A is MAD is to say that st (A ) ≥ 2. To

say that A is strongly MAD is to say that st (A ) ≥ ω1 and A is very MAD iff st (A ) ≥ |A |.

For which values of κ is there a MAD family A with st (A ) = κ? We provide a partial answer:

Theorem 1.2.3 (see Theorem 3.1.7 and Corollary 3.3.9). Assume MA(σ–centered). For every

κ ≤ c there is an a.d. family A with st (A ) = κ.

Sections 3.2 and 3.3 are devoted to addressing questions of Kastermans and to proving

a conjecture of Brendle regarding very MAD families. Kastermans [19] pointed out that the
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standard construction of a strongly MAD family from MA actually yields a very MAD family.

He asked if very MAD families always exist and if there is a construction which distinguishes

between strongly MAD and very MAD families. Sections 3.2 and 3.3 address both issues.

Regarding the first, J. Brendle conjectured that if cov (M) < ae, then there are no very MAD

families. Here cov (M) is the covering number of the meager ideal, and ae is the least size of

a MAD family of functions in ωω. In Section 3.3 and 3.2 we prove:

Theorem 1.2.4 (see Theorem 3.3.5). If A ⊂ ωω is very MAD, then |A | ≤ cov (M). There-

fore, if cov (M) < ae, there are no very MAD families.

Theorem 1.2.5 (see Theorem 3.2.2). If b = c, then there is a strongly MAD family.

Together, these results answer both of Kastermans’ questions. Theorem 1.2.4 shows that

there are no very MAD families in the Random, Laver or Blass-Shelah models. Theorem 1.2.5

distinguishes between strongly MAD and very MAD families in the sense that the construction

carried out there cannot be used to prove the existence of a very MAD family. This is because

b = c holds in the Laver model.

In Sections 3.4 and 3.5, we study the indestructibility properties of strongly MAD families.

Let P be a forcing notion. We say that a MAD family A is P–indestructible if A stays

maximal after forcing with P. A strongly MAD family A is strongly P–indestructible

if A stays strongly MAD after forcing with P. Brendle and Yatabe [10] have studied P–

indestructibility of MAD families of subsets of ω for various posets P. The focus of their work

was to provide combinatorial characterizations of the property of being a P–indestructible

MAD family of sets for some well known posets P. In our work, the focus is instead to find

those posets P for which strongly MAD families of functions are strongly P–indestructible. We

show that all strongly MAD families are strongly P–indestructible for a wide range of forcings

which do not turn the ground model reals into a meager set. In particular,
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Theorem 1.2.6 (see Theorem 3.4.9, Theorem 3.4.18 and Corollary 3.4.26). Let P be Cohen,

Sacks or Miller forcing. All strongly MAD families are strongly P–indestructible.

In Section 3.4, we prove a more general theorem than the one stated above. We introduce

a property of posets called having diagonal fusion (see Definition 3.4.13), and we introduce a

strengthening of the relation of being strongly indestructible, called strongly preserving (see

Definition 3.4.3). We show that any poset that has diagonal fusion strongly preserves every

strongly MAD family. We then show that Sacks and Miller forcings have diagonal fusion (see

Theorem 3.4.25), and hence that they strongly preserve all strongly MAD families.

An immediate consequence of P-indestructibility is a strengthening of the result of Steprāns

given above.

Corollary 1.2.7 (see Corollary 3.4.11). Strongly MAD families do not contain perfect sets.

Note that it follows from Theorem 1.2.6 that strongly MAD families remain strongly MAD

no matter how many Cohen reals are added. But this conclusion is not immediate for, say,

Sacks reals because it is not enough to deal with just a single step. In Section 3.5 we prove

a preservation theorem that takes care of this. We are unable to prove that the relation of

being strongly indestructible is preserved by the countable support iteration of proper forcings.

However, we are able to show that the relation of strongly preserving is preserved. This is one of

the reasons for introducing the relation of strongly preserving in Section 3.4. As a consequence,

we get the following theorem.

Theorem 1.2.8 (see Theorem 3.5.12 and Corollary 3.5.13). Let A ⊂ ωω be a strongly MAD

family. A is strongly indestructible for the countable support iteration of posets having diagonal

fusion. In particular, A is strongly indestructible for the countable support iteration of Sacks

and Miller forcings.

En route to proving this, we prove in Section 3.5 the following general preservation theorem
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about not adding eventually different reals.

Theorem 1.2.9 (see Theorem 3.5.8). Let γ be a limit ordinal and let 〈Pα, Q̊α : α ≤ γ〉 be a

countable support iteration of proper forcings. Suppose that for all α < γ, Pα does not add an

eventually different real. Pγ does not add an eventually different real either.

Partial results in this direction were obtained by Shelah, Goldstern and Judah [30] and by

Shelah and Kellner [21].

A partial answer to the question of whether strongly MAD families always exist is provided

in Section 3.6, where we show that it is consistent that there are no ”large” strongly MAD

families.

Theorem 1.2.10 (see Theorem 3.6.1). In the Cohen Model, all strongly MAD families have

size ℵ1 < c.

We end Chapter 3 by pointing out some connections and differences between the notion of a

strongly MAD family of functions and that of a strongly MAD family of subsets of ω, which are

defined analogously, with ωω replaced everywhere by [ω]ω, and with the additional requirement

that the family be infinite. Kurilić [23] and Hrušák and Garćıa Ferreira [16] have pointed

out that there is a close connection between strong MADness and Cohen indestructibility

for the case of MAD families of subsets of ω. In particular, they show that a MAD family

A ⊂ [ω]ω is Cohen indestructible iff it is “somewhere strongly MAD”. Hrušák suggested to

us in conversation that a similar result might hold for MAD families of functions as well. We

show that this is not the case in Section 3.7 by constructing under CH a Cohen indestructible

MAD family of functions that is “nowhere Van Douwen MAD”.

Theorem 1.2.11 (see Theorem 3.7.1). Assume CH. There is a Cohen indestructible MAD

family A ⊂ ωω with trivial trace.
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We also point out in Section 3.7 that the existence of a strongly MAD family of functions

implies the existence of a strongly MAD family of sets that is strongly Cohen indestructible.

Theorem 1.2.12 (see Lemma 3.7.2 and Lemma 3.7.4). Suppose A ⊂ ωω is a strongly MAD

family. A ⊂ [ω × ω]ω is a strongly MAD family of subsets of [ω × ω]ω that is strongly Cohen

indestructible.

1.2.3 Background and Summary for Chapter 4

A Cantor tree of sequences is a subset {ps : s ∈ 2<ω} of 2<ω1 such that for all s ∈ 2<ω,

ps_0 and ps_1 are incompatible nodes in 2<ω1 that extend ps. A subtree P of 2<ω1 is said

to have the Cantor Tree Property (CTP) if: 1) for every p ∈ P, p_0, p_1 ∈ P; 2) given

any Cantor tree {ps : s ∈ 2<ω} ⊂ P, there is f ∈ 2ω and q ∈ P such that ∀n ∈ ω [q ≤ pf�n].

Finally, a subtree P of 2<ω1 is a Gregory tree if it has the CTP, but does not have a cofinal

branch. In Chapter 4 we answer a question about Gregory trees due to Kunen. Gregory [13]

showed that such trees exist under CH. This is of interest because a Gregory tree, viewed as

a forcing order, is totally proper, and it kills itself. That is, forcing with a Gregory tree adds

a cofinal branch through itself. Therefore, it is possible to kill any given Gregory tree without

adding any reals. However, Gregory’s result shows that it is impossible to iterate this forcing

(using any supports) to kill off all Gregory trees without adding any new reals. Kunen and

Hart [14] pointed some connections between Gregory trees and certain topological spaces. In

particular, they showed that if there is a compact space which is hereditarily Lindelöf, is not

totally disconnected, but does not contain a copy of the Cantor set, then there is a Gregory

tree. Such a space is said to be weird.

As mentioned above, a Gregory tree is a totally proper forcing. Therefore, PFA implies

that there are no Gregory trees, and hence that there are no weird spaces. It is well known

that PFA implies c = ℵ2. Kunen asked if there is a model with c > ℵ2 where there are no
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Gregory trees. In Chapter 4 we provide an affirmative answer.

Theorem 1.2.13 (see Theorem 4.0.14). Let κ be an uncountable cardinal such that κ<κ = κ

and such that ∀λ < κ [λω < κ]. There is a forcing extension preserving cardinals where there

are no Gregory trees (and hence no weird spaces) and c = κ. Moreover, we can have Martin’s

Axiom in this model.

The material in this Chapter is joint work with Kunen.

1.3 Basic Definitions and Notational Conventions

1.3.1 Basic Definitions

For easy reference, we will collect together here the definitions of some basic concepts that will

occur throughout the thesis.

Definition 1.3.1. Two functions f and g from ω to ω are said to be a.d. if |f ∩ g| < ω.

Definition 1.3.2. A family A ⊂ ωω is a.d. if ∀f, g ∈ A [f 6= g =⇒ |f ∩ g| < ω]. An a.d.

family A ⊂ ωω is MAD if ∀f ∈ ωω∃h ∈ A [|h ∩ f | = ω].

Definition 1.3.3. p is said to be an infinite partial function if p is a function from some

infinite subset of ω to ω.

Definition 1.3.4. An a.d. family A ⊂ ωω is called a Van Douwen MAD family if for any

infinite partial function p, there is h ∈ A such that |h ∩ p| = ω

Definition 1.3.5. Let A ⊂ ωω be an a.d. family. We say that X ∈ [ω × ω]ω avoids A if for

any finite collection {h0, . . . hk} ⊂ A , | X \ (h0 ∪ · · · ∪ hk)| = ω.

Definition 1.3.6. Let A ⊂ ωω be an a.d. family. We say that A is strongly MAD if for

any countable family of functions {fi : i ∈ ω} ⊂ ωω avoiding A , there is h ∈ A such that

∀i ∈ ω [|h ∩ fi| = ω].
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Definition 1.3.7. Let X be a countable set. Two sets a, b ∈ [X]ω are a.d. if a ∩ b is finite. A

family A ⊂ [X]ω is a.d. if its members are pairwise a.d. An a.d. family A ⊂ [X]ω is MAD in

[X]ωif for every b ∈ [X]ω there is some a ∈ A such that |a ∩ b| = ω. Note that we are allowing

finite families to be MAD.

Definition 1.3.8. Let A ⊂ ωω be an a.d. family. Let f ∈ ωω. We define A ∩ f = {h ∩ f :

h ∈ A ∧ |h ∩ f | = ω}. Note that this is an a.d. family on the countable set f . We define the

trace of A , written tr (A ), to be the following set: {f ∈ ωω : A ∩ f is a MAD family in [f ]ω}.

Definition 1.3.9. Let A ⊂ ωω be a MAD family. We will say that A has trivial trace if no

member of tr (A ) avoids A .

1.3.2 Notational Conventions

Most of our set-theoretic notation is standard and follows Kunen [22] or Jech [17]. ω denotes

the set {0, 1, 2, . . . }. Given a set a, P(a) denotes the power set of a, i.e. P(a) = {b : b ⊂ a}.

For a set X and a cardinal λ, [X]λ = {Y ⊂ X : | Y | = λ}. Given sets a and b, ab denotes

{f : f is a function ∧ dom (f) = b ∧ ran (f) ⊂ a}. We will abuse notation and sometimes

also use ab to denote the cardinality of this set. Which of these is meant will be clear from the

context. Given two sets a and b, we will write a ⊂∗b to mean a \ b is finite. ∃∞ abbreviates

“there exists infinitely many” and ∀∞ abbreviates “for all but finitely many”.

Given a set a, I is said to be an ideal on a if I is a subset of P(a) such that

1. if b ⊂ a is finite, then b ∈ I

2. if b ∈ I and c ⊂ b, then c ∈ I

3. if b ∈ I and c ∈ I, then b ∪ c ∈ I

4. a /∈ I.
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Thus our ideals are always required to be proper and non–principal.

We will make use of forcing and iterated forcing throughout the thesis. We will fix here

some notation and conventions concerning forcing. Given a notion of forcing P and conditions

p, q ∈ P, we will write q ≤ p to mean that q is a stronger condition than p. We will also follow

the alphabet convention, whereby letters occurring later in the alphabet are used for stronger

conditions. We will abuse notation and represent an iterated forcing construction of length γ

as 〈Pα, Q̊α : α ≤ γ〉, even though Q̊γ does not exist; only Pγ does. A more correct, but also

more cumbersome, notation would be 〈 〈Pα : α ≤ γ〉, 〈Q̊α : α < γ〉 〉. We will use CS to mean

countable support and FS to mean finite support. If 〈Pα, Q̊α : α ≤ γ〉 is an iterated forcing

construction, we will require all the Q̊α to be full names for posets. This means that for each

α < γ, Q̊α is a full Pα name and 
α Q̊α is a poset.

Given a poset P, a full P name is a P name x̊ such that

1. ∀ẙ ∈ dom (̊x) [ 
 ẙ ∈ x̊]

2. for every P name z̊, there is ẙ ∈ dom (̊x) so that ∀p ∈ P [ p 
 z̊ ∈ x̊ =⇒ p 
 z̊ = ẙ].

Given any P name x̊ for which 
 x̊ 6= 0 holds, it is an easy exercise to see that there is a full

P name ẙ such that 
 x̊ = ẙ.

We will make use of the maximal principle in the following two forms. Firstly, given a

formula φ(v) and a condition p ∈ P, if p 
 ∃x φ(x), then there is a P name x̊ such that

p 
 φ (̊x). Secondly, if A ⊂ P is a maximal antichain in P, and if {x̊p : p ∈ A} is a set of P

names, then there is a P name x̊ so that ∀p ∈ A [p 
 x̊ = x̊p]. We will often use the maximal

principle without saying so.

We will frequently use the following consequence of the maximal principle without men-

tioning it. Suppose φ(u) and ψ(v) are two formulas. Suppose that 
 ∃u φ(u). Suppose p ∈ P

and x̊ ∈ VP are such that p 
 φ(̊x) ∧ ψ(̊x). We may, in this situation, assume without loss of

generality that 
 φ(̊x) and p 
 ψ(̊x). To see this, note that 
 ∃y [φ(y) ∧ [φ(̊x) =⇒ y = x̊]].
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So by the maximal principle, there is ẙ ∈ VP such that 
 φ(ẙ) and 
 [φ(̊x) =⇒ ẙ = x̊].

Since p 
 φ(̊x), p 
 ẙ = x̊, whence p 
 ψ(ẙ).

We will often confuse sequences of names with names for sequences. Thus given a set of

P names {̊an : n ∈ ω}, we may write something like p 
 〈̊an : n ∈ ω〉 ∈ ωω. Strictly speaking,

this is nonsense because 〈̊an : n ∈ ω〉 is not a name, but we are simply using it in place of a

name that is forced by 1P to denote the sequence 〈̊an [G] : n ∈ ω〉, which is defined in V[G].

Furthermore, if X is a set and f̊ is a P name such that p 
 f̊ is a function with domain X, we

can find a sequence of P names 〈̊ax : x ∈ X〉 such that p 
 〈̊ax : x ∈ X〉 = f̊ .

We will make use of elementary submodels of “the universe”. We assume the reader is

familiar with this concept. We will always take elementary submodels of some H(θ), where

θ is some large regular cardinal. We will never explicitly say how large θ needs to be. Thus,

we will often write M ≺ H(θ), without saying anything further at all about θ. It will be

understood that θ is some regular cardinal that is sufficiently large to carry out the argument

at hand.
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Chapter 2

There is a Van Douwen MAD

Family

2.1 A Van Douwen MAD Family in ZFC

In this section we will prove in ZFC (Zermelo-Fraenkel set theory with the axiom of choice; for

more details about ZFC see [22]) that there is a Van Douwen MAD family of size Continuum

(see Definition 1.3.4). It is easily seen that Van Douwen MAD families exist under CH, and

more generally under MA. The question of whether they always exist was raised by E. van

Douwen and A. Miller. It occurs as problem 4.2 in A. Miller’s problem list [27]. Zhang [33]

discusses this problem and proves that Van Douwen MAD families of various sizes exist in

certain forcing extensions.

The starting point for our construction is the following well known characterization of the

cardinal non (M), due to Bartoszyński. The reader may consult [4] or [5] for a proof of this.

Definition 2.1.1. non (M) is the least size of a non meager set of reals.

Definition 2.1.2. Let h ∈ ωω be such that ∀n ∈ ω [h(n) ≥ 1]. An h-slalom is a function

S : ω → [ω]<ω such that for all n ∈ ω, |S(n)| ≤ h(n).

Theorem 2.1.3 (Bartoszyński [4]). Let κ be an infinite cardinal. The following are equivalent:

1. Every set of reals of size less than κ is meager.
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2. For every family F ⊂ ωω with |F | < κ, there is an infinite partial function g from ω to

ω such that ∀f ∈ F [ |f ∩ g| < ω].

3. For every h and for every family of h-slaloms F with |F | < κ, there is a g ∈ ωω such

that ∀S ∈ F ∀∞n ∈ ω [ g(n) /∈ S(n)].

a

Our first task is to strengthen condition (3) above. We first show that if F is a family of h-

slaloms of size less than non (M), then we can get a one-to-one function g, which is eventually

outside all the slaloms in F (Lemma 2.1.4). We then show that we can, in fact, get a suitably

“wide” slalom which is eventually disjoint from all slaloms in F (Lemma 2.1.6). Lemma 2.1.4

was independently discovered and used by Brendle, Spinas and Zhang [9].

Lemma 2.1.4. Let κ = non (M) and let F be a family of h-slaloms with |F | < κ. There is a

one-to-one function g ∈ ωω such that ∀S ∈ F ∀∞n ∈ ω [g(n) /∈ S(n)].

Proof. Our proof is similar to the argument in Bartoszyński [4]. Write F = 〈Sξ : ξ < λ〉, where

λ = |F |. Define a new function h′ and a family of h′-slaloms as follows:

h′(n) =
∑
i≤n

h(i)

∀ξ < λ S′ξ(n) =
⋃
i≤n

Sξ(i).

Clearly, 〈S′ξ : ξ < λ〉 is a family of h′-slaloms. Now, for each i ∈ ω, let Ti : ω → [ω]<ω be

defined by Ti(n) = {i}. It is clear that 〈S′ξ : ξ < λ〉 ∪ 〈Ti : i ∈ ω〉 is a family of fewer than κ

h′-slaloms. Thus by 3 of Theorem 2.1.3, we can choose g ∈ ωω such that the following hold:

1. ∀ξ < λ∀∞n ∈ ω
[
g(n) /∈ S′ξ(n)

]
2. ∀i ∈ ω∀∞n ∈ ω [g(n) /∈ Ti(n)].
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Property 2 implies that g takes any given value only finitely often. Thus we may choose

a one-to-one infinite partial function g′ ⊂ g. Let X = dom (g′). By property 1 we obviously

have that for any ξ < λ, ∀∞n ∈ ω
[
n ∈ X =⇒ g′(n) /∈ S′ξ(n)

]
. Let 〈xn : n ∈ ω〉 be the

increasing enumeration of X. For n ∈ ω, set g′′(n) = g′(xn). Since g′ is one-to-one, g′′ is also

one-to-one. We claim that g′′ is the function we are looking for. Indeed, fix ξ < λ. We know

that ∃m ∈ ω∀n ≥ m
[
n ∈ X =⇒ g′(n) /∈ S′ξ(n)

]
. We will show that ∀n ≥ m [g′′(n) /∈ Sξ(n)].

Suppose, for a contradiction, that g′′(n) = g′(xn) ∈ Sξ(n), for some n ≥ m. Note that we

have m ≤ n ≤ xn. Thus, by the definition of S′ξ, Sξ(n) ⊂ S′ξ(xn). Therefore, we have that

g′(xn) ∈ S′ξ(xn). But this is a contradiction because xn ≥ m and xn ∈ X. a

Convention 2.1.5. In what follows we will only be concerned with h-slaloms for the function

h(n) = 2n. We will simply refer to these as slaloms, suppressing mention of h.

Lemma 2.1.6. Let F = 〈Sξ : ξ < λ〉 be a family of slaloms with λ < non (M). There is a

slalom S such that ∀n ∈ ω [|S(n)| = 2n] and ∀ξ < λ∀∞n ∈ ω [S(n) ∩ Sξ(n) = 0].

Proof. For all n ∈ ω set ln = 2n−1 and In = [ln, ln+1). For each ξ < λ define S′ξ by stipulating

that ∀k, n ∈ ω
[
S′ξ(k) = Sξ(n) iff k ∈ In

]
. We have that for all k ∈ ω,

∣∣∣S′ξ(k)∣∣∣ ≤ |Sξ(n)| ≤ 2n,

where k ∈ In. But if k ∈ In, then 2n ≤ 2k and so
∣∣∣S′ξ(k)∣∣∣ ≤ 2k. Therefore, 〈S′ξ : ξ < λ〉

is a family of fewer than non (M) many slaloms. By applying Lemma 2.1.4 we can find a

one-to-one function g ∈ ωω such that for every ξ < λ, ∀∞k ∈ ω
[
g(k) /∈ S′ξ(k)

]
. Now define S

by setting S(n) = {g(k) : k ∈ In}. Since g is one-to-one, |S(n)| = |In| = 2n. Fix ξ < λ. We

know that ∃m ∈ ω∀k ≥ m
[
g(k) /∈ S′ξ(k)

]
. We claim that for any n ≥ m, S(n) ∩ Sξ(n) = 0.

Suppose to the contrary that for some n ≥ m, g(k) ∈ Sξ(n) for some k ∈ In. Then since

k ∈ In, S′ξ(k) = Sξ(n), and so we get that g(k) ∈ S′ξ(k). But this is a contradiction because

m ≤ n ≤ ln ≤ k. a
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Lemma 2.1.7. Let S be a slalom such that ∀n ∈ ω [|S(n)| = 2n]. There exists an a.d. family

A ⊂ ωω such that |A | = c and for every f ∈ A , ∀n ∈ ω [f(n) ∈ S(n)].

Proof. Since |S(n)| = |2n|, we can assign to each σ ∈ 2n a unique number kσ ∈ S(n). Now,

for each µ ∈ 2ω, define fµ ∈ ωω by setting fµ(n) = kµ�n ∈ S(n). Suppose µ 6= ν ∈ 2ω.

Then there is m ∈ ω such that µ(m) 6= ν(m). So for all n > m, µ � n 6= ν � n, and so

fµ(n) = kµ�n 6= kν�n = fν(n). Thus A = {fµ : µ ∈ 2ω} is as required. a

Definition 2.1.8. Let A,B ⊂ ωω be two families of functions. We will write A ⊥ B to mean

that ∀f ∈ A∀g ∈ B [ |f ∩ g| < ω]

The next lemma will play an important role in our construction. The proof of this lemma

uses Lemma 2.1.7 and is the reason why we set out to strengthen clause (3) of Theorem 2.1.3.

Lemma 2.1.9. Let κ = non (M). Let F = 〈fα : α < κ〉 ⊂ ωω. There is a sequence

〈Aα : α < κ〉 such that following hold:

1. Aα ⊂ ωω is an a.d. family.

2. |Aα| = c.

3. for all β < α < κ, Aα ⊥ Aβ

4. Aα ⊥ {fβ : β ≤ α}.

Proof. We will construct the family 〈Aα : α < κ〉 by induction. We will simultaneously build

a family of slaloms 〈Sα : α < κ〉 and ensure that for all α < κ, ∀f ∈ Aα∀n ∈ ω [f(n) ∈ Sα(n)].

Fix α < κ and suppose that 〈Aβ : β < α〉 and 〈Sβ : β < α〉 are already given to us. For

each β ≤ α, define a slalom Tβ by Tβ(n) = {fβ(n)}. Thus, {Sβ : β < α} ∪ {Tβ : β ≤ α} is a

family of fewer than κ slaloms. So we can apply Lemma 2.1.6 to find a slalom Sα such that

the following hold:
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(a) ∀n ∈ ω [|Sα(n)| = 2n]

(b) ∀β < α∀∞n ∈ ω [Sα(n) ∩ Sβ(n) = 0]

(c) ∀β ≤ α∀∞n ∈ ω [Sα(n) ∩ Tβ(n) = 0].

Property (a) allows us to apply Lemma 2.1.7 to Sα to find an a.d. family Aα ⊂ ωω with

|Aα| = c and with the property that ∀f ∈ Aα∀n ∈ ω [f(n) ∈ Sα(n)]. Thus Aα satisfies

requirements (1) and (2). We will check requirements (3) and (4). Fix f ∈ Aα and g ∈ Aβ for

some β < α. We know that there is m ∈ ω such that ∀n ≥ m [Sα(n) ∩ Sβ(n) = 0]. Since ∀n ∈

ω [f(n) ∈ Sα(n) ∧ g(n) ∈ Sβ(n)], it follows that ∀n ≥ m [f(n) 6= g(n)]. To verify (4), fix f ∈ Aα

and some β ≤ α. Again we know that there is m ∈ ω such that ∀n ≥ m [Sα(n) ∩ {fβ(n)} = 0]

and that ∀n ∈ ω [f(n) ∈ Sα(n)]. Therefore, it follows that ∀n ≥ m [f(n) 6= fβ(n)]. a

We are now ready to construct our Van Douwen MAD family. In order to ensure that our

family is Van Douwen MAD we will use the notion of the trace of an a.d. family (see Definition

1.3.8). The idea is that if an a.d. family has a “sufficiently large” trace, then it must be Van

Douwen MAD.

Convention 2.1.10. By Theorem 2.1.3 there is a family F = 〈fα : α < non (M)〉 ⊂ ωω such

that for every infinite partial function g there is an α < non (M) such that |g ∩ fα| = ω. For

the remainder of this section let us fix such a family F .

We will remind the reader of the definition of trace of an a.d. family.

Definition 2.1.11 (see Definition 1.3.8). Let A ⊂ ωω be an a.d. family. The trace of A ,

written tr (A ), is {f ∈ ωω : A ∩f is a MAD family on f }. Recall that we allow MAD families

on f to be finite (see Definition 1.3.7).

Lemma 2.1.12. Let A ⊂ ωω be an a.d. family such that F ⊂ tr (A ). Then A is Van Douwen

MAD.
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Proof. Indeed, let g be an infinite partial function. By the definition of F , there is α < non (M)

such that |g ∩ fα| = ω. Since F ⊂ tr (A ), A ∩ fα is a MAD family on fα. So there is h ∈ A

such that h ∩ fα meets g ∩ fα in an infinite set, whence we get that |h ∩ g| = ω. a

Theorem 2.1.13. There is a Van Douwen MAD family of size c.

Proof. In view of Lemma 2.1.12, it is enough to construct an a.d. family A of size c such that

F ⊂ tr (A ). We will use Lemma 2.1.9 to do this. Fix a sequence 〈Aα : α < non (M)〉 as in

Lemma 2.1.9. A will be constructed as the union of an increasing sequence of a.d. families.

Thus, we will construct a sequence 〈Cα : α < non (M)〉 such that:

1. Cα ⊂ ωω is an a.d. family

2. ∀β < α < non (M) [Cβ ⊂ Cα]

3. fα ∈ tr (Cα)

4. ∀h ∈ Cα∃β ≤ α∃g ∈ Aβ∃X ∈ [ω]ω [h = fβ � X ∪ g � ω \X]

5. |C0| = c.

To construct C0, we fix a MAD family {aξ : ξ < c} on ω. Put A0 = {gξ : ξ < c}. For each

ξ < c, let hξ = (f0 � aξ) ∪ (gξ � (ω \ aξ)), and put C0 = {hξ : ξ < c}. We will check that C0

is a.d. Indeed, if ξ0 < ξ1, then since aξ0 ∩ aξ1 is finite, |f0 � aξ0 ∩ f0 � aξ1 | < ω. Next, since

A0 ⊥ {f0}, we have that both (f0 � aξ0) ∩ (gξ1 � (ω \ aξ1)) and (f0 � aξ1) ∩ (gξ0 � (ω \ aξ0)) are

finite. Finally, since A0 is an a.d. family, we know that |gξ0 � (ω \ aξ0) ∩ gξ1 � (ω \ aξ1)| < ω.

Thus, we conclude that |hξ0 ∩ hξ1 | < ω. Next, it is clear from the construction that f0 ∈ tr (C0),

and that C0 satisfies clauses (4) and (5).

To continue the construction, suppose that we are given the sequence 〈Cβ : β < α〉. Set

C =
⋃

Cβ and consider C ∩ fα. This is an a.d. family on fα. If it is a MAD family (either

finite or infinite), then fα is already in tr (C ), and there is nothing more to be done. In this
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case, we set Cα = C . So, say that C ∩ fα is not MAD. We can extend it to a MAD family,

say B, on fα. Consider the family {Y ∈ [ω]ω : fα � Y ∈ B \ (C ∩ fα)}. Note that this is

an a.d. family on ω. We may assume WLOG that it has size c. Let {aξ : ξ < c} enumerate

this family. Put Aα = {gξ : ξ < c}. For each ξ < c set hξ = (fα � aξ) ∪ (gξ � (ω \ aξ)),

and put D = {hξ : ξ < c}. It is easily argued, as for C0, that D is a.d. We will check that

C ⊥ D . Fix h ∈ C and ξ < c. If h ∩ fα is finite, then so is h ∩ fα � aξ. On the other

hand, if h ∩ fα is infinite, then h ∩ fα ∈ C ∩ fα. But then |fα � aξ ∩ h| < ω because B is

an a.d. family. Thus in either case, h ∩ fα � aξ is finite. To deal with h ∩ gξ � (ω \ aξ), by

clause (4), we know that for some γ ≤ β < α, h = (fγ � X) ∪ (g � (ω \X)), where X ∈ [ω]ω

and g ∈ Aγ . But since Aα ⊥ {fγ}, |(fγ � X) ∩ (gξ � (ω \ aξ))| < ω, and since Aα ⊥ Aγ , we

know that |(gξ � (ω \ aξ)) ∩ (g � (ω \X))| < ω. Therefore, h ∩ gξ � (ω \ aξ) is also finite, and

so |h ∩ hξ| < ω. Hence, we can define Cα = C ∪D .

Now, it is clear that Cα satisfies clauses (1), (2) and (4). We just need to verify that

fα ∈ tr (Cα). So we need to check that Cα ∩ fα is a MAD family on fα. But clearly Cα ∩ fα =

C ∩ fα ∪D ∩ fα. Fix X ∈ [ω]ω. Since B is a MAD family on fα, there is Y ∈ [ω]ω such that

fα � Y ∈ B and |fα � X ∩ fα � Y | = ω. If fα � Y ∈ C ∩ fα, then we are done. If it is not, then

Y = aξ for some ξ < c. It follows that |fα � X ∩ hξ| = ω. But since hξ ∈ D , we are done. a

Definition 2.1.14. Let av denote the least size of a Van Douwen MAD family. By Theorem

2.1.13, this cardinal is well defined.

Since any Van Douwen MAD family is MAD, we have ae ≤ av.

Question 2.1.15. Is it consistent to have ae < av?
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2.2 Definability of MAD Families in ωω

Our next task is to investigate the definability of a.d. families in ωω. We will first prove that if

A is an analytic MAD family in ωω, then A must satisfy some strong constraints (Theorem

2.2.1). We will then show that this is a strengthening of a result of Steprāns [20] that strongly

MAD families cannot be analytic (see Definition 1.3.6). To do this, we will argue that any

strongly MAD family must be Van Douwen MAD. Next, we will show that it is consistent to

have MAD families in ωω that satisfy these strong constraints (see Theorem 2.2.12). Finally,

we will argue that analytic MAD families cannot satisfy these constraints if they have some

additional combinatorial properties.

Theorem 2.2.1. Let A ⊂ ωω be an a.d. family and let X ∈ [ω × ω]ω avoid A (See Definition

1.3.5). Suppose that A is analytic in ωω. There is Y ∈ [X]ω such that ∀h ∈ A [ |h ∩ Y | < ω].

Proof. Let us give the space 2X the Tychonoff product topology, with 2 having the discrete

topology. Since X is a countable set, this is homeomorphic to 2ω with the usual topology.

Define a map Ψ : ωω → 2X by stipulating that ∀〈n,m〉 ∈ X [Ψ(f) (〈n,m〉) = 1 ↔ 〈n,m〉 ∈ f ].

Thus Ψ(f) is the characteristic function of X ∩ f .

This map is continious. To see this, fix finitely many members 〈n0,m0〉, . . . , 〈nk,mk〉 ∈ X

and 〈n0,m0〉, . . . , 〈nl,ml〉 ∈ X. A basic open subset of 2X is of the form U = {χ ∈ 2X :

χ (〈ni,mi〉) = 0 ∀i ≤ k ∧ χ
(
〈ni,mi〉

)
= 1 ∀i ≤ l}. Thus Ψ−1(U) = {f ∈ ωω : f(ni) 6=

mi ∀i ≤ k ∧ f(ni) = mi ∀i ≤ l}. It is clear that this is an open subset of ωω. It follows

that Ψ′′A is an analytic subset of 2X . It is the set of characteristic functions of elements of

{h ∩ X : h ∈ A }. We are only interested in the infinite elements of this set. So we will put

B = Ψ′′A ∩ {χ ∈ 2X : ∃∞〈n,m〉 ∈ X [χ (〈n,m〉) = 1]}. It is clear that B is also analytic. B

is the set of characteristic functions of elements of A ∩X = {h ∩X : h ∈ A ∧ |h ∩X| = ω}.

Now, A ∩X is an a.d. family on X. By a theorem of Mathias [25] we know that there are no
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analytic MAD families on X. Therefore, if A ∩X is infinite, it is not MAD on X, and we get

the conclusion of the theorem. On the other hand, if A ∩X is finite, then since X avoids A ,

Y = X \
⋃

(A ∩X) will satisfy the conclusion of the theorem. Hence, either way, the theorem

is proved. a

Corollary 2.2.2. Suppose A ⊂ ωω is an analytic a.d. family. Then A has trivial trace (see

Definition 1.3.9).

Proof. If f is a member of tr (A ) which avoids A , then putting f = X in Theorem 2.2.1 will

give a contradiction. a

Corollary 2.2.3. There are no analytic Van Douwen MAD families in ωω.

a

Steprāns [20] introduced the notion of a strongly MAD family (see Definition 1.3.6) and

proved that they can’t be analytic. We will show that this follows from Corollary 2.2.3.

Lemma 2.2.4. Let A ⊂ ωω be strongly MAD. Let {gi : i ∈ ω} be a collection of infinite

partial functions from ω to ω such that each gi avoids A . There is h ∈ A such that ∀i ∈

ω [ |h ∩ gi| = ω]. In particular, strongly MAD families are Van Douwen MAD.

Proof. Let h0 6= h1 be two distinct members of A . For each i ∈ ω, let ai = dom (gi) and let

bi = ω \ ai. For each i ∈ ω, define f0
i = gi ∪ h0 � bi and f1

i = gi ∪ h1 � bi. Since gi avoids A ,

both f0
i and f1

i avoid A . Thus {f j
i : i ∈ ω ∧ j ∈ 2} is a countable collection of total functions

avoiding A . So we may choose h ∈ A such that ∀i ∈ ω ∀j ∈ 2
[ ∣∣∣h ∩ f j

i

∣∣∣ = ω
]
. We will show

that ∀i ∈ ω [ |gi ∩ h| = ω]. If gi ∩ h is finite, then since both f0
i ∩ h and f1

i ∩ h are infinite, it

follows that |h0 ∩ h| = ω and that |h1 ∩ h| = ω. But since A is an a.d. family this means that

h = h0 and h = h1, which is a contradiction. a

Corollary 2.2.5 (Steprāns [20]). There are no analytic strongly MAD families in ωω.
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a

Remark 2.2.6. Corollary 2.2.3 is strictly stronger than Corollary 2.2.5. It is easy to modify

the construction in Theorem 2.1.13 to ensure that the Van Douwen MAD family constructed

there is not strongly MAD.

It is an open problem whether there are any analytic MAD families in ωω. In fact, it is not

even known if a MAD family in ωω can be closed. Since Theorem 2.2.1 puts a strong restriction

on such MAD families, one might conjecture that there are no MAD families that satisfy the

conclusion of Theorem 2.2.1 at all. However, we will show below that this is consistently false.

We will first argue that it is sufficient to build a MAD family with trivial trace.

Lemma 2.2.7. Let A ⊂ ωω be a MAD family with trivial trace. Suppose X ∈ [ω × ω]ω avoids

A . There is Y ∈ [X]ω such that ∀h ∈ A [ |h ∩ Y | < ω].

Proof. Let A ∩X = {h∩X : h ∈ A ∧|h ∩X| = ω}. If A ∩X is finite, then since X avoids A ,

Y = X \
⋃

(A ∩X) will be as required. So assume that A ∩X is infinite. Choose a countably

infinite collection {hi : i ∈ ω} ⊂ A such that |hi ∩X| = ω for each i, and put pi = hi∩X. Thus

{pi : i ∈ ω} forms an a.d family of infinite partial functions. We may choose infinite partial

functions gi ⊂ pi such that ∀i < j < ω [dom (gi) ∩ dom (gj) = 0]. Now if we put g =
⋃
gi, then

g is an infinite partial function and g ⊂ X. Since g has infinite intersection with infinitely

many things in A , it is clear that g avoids A . Let a = dom (g) and let b = ω \ a. Choose

h ∈ A and put f = g ∪ h � b. Obviously, f is a total function avoiding A . So f /∈ tr (A ).

Therefore, we may choose an infinite partial function p ⊂ f such that ∀h ∈ A [|h ∩ p| < ω].

Clearly, since |p ∩ h � b| < ω, we have that |p ∩ g| = ω. Thus, Y = p ∩ g is as required. a

Definition 2.2.8. Let I be a proper non-principal ideal on ω. We will say that I is a dense

ideal if ∀a ∈ [ω]ω∃b ∈ [a]ω [b ∈ I].
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Let A ⊂ ωω be a MAD family with trivial trace, and consider the ideal I0 (A ) = {a ∈

P(ω) : ∃p ∈ ωa [p is a.d. from A ]}. It is clear that I0 (A ) must be a dense ideal on ω. So we

must use such an ideal in our construction.

Lemma 2.2.9. There is a dense ideal I on ω such that whenever X is a subset of I of size

less than c, there is an infinite set a ∈ I such that ∀x ∈ X [|a ∩ x| < ω].

Proof. Let A ⊂ [ω]ω be a MAD family of subsets of ω of size c, with
⋃

A = ω. Let I be

the ideal generated by A . It is easily checked that I is a dense ideal on ω. Now, suppose

X = 〈xα : α < κ〉 ⊂ I, with κ < c. As I is generated by A , it is possible to find a set

B ⊂ A , with |B| < c, such that for every α < κ, there is a finite set {b0, . . . , bk} ⊂ B so that

xα ⊂ b0 ∪ · · · ∪ bk. Since |A | = c, we may choose a set a ∈ A which is a.d. from everything in

B. Now, it is clear that a is a.d. from all the xα. a

Definition 2.2.10. Let I be an ideal as in Lemma 2.2.9. If B is a family of infinite partial

functions from ω to ω, we will say that B has domains in I if ∀g ∈ B [dom (g) ∈ I].

Lemma 2.2.11. Assume non (M) = c. Let I be an ideal as in Lemma 2.2.9. Let B be a

family of infinite partial functions with domains in I and let D ⊂ ωω be a family of total

functions. Suppose that both B and D have size less than c. Let f ∈ ωω be a.d. from D . There

is h ∈ ωω such that:

1. ∀g ∈ B [ |h ∩ g| < ω]

2. ∀h′ ∈ D [|h ∩ h′| < ω]

3. |h ∩ f | = ω.

Proof. Let X = {dom (f ∩ g) : g ∈ B}. Since B has domains in I, it follows that X ⊂ I. By

assumption, |B| < c. So by Lemma 2.2.9, we can find an infinite set a ∈ I which is a.d. from

everything in X. Set p = f � a. Since f is assumed to be a.d. from D , p is also a.d. from D .



26

Moreover, if g ∈ B, then dom (p ∩ g) ⊂ a∩dom (f ∩ g), which is finite. Therefore, |p ∩ g| < ω.

Now, since non (M) = c, there is a total function h0 ∈ ωω which is a.d. from B ∪ D . Let

a = dom (p) and b = ω \ a. Set h = p ∪ h0 � b. h satisfies (1) and (2) above because both p

and h0 are a.d. from B ∪D . It satisfies (3) because p is an infinite partial function contained

in f . a

Theorem 2.2.12. Assume non (M) = a = c. There is a MAD family A ⊂ ωω with trivial

trace 1.

Proof. Let 〈fα : α < c〉 enumerate ωω. Let I be an ideal as in Lemma 2.2.9. We will construct

the MAD family A by induction, as the union of an increasing sequence of a.d. families. In

fact, we will build two sequences 〈Aα : α < c〉 and 〈Bα : α < c〉 such that the following hold:

1. Aα ⊂ ωω is an a.d family, with |Aα| ≤ |α|

2. Bα is a family of infinite partial functions, with |Bα| ≤ |α|

3. ∀α < β < c [Aα ⊂ Aβ ∧Bα ⊂ Bβ]

4. Bα has domains in I

5. ∀h ∈ Aα∀g ∈ Bα [ |h ∩ g| < ω]

6. if fα avoids
⋃
{Aβ : β < α}, then there is g ∈ Bα so that g ⊂ fα

7. if fα is a.d. from
⋃
{Aβ : β < α}, there is h ∈ Aα so that |h ∩ fα| = ω.

A will be
⋃

Aα. Clauses (1) and (7) ensure that A is a MAD family in ωω. Clauses (5)

and (6) ensure that A has trivial trace. It is easy to see that clause (4) is necessary because if

A is a MAD family with trivial trace, then {a ∈ [ω]ω : ∃p ∈ ωa [p is a.d. from A ]} is a proper

dense ideal on ω.
1An earlier version of this proof claimed to derive this theorem just from the assumption a = c. Brendle

pointed out that the proof was implicitly assuming non (M) = c.
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Fix α < c and suppose that 〈Aβ : β < α〉 and 〈Bβ : β < α〉 are given to us. Set B =
⋃

Bβ

and D =
⋃

Aβ. If fα does not avoid D , then there is nothing to be done. In this case, we

simply set Aα = D and Bα = B. From now on, let us assume that fα avoids D . We will

first define Bα. Consider D ∩ fα. This is an a.d. family on fα. Since |D | < c, and since,

by assumption, fα avoids D , we can use a = c to find an infinite partial function p ⊂ fα

so that ∀h ∈ D [|p ∩ h| < ω]. Since I is a dense ideal, there is an infinite partial function

g1 ⊂ p with dom (g1) ∈ I. Now, we define Bα = B ∪ {g1}. By our choice of p, we have

that ∀h ∈ D [|h ∩ g1| < ω]. This completes the definition of Bα. We now define Aα. We will

proceed by cases. Suppose that fα is not a.d. from D . In this case, we may set Aα = D . Note

that we have already ensured above that everything in Bα is a.d from D . So clause (5) will be

satisfied. All the other clauses are immediate. Now, let us consider the case when fα is a.d.

from D . Bα is a family of infinite partial functions with domains in I and it’s size is less than

c. Also, D is a family of total functions with |D | < c. Therefore, we can apply Lemma 2.2.11

to find a function h ∈ ωω, which is a.d. from Bα ∪ D , with the property that |h ∩ fα| = ω.

Now, we can set Aα = D ∪ {h}. It is easy to see that clauses (1)− (7) are all satisfied, and so

we are done. a

Observe that if ae < a, then any MAD family A ⊂ ωω of size ae will have trivial trace

because if f ∈ ωω, then |A ∩ f | < a. It is unknown if it is consistent to have ae < a. We also

do not know if the construction in Theorem 2.2.12 can be carried out under a = c, or even just

in ZFC. But we conjecture that the latter is impossible.

Conjecture 2.2.13. It is consistent with ZFC that every MAD family in ωω has a non trivial

trace.

Theorem 2.2.12 implies that it is consistent to have a MAD family with trivial trace.

However, it may still be the case that analytic MAD families cannot have trivial trace. We

investigate this possibility next. We show that analytic MAD families satisfying certain extra
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combinatorial properties cannot have trivial trace, and hence, cannot exist. We make use of a

partition theorem proved by Taylor [6] and extended by Blass [7].

Definition 2.2.14. Let X be a countably infinite set. A non principal ultrafilter U on X is a

P–point if for every decreasing sequence a0 ⊃ a1 ⊃ · · · of sets in U , there is a ∈ U such that

∀i ∈ ω [a ⊂∗ai].

Theorem 2.2.15 (Taylor, see [7] Theorem 4). Let U be a P-point on ω and let X ⊂ [ω]ω be

an analytic set. There is a set E ∈ U and a function f ∈ ωω such that X contains all or none

of the infinite subsets F of E that satisfy

∀i, j ∈ F [i < j =⇒ f(i) < j] . (∗)

a

Convention 2.2.16. We will apply Theorem 2.2.15 to an ultrafilter U on ω × ω and an

X ⊂ [ω × ω]ω. In order to make sense of the condition (∗) in Theorem 2.2.15, we must have

a well ordering of ω × ω in type ω. Let us arbitrarily choose such an ordering ≺.

Lemma 2.2.17. Let A ⊂ ωω be an analytic a.d. family. Let E ∈ [ω × ω]ω be a set such that

∃∞h ∈ A [|h ∩ E| = ω], let X = {F ∈ [ω × ω]ω : ∃h ∈ A [|h ∩ F | = ω]} and let f ∈ (ω × ω)ω.

Then there are infinite sets F0 and F1 in [E]ω such that F0 ∈ X , F1 /∈ X and

∀〈i0, j0〉, 〈i1, j1〉 ∈ F0 [〈i0, j0〉 ≺ 〈i1, j1〉 =⇒ f(〈i0, j0〉) ≺ 〈i1, j1〉] (∗0)

∀〈k0, l0〉, 〈k1, l1〉 ∈ F1 [〈k0, l0〉 ≺ 〈k1, l1〉 =⇒ f(〈k0, l0〉) ≺ 〈k1, l1〉] . (∗1)

Proof. Choose h ∈ A such that |h ∩ E| = ω. We may choose, by recursion, an infinite set

F0 ⊂ h∩E that satisfies (∗0) above. It is clear that |F0 ∩ h| = ω, and hence that F0 ∈ X . To

get F1, we will use Theorem 2.2.1. Note that E avoids A . So there is F ∈ [E]ω such that F

is a.d. from A . Once again, we may choose, by recursion, an infinite set F1 ⊂ F that satisfies

(∗1) above. It is clear that F1 is a.d. from A , and hence that F1 /∈ X . a
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Definition 2.2.18. Let A be a countable set and let I be a non-principal ideal on A. Let

E = [A]ω \ I. We say that E is a P-coideal on A if whenever E0 ⊃ E1 ⊃ · · · is a sequence of

sets in E, there a set E ∈ E such that ∀n ∈ ω [E⊂∗En].

Theorem 2.2.19. Let A ⊂ ωω be an a.d. family. Let X = {F ∈ [ω × ω]ω : ∃h ∈

A [|h ∩ F | = ω]} and let E0 = {E ∈ [ω × ω]ω : ∃∞h ∈ A [|h ∩ E| = ω]}. If there is a P-coideal

E on ω × ω with E ⊂ E0, then A is not analytic.

Proof. By definition, there is a non-principal ideal I such that E = [ω × ω]ω \ I. Let P be the

forcing notion P (ω × ω) /I. Since E is a P-coideal, P is countably closed and hence does not

add any reals. Moreover, P generically adds a P-point U ⊂ E . Now, suppose for a contradiction

that A is analytic. Identifying ωω with a Gδ subset of P (ω × ω) in the natural way makes

A into an analytic subset of P (ω × ω). This implies that X is analytic because it has a Σ1
1

definition. As P does not add any reals, X is still an analytic set in V [U ] with the same

definition. Now, in V [U ], we may apply Theorem 2.2.15 to find a set E ∈ U and a function

f ∈ (ω × ω)ω such that X contains all or none of the infinite subsets F of E that satisfy

∀〈i, j〉, 〈k, l〉 ∈ F [〈i, j〉 ≺ 〈k, l〉 =⇒ f (〈i, j〉) ≺ 〈k, l〉] . (∗)

But P does not add any reals. Therefore, E and f are in the ground model V. Note that

E ∈ E ⊂ E0 because U ⊂ E . This allows us to apply Lemma 2.2.17 in V to find F0, F1 ∈ [E]ω

satisfying (∗0) and (∗1) of Lemma 2.2.17 with F0 ∈ X and F1 /∈ X . But now, F0, F1 ∈ V [U ]

still satisfy (∗0) and (∗1) in V [U ], contradicting our choice of E. a

Remark 2.2.20. If A is any infinite MAD family in [ω]ω and if E0 = {E ∈ [ω]ω : ∃∞A ∈

A [|E ∩A| = ω]}, then Mathias [25] showed that E0 is a P-coideal. It is easy to see that for a

MAD family in ωω, E0, as defined in Theorem 2.2.19, is not necessarily a P-coideal. This is

an interesting difference between the two types of MADness.
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Next, we will explore some consequences of Theorem 2.2.19 for some ideals on ω that can be

naturally defined by using a MAD family of functions A ⊂ ωω.

Definition 2.2.21. Let A ⊂ ωω be an a.d. family. We define I0 (A ) = {a ∈ P(ω) : ∃p ∈

ωa∀h ∈ A [|p ∩ h| < ω]}. Given E ⊂ ω × ω, we define E(n) = {m ∈ ω : 〈n,m〉 ∈ E} and

dom (E) = {n ∈ ω : E(n) 6= 0}.

Notice that A is a MAD family iff ω /∈ I0 (A ) iff I0 (A ) 6= P(ω). Therefore, given

an analytic a.d. family A , to show that A is not a MAD family, it suffices to prove that

I0 (A ) = P(ω). While we don’t know how to do this, we will show in what follows that I0 (A )

must be “large” whenever A ⊂ ωω is an analytic a.d. family. In particular, we will show that

it contains a copy of the ideal 0× Fin.

Definition 2.2.22. 0× Fin = {X ⊂ ω × ω : ∀n ∈ ω [ |X(n)| < ω]}.

Lemma 2.2.23. Let A ⊂ ωω be a MAD family. Let

E = {E ∈ [ω × ω]ω : ∀k ∈ ω ∃a ⊂ dom (E) [ a /∈ I0 (A ) ∧ ∀n ∈ a |E(n)| > k] }.

I = P(ω × ω) \ E is an ideal on ω × ω.

Proof. It is easy to see that I is closed under subsets. We will check that it is also closed under

unions. Fix E0, E1 ∈ I and suppose, for a contradiction, that E0 ∪ E1 ∈ E . Observe that

dom (E0 ∪ E1) = dom (E0) ∪ dom (E1) and that for all n ∈ ω, (E0 ∪ E1) (n) = E0(n) ∪ E1(n).

For each k ∈ ω and i ∈ {0, 1}, define ai
k = {n ∈ ω : |Ei(n)| > k}. Note that dom (Ei) = ai

0 ⊃

ai
1 ⊃ · · · . Since I0 (A ) is an ideal, if ai

k ∈ I0 (A ) for some k, then ∀k′ ≥ k
[
ai

k′ ∈ I0 (A )
]
.

Therefore, it follows from our assumption that E0 and E1 are both in I that for some k ∈ ω,

both a0
k and a1

k are in I0 (A ). Since E0 ∪ E1 ∈ E , {n ∈ ω : |E0(n) ∪ E1(n)| > 2k} /∈ I0 (A ).

Therefore, we may choose n /∈ a0
k ∪ a1

k such that |E0(n) ∪ E1(n)| > 2k. But since n /∈ a0
k ∪ a1

k,

|E0(n)| ≤ k and |E1(n)| ≤ k, a contradiction. a
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Theorem 2.2.24. Let A ⊂ ωω be a MAD family. If [ω]ω \ I0 (A ) is a P-coideal, then A is

not analytic.

Proof. Let E0 be defined as in Theorem 2.2.19 and E as in Lemma 2.2.23. Let I = P(ω×ω)\E .

Lemma 2.2.23 tells us that I is an ideal. Moreover, if E ∈ E and {h0, . . . , hk} ⊂ ωω, then

there is an infinite partial function p ⊂ E with dom(p) /∈ I0 (A ), which is disjoint from

h0, . . . , hk. It follows that there are infinitely many h ∈ A such that |E ∩ h| = ω, whence

E ⊂ E0. Therefore, by Theorem 2.2.19, it suffices to show that E is a P-coideal. Fix a sequence

E0 ⊃ E1 ⊃ · · · , with Ei ∈ E . For each i and k, define ai
k = {n ∈ ω : |Ei(n)| > k}. As

before, we have dom (Ei) = ai
0 ⊃ ai

1 ⊃ · · · . By assumption, no ai
k is in I0 (A ). We also have

a0
k ⊃ a1

k ⊃ · · · . Thus, 〈ak
k : k ∈ ω〉 is a decreasing sequence of sets not in I0 (A ). Since we are

assuming that [ω]ω \ I0 (A ) is a P-coideal, there is a set a /∈ I0 (A ) such that a ⊂∗ak
k, for all

k. Let us define a set E ⊂ ω × ω with dom (E) = a as follows. Let 〈ni : i ∈ ω〉 enumerate

a. We may assume that a ⊂ a0
0. For each i ∈ ω, let li = max{k ≤ i : ni ∈ ak

k}. Note that

ni ∈ ali
li
, and hence that |Eli(ni)| > li. Therefore, we may define E(ni) to be some (arbitrary)

subset of Eli(ni) of size equal to li + 1. We will check that E is as required. Since a ⊂∗ak
k,

lim li = ∞, and therefore, lim |E(ni)| = ∞. As, dom (E) = a /∈ I0 (A ), this gives us E ∈ E .

Next, we must check that E ⊂∗Ek for all k. Fix k. We know that ∀∞i ∈ ω [li ≥ k]. Thus

∀∞i ∈ ω [E(ni) = Eli(ni) ⊂ Ek(ni)]. As each E(ni) is finite, we get that E ⊂∗Ek. a

Corollary 2.2.25. Suppose A ⊂ ωω is an analytic MAD family. I0 (A ) contains a copy of

0 × Fin. This means that there is a partition {cn : n ∈ ω} of ω into countably many infinite

pieces such that for any a ⊂ ω, if |a ∩ cn| < ω for all n ∈ ω, then a ∈ I0 (A ).

Proof. By Theorem 2.2.24 we know that there is a sequence a0 ⊃ a1 ⊃ · · · of subsets of ω

not in I0 (A ) such that for any a ⊂ ω, if a ⊂∗an for all n ∈ ω, then a ∈ I0 (A ). We may

assume without loss of generality that a0 = ω, that
⋂
an = 0 and that an \ an+1 is infinite.

Put cn = an \ an+1. By our assumptions, {cn : n ∈ ω} is a partition of ω into infinite
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pieces. Now, suppose a ⊂ ω is a.d. from all the cn. It is easy to see that for each n ∈ ω,

a \ an ⊂
⋃

m<n (a ∩ cm), which is a finite set. So ∀n ∈ ω [a ⊂∗an], whence a ∈ I0 (A ). a

Conjecture 2.2.26. If A ⊂ ωω is a MAD family, then A is not analytic.
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Chapter 3

Strongly and Very MAD Families of

Functions

3.1 The Strongness of an a.d. Family

We will introduce the notion of strongness of an a.d. family of functions. This notion allows

for the systematic investigation of variations on the concept of a strongly MAD family (see

Definition 1.3.6). Strongly MAD families were introduced by Steprāns [20], who showed that

they cannot be analytic. Soon after, Kastermans and Zhang [19] introduced a strengthening of

this notion, which they called very MAD family. On the other hand, E. van Douwen [27] asked

if there is a MAD family of functions in ωω which is also maximal with respect to infinite partial

functions. Such MAD families are called Van Douwen MAD families (see Definition 1.3.4). The

author has proved that Van Douwen MAD families always exist, and that the notion of a Van

Douwen MAD family is weaker than that of a strongly MAD family. Thus, we have a natural

spectrum of combinatorial properties of increasing strength. The notion of strongness allows

for the systematic investigation of this entire spectrum starting with MADness, going through

Van Douwen and strong MADness, all the way up to very MADness.

We first begin with the definition of a very MAD family. The reader should see Definition

1.3.5 for the notion of avoiding and Definition 1.3.6 for the notion of a strongly MAD family.

Definition 3.1.1. Let A ⊂ ωω be an a.d. family, and let κ = |A |. We say that A is very
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MAD if for all cardinals λ < κ and for every family {fα : α < λ} ⊂ ωω of functions avoiding

A , there is h ∈ A such that ∀α < λ [|fα ∩ h| = ω].

Clearly, very MAD families are strongly MAD, which in turn, are MAD.

Definition 3.1.2. Let A ⊂ ωω be an a.d. family. We define the strongness of A , written

st (A ), to be the least cardinal κ such that there is a family {fα : α < κ} ⊂ ωω of functions

avoiding A such that ∀h ∈ A ∃α < κ [|h ∩ fα| < ω].

Thus an a.d. family A is MAD iff st (A ) ≥ 2. It is strongly MAD iff st (A ) ≥ ω1, and it

is very MAD iff st (A ) ≥ |A |. The next Lemma points out a connection with the notion of a

Van Douwen MAD family.

Lemma 3.1.3. Let A ⊂ ωω be an a.d. family. If st (A ) ≥ 3, then A is Van Douwen MAD.

Proof. Suppose, for a contradiction, that there is an infinite partial function f from ω to ω

which is a.d. from A . Let h0 6= h1 be two distinct functions in A . Let a = dom (f) and let

b = ω \ a. Let g0 = f ∪ h0 � b and let g1 = f ∪ h1 � b. Since f is a.d. from A , it avoids A .

So {g0, g1} ⊂ ωω is a set of two functions avoiding A . As st (A ) ≥ 3, there is h ∈ A such

that |h ∩ g0| = |h ∩ g1| = ω. We will argue that |f ∩ h| = ω, giving a contradiction. Indeed,

suppose that |f ∩ h| < ω. Since h intersects both g0 and g1 in an infinite set, it follows that

both h∩h0 and h∩h1 are infinite. But since A is an a.d. family, this implies that h = h0 and

h = h1, contradicting our choice of h0 and h1. a

This argument can be generalized to yield the following.

Lemma 3.1.4. Let κ be an infinite cardinal. Let A ⊂ ωω be an a.d. family with st (A ) > κ.

If {fα : α < κ} is a family of infinite partial functions avoiding A , there is h ∈ A such that

∀α < κ [|h ∩ fα| = ω].
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Proof. Just as in Lemma 3.1.3, pick two distinct members h0 and h1 of A . For each α < κ, set

aα = dom (fα) and bα = ω \ aα. Put g0
α = fα ∪ h0 � bα and g1

α = fα ∪ h1 � bα. Since fα avoids

A , both g0
α and g1

α avoid A . As κ is an infinite cardinal, {gi
α : i ∈ 2∧α < κ} ⊂ ωω is a family of

κ functions avoiding A . As st (A ) > k, there is h ∈ A such that ∀α < κ∀i ∈ 2
[∣∣h ∩ gi

α

∣∣ = ω
]
.

Now, it is easily argued, just as in Lemma 3.1.3, that ∀α < κ [|h ∩ fα| = ω]. a

It is natural to ask for which sets of cardinals X ⊂ c + 1 is it consistent to have X =

{st (A ) : A ⊂ ωω is an a.d. family}. We will provide a partial answer by showing that under

MA(σ-centered), every cardinal κ ≤ c occurs as the strongness of some a.d. family A . In what

follows, we will prove this for the case when κ < c (Theorem 3.1.7). We will defer the proof of

the case κ = c to section 3.3, where we will prove something slightly more general (Corollary

3.3.9).

Lemma 3.1.5. Let λ < κ be cardinals. Let A ⊂ ωω be a family of functions and let 〈fα :

α < κ〉 ⊂ ωω be an a.d. family. Let 〈gα : α < λ〉 ⊂ ωω be any family of functions avoiding A .

There is an α < κ such that 〈gα : α < λ〉 avoids A ∪ {fα}.

Proof. Suppose not. Then for each α < κ there is a β < λ and finite subset {h0, . . . , hk} ⊂ A

such that gβ ⊂∗h0 ∪ · · · ∪ hk ∪ fα. As λ < κ, it follows that there are distinct α0 6= α1 < κ

such that for the same β < λ there are finite sets {h0, . . . , hk} ⊂ A and {h0, . . . , hl} ⊂ A so

that both gβ ⊂∗h0 ∪ · · · ∪ hk ∪ fα0 and gβ ⊂∗h0 ∪ · · · ∪ hl ∪ fα1 hold. By assumption, gβ avoids

A . Therefore, p = gβ \ (h0 ∪ · · · ∪ hk ∪ h0 ∪ · · · ∪ hl) is an infinite partial function. But now,

it follows that p ⊂∗fα0 and p ⊂∗fα1 , which is a contradiction because 〈fα : α < κ〉 is an a.d.

family. a

Lemma 3.1.6. Assume MA(σ–centered). Let A ⊂ ωω be an a.d. family with |A | < c. Let

λ < κ < c be cardinals. Let 〈fα : α < κ〉 ⊂ ωω be an a.d. family of functions avoiding A . Let

〈gα : α < λ〉 ⊂ ωω be another family of functions also avoiding A . There is h ∈ ωω such that
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1. ∀h′ ∈ A [|h ∩ h′| < ω]

2. 〈fα : α < κ〉 avoids A ∪ {h}

3. ∀β < λ [|h ∩ gβ| = ω]

4. ∃α < κ [|h ∩ fα| < ω].

Proof. By Lemma 3.1.5, there is α < κ such that 〈gβ : β < λ〉 avoids B = A ∪ {fα}.

Let us fix such an α. Let Fn(ω, ω) denote the set of finite partial functions from ω to ω.

Consider the poset P = {〈s,H〉 : s ∈ Fn(ω, ω) ∧ H ∈ [B]<ω}. We order P as follows: given

〈s0,H0〉 and 〈s1,H1〉 in P, 〈s0,H0〉 ≤ 〈s1,H1〉 iff s0 ⊃ s1 ∧ H0 ⊃ H1 ∧ ∀h ∈ H1∀n ∈

dom (s0) \ dom (s1) [h(n) 6= s0(n)]. It is easily checked that P is σ-centered. If G ⊂ P is a filter

on P, then h =
⋃
{s : ∃H [〈s,H〉 ∈ G]} is a function, which is a.d. from

⋃
{H : ∃s [〈s,H〉 ∈ G]}.

To see that we can get a function h that satisfies the necessary requirements, we will check

that certain sets are dense.

(0) To ensure h ∈ ωω. For each n ∈ ω, set Dn = {〈s,H〉 ∈ P : n ∈ dom (s)}. We will

check that Dn is dense. Fix 〈s0,H0〉 ∈ P. If n ∈ dom (s0), there is nothing to be done.

Otherwise, consider {h′(n) : h′ ∈ H0}. This is a finite subset of ω. So we may choose

k ∈ ω \ {h′(n) : h′ ∈ H0}. Now, 〈s0 ∪ {〈n, k〉},H0〉 is an extension of 〈s0,H0〉 in Dn.

(1) To ensure h satisfies requirements (1) and (4). It is enough to ensure that ∀h′ ∈

B ∃〈s,H〉 ∈ G [h′ ∈ H]. But it is obvious that for each h′ ∈ B, Dh′ = {〈s,H〉 ∈

P : h′ ∈ H} is dense.

(2) To ensure h satisfies requirement (2). Let F be a finite subset of A . Let γ < κ. Since fγ

avoids A , XF
γ = {n ∈ ω : ∀h′ ∈ F [fγ(n) 6= h′(n)]} is an infinite subset of ω. For each n,

consider D (F, γ, n) =
{
〈s,H〉 ∈ P : ∃m > n

[
m ∈ XF

γ ∧m ∈ dom (s) ∧ fγ(m) 6= s(m)
]}

.

If G hits D (F, γ, n) for all n ∈ ω, then fγ avoids F ∪ {h} because there will be infinitely
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many m ∈ XF
γ so that h(m) 6= fγ(m). To see that D (F, γ, n) is dense, fix 〈s0,H0〉 ∈ P.

SinceXF
γ is an infinite set, there ism ∈ XF

γ , which is greater than n and outside dom (s0).

Now, we can choose k /∈ {h′(m) : h′ ∈ H0}∪ {fγ(m)}. It is clear that 〈s0 ∪{〈m, k〉} ,H0〉

is as required.

(3) To ensure h satisfies requirement (3). Let β < λ. It is enough to make G intersect

Dβ
n = {〈s,H〉 ∈ P : ∃m > n [m ∈ dom (s) ∧ s(m) = gβ(m)]} for all n ∈ ω. To see that

this set is dense, fix 〈s0,H0〉 ∈ P. We know, by our choice of α, that gβ avoids B. So there

are infinitely many m ∈ ω such that ∀h′ ∈ H0 [h′(m) 6= gβ(m)]. So we can choose such an

m greater than n and outside of dom (s0). By our choice of m, 〈s0 ∪ {〈m, gβ(m)〉} ,H0〉

extends 〈s0,H0〉 and is as required.

Since λ < κ < c and |A | < c and since MA(σ–centered) is assumed, we can find a filter G that

intersects all the sets in {Dn : n ∈ ω} ∪ {Dh′ : h′ ∈ B} ∪ {Dβ
n : β < λ ∧ n ∈ ω} ∪ {D (F, γ, n) :

F ∈ [A ]<ω ∧ γ < κ ∧ n ∈ ω}. Now, h, defined as above from G, will have the required

properties. a

Theorem 3.1.7. Assume MA(σ–centered). Let κ < c be a cardinal. There is an a.d. family

A ⊂ ωω with st (A ) = κ.

Proof. Fix an a.d. family 〈fα : α < κ〉 ⊂ ωω of size κ. We will construct an a.d. family A ⊂ ωω

with st (A ) ≥ κ, while at the same time ensuring that 〈fα : α < κ〉 avoids A , and yet nothing

in A has infinite intersection with all the fα. Thus 〈fα : α < κ〉 will witness that st (A ) = κ.

A will be the union of an increasing sequence of a.d. families. Since MA(σ–centered) is

assumed, c<κ = c. So we can let 〈Gα : α < c〉 enumerate all subsets of ωω of size less than κ.

We will construct a sequence 〈Aα : α < c〉 so that:

1. Aα ⊂ ωω is an a.d. family of size ≤ |α|

2. ∀α < β < c [Aα ⊂ Aβ]
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3. If Gα avoids
⋃
{Aβ : β < α}, then ∃h ∈ Aα∀g ∈ Gα [|h ∩ g| = ω]

4. 〈fα : α < κ〉 avoids Aα

5. ∀h ∈ Aα∃β < κ [|h ∩ fβ| < ω].

Assume that 〈Aβ : β < α〉 is already given to us. Let B =
⋃

Aβ. If Gα does not avoid B,

there is nothing to be done. In this case, we simply set Aα = B. Let us assume from now on

that Gα avoids B. Notice that by clause (4), 〈fα : α < κ〉 avoids B as well. By clause (1), B

is an a.d. family with |B| < c. Let λ = |Gα|. Note that we have λ < κ < c. Now, we can apply

lemma 3.1.6 with B as A and Gα as 〈gα : α < λ〉 to find h ∈ ωω so that

(a) h is a.d. from B

(b) 〈fα : α < κ〉 avoids B ∪ h

(c) ∀g ∈ Gα [|h ∩ g| = ω]

(d) ∃α < κ [|h ∩ fα| < ω].

Now, we can define Aα = B ∪ {h}. It is clear that Aα is what is required. a

The original motivation for the above result came from the following considerations. Under

CH, all MAD families have size ℵ1. Hence any strongly MAD family is automatically very

MAD. Given some such consequence of CH, it is natural to ask whether this consequence also

obtains under MA. So we originally wanted to know if under MA, all strongly MAD families

are also very MAD. The above result shows that this fails badly.

Corollary 3.1.8. Assume MA + ¬ CH. There is a strongly MAD family that is not very

MAD.

a
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We end this section with a conjecture. We do not know for which cardinals κ is there is an a.d.

family A ⊂ ωω with st (A ) = κ just on the basis of ZFC alone. In view of Lemma 3.1.3, the

following conjecture is a natural generalization of our result that Van Douwen MAD families

exist on the basis of ZFC alone.

Conjecture 3.1.9. For every n ∈ ω, there is an a.d. family A ⊂ ωω with st (A ) ≥ n.

3.2 A Strongly MAD Family From b = c.

In this section we will construct a strongly MAD family from b = c. Kastermans [19] pointed

out that the standard construction of a strongly MAD family from MA(σ–centered) actually

yields a very MAD family. He asked if there is a different construction that distinguishes

between strongly and very MAD families. This section is intended to address his question.

The construction of a strongly MAD family given here cannot be used to build a very MAD

family. This is because b = c holds in the Laver model, where, as we will see in section 3.3,

there are no very MAD families. The question of whether strongly MAD families exist on the

basis of ZFC alone remains open.

Hrušák [15], Kurilić [23] and Brendle and Yatabe [10] construct a Cohen indestructible

MAD family of sets from b = c. Our construction was inspired by theirs, although our pre-

sentation is different. We will inductively construct a strongly MAD family in c steps. At

each step we will deal with a given countable family of functions. We will deal with this given

collection by first forming a (ω, κ) gap consisting of infinite partial functions. We will then use

b = c to separate this gap by an infinite partial function.

Lemma 3.2.1. Assume b = c. Let A ⊂ ωω be an a.d. family with |A | < c. Suppose

{gn : n ∈ ω} ⊂ ωω is a collection of functions avoiding A . There is h ∈ ωω so that

1. ∀h′ ∈ A [|h ∩ h′| < ω]
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2. ∀n ∈ ω [|h ∩ gn| = ω].

Proof. Firstly, observe that b = c implies both a = c and ae = c. Now, for n ∈ ω consider

A ∩ gn = {h ∩ gn : h ∈ A ∧ |h ∩ gn| = ω}. This is an a.d. family on gn. Since gn avoids

A and since |A | < c, it cannot be a MAD family (either finite or infinite) on gn. So we may

find an infinite partial function pn ⊂ gn which is a.d. from everything in A . By refining their

domains if necessary, we may assume that ∀n < m < ω [dom (pn) ∩ dom (pm) = 0].

Now, ({pn : n ∈ ω},A ) is the gap we would like to separate using an infinite partial func-

tion. We will use the assumption b = c to do this. Let λ = |A | and put A = {hα :

α < λ}. Remember that λ < c. For each α < λ, define a function Fα ∈ ωω as fol-

lows. For each n ∈ ω, {k ∈ dom (pn) : pn(k) = hα(k)} is finite. So, we can define

Fα(n) = max {k ∈ dom (pn) : pn(k) = hα(k)}. Since we are assuming b = c, the family

{Fα : α < λ} is bounded. Choose a function F ∈ ωω so that ∀α < λ [Fα<
∗F ]. De-

fine p =
⋃

(pn \ (pn � F (n))). Clearly, p is an infinite partial function, and for all n ∈ ω,

|p ∩ gn| = ω. We will check that ∀α < λ [|p ∩ hα| < ω]. Fix α < λ. Suppose k ∈ dom (p)

and p(k) = hα(k). By our choice of the pn, it follows that there is a unique n such that

k ∈ dom (pn). Thus, we have that pn(k) = hα(k), and so, k ≤ Fα(n). But since k ∈ dom (p), it

follows that k ≥ F (n), whence F (n) ≤ Fα(n). Thus k ∈
⋃
{Fα(n) + 1 : F (n) ≤ Fα(n)}, which

is a finite set. So we conclude that p ∩ hα is finite.

Now, we are almost done. We just need to extend p into a total function. We will use

ae = c to do this. Let X = dom (p) and Y = ω \X. A is an a.d. family in ωω with |A | < c.

So it is not maximal. Let h0 ∈ ωω be a.d. from A . Clearly, h = p ∪ h0 � Y is as needed. a

Theorem 3.2.2. Assume b = c. There is a strongly MAD family of size c.

Proof. We will build the strongly MAD family, A , in c steps. Since cω = c, we can let

{Gα : α < c} enumerate all the countable subsets of ωω. We will build A as the union of an

increasing sequence of a.d. families. We will build a sequence 〈Aα : α < c〉 such that
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1. Aα ⊂ ωω is an a.d. family with |A | ≤ |α|

2. if α < β < c, then Aα ⊂ Aβ

3. if Gα avoids
⋃
{Aβ : β < α}, then ∃h ∈ Aα∀g ∈ Gα [|h ∩ g| = ω].

Assume that the sequence 〈Aβ : β < α〉 has already been built. Set B =
⋃

Aβ. B ⊂ ωω

is an a.d. family with |B| < c. If Gα does not avoid B, then we can simply set Aα = B.

So we assume that Gα avoids B. Now, we may apply Lemma 3.2.1 with B as A and Gα as

{gn : n ∈ ω} to find h ∈ ωω such that h is a.d. from B and ∀g ∈ Gα [|h ∩ g| = ω]. Now, it is

clear that Aα = B ∪ {h} is as required.

We remark that even though we have not explicitly tried to ensure that |A | = c, it is true

because b = c implies ae = c. a

Corollary 3.2.3. There are strongly MAD families in the Laver and Hechler models.

a

As mentioned above, it is unknown if strongly MAD families always exist. We conjecture below

that this is not the case. We will prove a partial result in this direction in Section 3.6, where

we will show that it is consistent to have no “large” strongly MAD families (Theorem 3.6.1).

Conjecture 3.2.4. It is consistent to have no strongly MAD families.

3.3 Brendle’s Conjecture: Consistency of no Very MAD Fam-

ilies

In this section we will show that if cov (M) < ae, then there are no very MAD families. This

was conjectured by Brendle in an email to Kastermans. Kastermans showed that very MAD

families exist under MA and asked if their existence can be proved in ZFC. Our result implies
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that there are no very MAD families in the Laver, Random or Blass–Shelah models. For the

case of the Laver and Random models, this was already known to Brendle. Brendle also pointed

out in the same email that his conjecture would imply that there are no very MAD families in

a typical Template model. Our proof will use the following characterization of cov (M).

Theorem 3.3.1 (see [4] or [5]). The following are equivalent for a cardinal κ ≥ ω:

1. The reals cannot be covered by κ meager sets.

2. If {fα : α < κ} ⊂ ωω is a collection of κ functions, there is h ∈ ωω such that ∀α <

κ [|fα ∩ h| = ω].

a

Now, this characterization implies that there is a family {fα : α < cov (M)} ⊂ ωω such

that there is no h ∈ ωω for which |h ∩ fα| = ω holds for all α < cov (M). Therefore, if this

{fα : α < cov (M)} avoids an a.d. family A ⊂ ωω, and if cov (M) < |A |, then A cannot

be a very MAD family. However, given an arbitrary very MAD family A , there is no reason

to expect the family {fα : α < cov (M)} to avoid it. We will deal with this by showing that

in the above Theorem one can replace functions with objects that are a bit “ fatter”, namely

slaloms. This will provide a new characterization of the cardinal cov (M). Their “fatness” will

ensure that the slaloms avoid any a.d. family.

Definition 3.3.2. A function S : ω → [ω]<ω is called a slalom if ∀n ∈ ω [|S(n)| ≤ 2n]. We

say that S is a wide slalom if ∀n ∈ ω [|S(n)| = 2n].

Theorem 3.3.3. Let κ be an infinite cardinal. The following are equivalent.

1. The reals cannot be covered by κ meager sets.

2. If {Sα : α < κ} is a collection of κ wide slaloms, there is h ∈ ωω such that ∀α < κ∃∞n ∈

ω [h(n) ∈ Sα(n)].
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Proof. ¬(2) =⇒ ¬(1). Fix a family of wide slaloms {Sα : α < κ} for which the consequent of

(2) fails. For each α < κ set Eα = {h ∈ ωω : ∀∞n ∈ ω [h(n) /∈ Sα(n)]}. It is clear that each

Eα is meager. Also by assumption, we have that ωω =
⋃
Eα. Thus (1) is false.

(2) =⇒ (1). Assume (2). We will show that clause (2) of Theorem 3.3.1 holds. Fix a

family {fα : α < κ} ⊂ ωω. Since we may code functions from ω to [ω × ω]<ω by slaloms, our

assumption entails the following:

For every family {Hα : α < κ} of functions from ω to [ω × ω]<ω

such that ∀n ∈ ω [ |Hα(n)| = 2n] , there is g ∈ (ω × ω)ω so that (∗)

∀α < κ ∃∞n ∈ ω [g(n) ∈ Hα(n)] .

Now, for each n ∈ ω set ln = 2n−1 and In = [ln, ln+1). Thus 〈In : n ∈ ω〉 is an interval partition

of ω with |In| = 2n. Let us define a family {Hα : α < κ} of functions from ω to [ω × ω]<ω

by stipulating that for all n ∈ ω, Hα(n) = fα � In. Since |In| = 2n, ∀n ∈ ω [ |Hα(n)| = 2n].

Therefore, by (∗) above, there is a g ∈ (ω × ω)ω so that

∀α < κ ∃∞n ∈ ω [g(n) ∈ Hα(n)] . (∗∗)

We may assume WLOG that ∀n ∈ ω [g(n) ∈ In × ω] because we can modify g to make this

true without affecting (∗∗) above. Now, set p = g′′ω. It is clear that given our assumption

about g, p is an infinite partial function from ω to ω. Now, let h be a function in ωω which

extends p (arbitrarily). We will check that h is the function we are looking for.

Indeed, fix α < κ. We must show that |h ∩ fα| = ω. We will prove that |p ∩ fα| = ω. For

n ∈ ω, let us use 〈in, jn〉 to denote g(n). Note that by our assumption on g, ∀n ∈ ω [in ∈ In].

Also observe that by the definition of p, dom (p) = {in : n ∈ ω} and ∀n ∈ ω [p(in) = jn]. By

(∗∗) above, the set X = {n ∈ ω : 〈in, jn〉 ∈ Hα(n)} is infinite. By the definition of Hα, it

follows that ∀n ∈ X [fα(in) = jn = p(in)]. Since the In are disjoint, {in : n ∈ X} is infinite,

and so |fα ∩ p| = ω. a
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Lemma 3.3.4. Let A ⊂ ωω be a Van Douwen MAD family. Let λ < st (A ) be a cardinal

and let {Sα : α < λ} be a family of wide slaloms. There is h ∈ A such that ∀α < λ ∃∞n ∈

ω [h(n) ∈ Sα(n)].

Proof. For each α < λ, let Xα =
⋃

({n} × Sα(n)). Observe that for any function f ∈ ωω,

∃∞n ∈ ω [f(n) ∈ Sα(n)] ⇐⇒ |Xα ∩ f | = ω. Hence, it suffices to produce h ∈ A such that

∀α < λ [|h ∩Xα| = ω]. For each α < λ, we will produce a total function fα ⊂ Xα avoiding A .

We will first argue that each Xα has infinite intersection with infinitely many members of A .

Indeed, given any finite collection of functions {f0, . . . , fn} ⊂ ωω, there is an infinite partial

function p ⊂ Xα which is a.d. from f0, . . . , fn. This is because Sα is a wide slalom. But we

are assuming that A is Van Douwen MAD; so there are no infinite partial functions a.d. from

A . It follows that for each α < λ there is an infinite collection {hα
i : i ∈ ω} ⊂ A such that

∀i ∈ ω [|hα
i ∩Xα| = ω]. For each i ∈ ω, set pα

i = hα
i ∩ Xα. pα

i is an infinite partial function

contained in Xα. It is possible to choose a collection of infinite partial functions {gα
i : i ∈ ω}

such that ∀i ∈ ω [gα
i ⊂ pα

i ] and ∀ i < j < ω
[
dom (gα

i ) ∩ dom
(
gα
j

)
= 0

]
. Now, we can

find a function fα ∈ ωω with
⋃

i∈ω g
α
i ⊂ fα ⊂ Xα. Since fα has infinite intersection with

infinitely many things in A , it avoids A . Now, λ < st (A ). So there is h ∈ A such that

∀ α < λ [|h ∩ fα| = ω]. This h is the function we are looking for. a

Theorem 3.3.5 (Brendle’s Conjecture). If A is a very MAD family, then |A | ≤ cov (M).

In particular, if cov (M) < ae, then there are no very MAD families.

Proof. Suppose, for a contradiction, that cov (M) < |A |. By Theorem 3.3.3, there is a family

{Sα : α < cov (M)} of wide slaloms such that for every h ∈ ωω there is α < cov (M) such that

∀∞n ∈ ω [h(n) /∈ Sα(n)]. But now, since very MAD families are Van Douwen MAD, and since

cov (M) < |A | ≤ st (A ), we can apply Lemma 3.3.4 to get a function h ∈ A that contradicts

this. a
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Corollary 3.3.6. There are no very MAD families in the Laver, Random or Blass-Shelah

models.

Proof. It is well-known (see [5]) that each of these forcings, as well as their respective iterations,

do not add Cohen reals. Thus in all of these models cov (M) = ℵ1. On the other hand, each

of these forcings makes the ground model meager. Hence in all three of these models non (M),

and hence ae, is ℵ2. a

Remark 3.3.7. Let av be the least size of a Van Douwen MAD family. Since very MAD

families are Van Douwen MAD, Theorem 3.3.5 implies that there are no very MAD families

as long as cov (M) < av. It is concievable that ae < av is consistent, but no models of this are

known.

In Section 3.1 we promised to give a proof of Theorem 3.1.7 for the case when κ = c in this

section. We will end this section by fulfilling this promise.

Corollary 3.3.8. Let A ⊂ ωω be an a.d. family. st (A ) ≤ cov (M).

Proof. Suppose for a contradiction that st (A ) > cov (M). By Lemma 3.1.3, A is Van Douwen

MAD. But now, we can argue just as in Theorem 3.3.5 to get a contradiction using Lemma

3.3.4. a

Corollary 3.3.9. Assume MA(σ–centered). There is an a.d. family A ⊂ ωω with st (A ) = c.

Proof. Kastermans [19] showed that there is a very MAD family under MA(σ–centered). Let

A be a very MAD family. Clearly, c = |A | ≤ st (A ). On the other hand, by Corollary 3.3.8,

st (A ) ≤ cov (M) = c, whence st (A ) = c. a
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3.4 Indestructibility Properties of Strongly MAD Families

In this section we will study the effect of forcing on strongly MAD families. In particular, we

will be interested in showing that certain posets preserve strongly MAD families.

Definition 3.4.1. Let P be a notion of forcing and let A ⊂ ωω be a strongly MAD family. We

say that A is P-indestructible if 
P A is MAD. We say that A is strongly P-indestructible

if 
P A is strongly MAD.

Brendle and Yatabe [10] have studied P-indestructibility of MAD families of subsets of ω

for various posets P. The focus of their work was to provide combinatorial characterizations

of the property of being a P-indestructible MAD family of sets for some well known posets P.

Here our focus is instead to find those posets P for which strongly MAD families of functions

are strongly P-indestructible.

If P is a poset which turns the ground model reals into a meager set, then it is clear that no

MAD family A ⊂ ωω can be P-indestructible. This is because any such poset adds an element

of ωω which is eventually different from all the elements of ωω in the ground model (see [5]).

In this section, we will show that a strong converse to this observation holds for a certain

class of posets. That is, we will show that if A ⊂ ωω is strongly MAD, then A is strongly

P-indestructible for a wide range of posets P that do not make the ground model meager.

We will assume familiarity with the basic theory of proper forcing. The reader may consult

Abraham [1], Goldstern [12] or Shelah [31] for an introduction.

We are ultimately interested not only in treating indestructibility for single step forcing

extensions, but also for countable support iterations. We are unable to show that every strongly

MAD A is strongly indestructible for any countable support iteration of posets for which A

is strongly indestructible. However, we are able to prove the preservation of a slightly stronger

property, which we introduce next.
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Definition 3.4.2. Let A ⊂ ωω be an a.d. family. Let M ≺ H(θ) be countable with A ∈ M .

We say that h ∈ A covers M with respect to A if whenever f ∈ M is an infinite partial

function avoiding A , |h ∩ f | = ω.

Definition 3.4.3. Let A ⊂ ωω be a strongly MAD family and let P be a poset. Let M ≺ H(θ)

be countable with A ,P ∈M . We will say that R(A ,P,M) holds if whenever p is a condition

in P ∩M and h ∈ A covers M with respect to A , there is q ≤ p which is (M,P) generic such

that q 
 h covers M [G̊] with respect to A . We say that P strongly preserves A if for every

M ≺ H(θ), M countable, with A ,P ∈M , R(A ,P,M) holds.

Remark 3.4.4. Notice that if A ⊂ ωω is a strongly MAD family and if P is a poset which

strongly preserves A , then P is proper.

Our definition of strongly preserving requires R(A ,P,M) to hold for all elementary sub-

models containing A and P. But as is usual in the theory of proper forcing, it is sufficient if

this is true for a club of such elementary submodels. We prove this next, and in what follows,

we will use this fact without further comment.

Lemma 3.4.5. Let A ⊂ ωω be a strongly MAD family and let P be a poset. If {M ≺ H(θ) :

|M | = ω∧ A ,P ∈M∧R(A ,P,M) holds} contains a club in [H(θ)]ω, then P strongly preserves

A .

Proof. Arguments of this sort are standard in the theory of properness; so we merely outline

the steps. We must find a set X ∈ H(θ) that “captures” all the information necessary for

deciding the truth of R(A ,P,M), for any M with A ,P ∈ M . We define two sets as fol-

lows. Let FA = {f : f is an infinite partial function avoiding A } and let AP = {x̊ ∈ VP :

x̊ is a nice P name for a subset of ω × ω}. Put X = P ∪ P(P) ∪ AP ∪A ∪ FA . We will argue

that this X does the job. Notice that if M ≺ H(θ) is countable with A ,P ∈ M , then X,

and hence [X]ω are elements of M . Now, given a ∈ [X]ω and q ∈ P, say that q is (a,P)
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generic if whenever D ⊂ P is a dense open set in a, q 
 a ∩D ∩ G̊ 6= 0. Similarly, say that

h ∈ A covers a with respect to A if |h ∩ f | = ω for all f ∈ a ∩ FA . Finally, say that

a ∈ [X]ω is good if whenever p ∈ P ∩ a and h ∈ A covers a with respect to A , there is q ≤ p

which is (a,P) generic such that q 
 h covers a[G̊] with respect to A . It is easy to see that

if M ≺ H(θ) is countable with A ,P ∈ M and if R(A ,P,M) holds, then M ∩ X is good.

Thus our assumption implies that C = {a ∈ [X]ω : a is good} contains a club in [X]ω. Now,

fix a countable M ≺ H(θ) with A ,P ∈ M . We must show that R(A ,P,M) holds. Notice

that C ∈ M and since C contains a club, X ∩M ∈ C. Therefore, X ∩M is good. Now, fix

p ∈ P ∩M and let h ∈ A cover M with respect to A . Obviously, p ∈ P ∩ X ∩M and h

covers X ∩M with respect to A . So, we can find q ≤ p which is (X ∩M,P) generic such

that q 
 h covers (X ∩M)[G̊] with respect to A . It is easily seen that q is in fact (M,P)

generic. We will argue that q 
 h covers M [G̊] with respect to A . Indeed, let G be a (V,P)

generic filter with q ∈ G and suppose f ∈M [G] is an infinite partial function avoiding A . By

elementarity of M , there is x̊ ∈ AP ∩M such that x̊[G] = f . But then, x̊ ∈ X ∩M , and so

f ∈ (X ∩M)[G]. Therefore, |h ∩ f | = ω, and we are done. a

Lemma 3.4.6. Let A ⊂ ωω be a strongly MAD family and let P be a poset that strongly

preserves A . Then A is strongly P-indestructible.

Proof. Firstly, note that if A is strongly MAD and M is a countable elementary submodel,

then, by Lemma 3.1.4, there is h ∈ A which covers M with respect to A . Suppose for a

contradiction that A is not strongly P-indestructible. Fix M ≺ H(θ) with |M | = ω and

P,A ∈ M . Now, by our assumption, we can find a set of P-names
{
f̊i : i ∈ ω

}
∈ M and

p ∈ P ∩M such that

1. ∀i ∈ ω
[
p 
 f̊i ∈ ωω ∧ f̊i avoids A

]
2. ∀h ∈ A

[
p 
 ∃i ∈ ω

[∣∣∣h ∩ f̊i

∣∣∣ < ω
]]

.
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Now, fix h ∈ A which covers M with respect to A . By assumption, we can choose q ≤ p

such that q 
 h covers M [G̊] with respect to A . By elementarity,
{
f̊i : i ∈ ω

}
⊂ M . So, for

each i ∈ ω, q 
 f̊i ∈ ωω ∩M [G̊] ∧ f̊i avoids A . But then, for each i ∈ ω, q 

∣∣∣h ∩ f̊i

∣∣∣ = ω,

contradicting (2) above. a

Our aim in the rest of this section will be to show that a large class of posets not turning

the ground model reals into a meager set strongly preserve all strongly MAD families. As a

warm up, we will first show that the Cohen poset strongly preserves all strongly MAD families.

The following lemma will play an important role in all our proofs of strong preservation. It

allows us to transfer the property of avoiding from an infinite partial function in some generic

extension to certain infinite partial functions in the ground model.

Lemma 3.4.7. Let A ⊂ ωω be an infinite a.d. family and let P be any poset. Suppose f̊ is a

P name such that 
 f̊ is an infinite partial function avoiding A . There is a countable set of

P names
{
f̊i : i ∈ ω

}
such that

1. 
 f̊i ⊂ f̊ is an infinite partial function

2. 
 ∀g ⊂ ω × ω
[
if ∀i ∈ ω

[∣∣∣g ∩ f̊i

∣∣∣ = ω
]
, then g avoids A

]
.

Proof. Let G be any (V,P) generic filter. We will work inside V[G]. By assumption, f̊ [G] is

an infinite partial function avoiding A . We will find a countable set {fi : i ∈ ω} of infinite

partial sub–functions of f̊ [G] such that any g ⊂ ω × ω having infinite intersection with all the

fi avoids A . Consider A ∩ f̊ [G] = {h ∩ f̊ [G] : h ∈ A ∧
∣∣∣h ∩ f̊ [G]

∣∣∣ = ω}. This is an a.d.

family on f̊ [G]. The proof will break into two cases depending on whether A ∩ f̊ [G] is finite

or infinite.

First, consider the case when A ∩ f̊ [G] is finite. Since f̊ [G] avoids A , we can find an infinite

partial function f0 ⊂ f̊ [G] that is a.d. from A . Now, for each i ∈ ω, we can simply set fi equal

to f0. We check that this will do. Indeed, suppose g ⊂ ω × ω has infinite intersection with f0.
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If g did not avoid A , then since f0 is a.d. from A , f0 would also be a.d. from g. Therefore, g

avoids A .

Next, suppose that A ∩ f̊ [G] is infinite. Choose an infinite set {hi : i ∈ ω} ⊂ A such that

∀i ∈ ω
[∣∣∣hi ∩ f̊ [G]

∣∣∣ = ω
]
. Now, for each i ∈ ω set fi equal to hi ∩ f̊ [G]. Thus fi is an infinite

partial sub–function of f̊ [G]. Now, suppose g ⊂ ω × ω has infinite intersection with all the fi.

Clearly then, |g ∩ hi| = ω, for all i ∈ ω. Since g has infinite intersection with infinitely many

members of A , it avoids A .

Now, back in the ground model V, since G was an arbitrary (V,P) generic filter, we can

use the maximal principle to find a countable set of names
{
f̊i : i ∈ ω

}
which are forced to

have the same properties as {fi : i ∈ ω} defined above. a

Lemma 3.4.8. Let P = Fn(ω, 2). Let f̊ be a name and suppose that 
 f̊ is an infinite partial

function. Suppose that
{
f̊i : i ∈ ω

}
is a set of names so that for each i ∈ ω, 
 f̊i ⊂ f̊ is an

infinite partial function. Let p ∈ P. Then there is an infinite partial function g such that

1. ∀i ∈ ω
[
p 


∣∣∣g ∩ f̊i

∣∣∣ = ω
]

2. ∀n ∈ dom (g) ∃q ≤ p
[
q 
 n ∈ dom (f̊) ∧ f̊(n) = g(n)

]
.

Proof. Let {qj : j ∈ ω} enumerate {q ∈ P : q ≤ p}. We will build g by induction as the union of

an increasing sequence of finite partial functions gj . We will build a sequence 〈gj : −1 ≤ j < ω〉

such that for each j ≥ 0

(a) g−1 = 0 and gj−1 ⊂ gj is a finite partial function

(b) ∃q ≤ qj∀i ≤ j∃ki
j > j∃mi

j ∈ ω
[
q 
 ki

j ∈ dom (f̊i) ∧ f̊i(ki
j) = mi

j

]
(c) gj = gj−1 ∪

{
〈ki

j ,m
i
j〉 : i ≤ j

}
.

We will first argue that g =
⋃
gj will satisfy requirements (1) and (2) above. To see that (1)

holds, suppose for a contradiction that for some i ∈ ω, there is a p0 ≤ p and k ∈ ω such that
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p0 
 ∀n > k
[
n ∈ dom (f̊i) ∩ dom (g) =⇒ f̊i(n) 6= g(n)

]
. There are infinitely many conditions

below p0. So it is possible to find j ≥ k, i such that qj ≤ p0. But then by clause (b) and (c),

there is a q ≤ qj and numbers ki
j > j ≥ k and mi

j ∈ ω such that ki
j ∈ dom (g), g(ki

j) = mi
j , and

q 
 ki
j ∈ dom (f̊i) ∧ f̊i(ki

j) = mi
j , which is a contradiction.

Next, to see that (2) holds, suppose that n ∈ dom (g). By clause (c) above, n = ki
j

for some i ≤ j, and g(n) = mi
j . But then by clause (b), there is a q ≤ qj ≤ p such that

q 
 n ∈ dom (f̊i) ∧ f̊i(n) = mi
j = g(n). Since f̊i is forced to be a sub–function of f̊ , we have

q 
 n ∈ dom (f̊) ∧ f̊(n) = g(n), which is as required.

Now, let us build the sequence 〈gj : −1 ≤ j < ω〉. At stage j, suppose that gj−1 is given to

us. As all the f̊i are forced to be infinite partial functions, we can successively extend qj j + 1

times to find a condition q ≤ qj and numbers max (dom (gj−1) ∪ {j}) < k0
j < · · · < kj

j and

m0
j , . . . ,m

j
j ∈ ω such that ∀i ≤ j

[
q 
 ki

j ∈ dom (f̊i) ∧ f̊i(ki
j) = mi

j

]
. Since the ki

j are different

for different values of i, we can set gj = gj−1 ∪
{
〈k0

j ,m
0
j 〉, . . . , 〈k

j
j ,m

j
j〉

}
. It is clear that gj

satisfies conditions (a)–(c). a

Theorem 3.4.9. Let P = Fn(ω, 2). If A ⊂ ωω is a strongly MAD family, then P strongly

preserves A .

Proof. Let A ⊂ ωω be a strongly MAD family. Fix a countable elementary submodel M ≺

H(θ) with P,A ∈ M . Choose h ∈ A which covers M with respect to A , and let p ∈ P ∩M

be any condition. It is well known that p is always (M,P) generic. We will argue that

p 
 h covers M [G̊] with respect to A .

Suppose for a contradiction that there is q ≤ p, f̊ ∈M ∩VP and n ∈ ω so that

(∗) 
 f̊ is an infinite partial function avoiding A

(∗∗) q 
 ∀m > n
[
m ∈ dom (f̊) =⇒ f̊(m) 6= h(m)

]
.
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Since P is countable, P ⊂M . Therefore, q ∈M . Now, we can apply Lemma 3.4.7 to f̊ to find a

countable set of names
{
f̊i : i ∈ ω

}
∈M that satisfy clauses (1) and (2) of Lemma 3.4.7. Clause

(1) of Lemma 3.4.7 implies that f̊ and
{
f̊i : i ∈ ω

}
satisfy the hypothesis of Lemma 3.4.8. Thus

we can apply Lemma 3.4.8 with the condition q in place of p to find an infinite partial function

g ∈M which satisfies clauses (1) and (2) of Lemma 3.4.8 (with respect to q). Now, clause (2)

of Lemma 3.4.7 and clause (1) of Lemma 3.4.8 together imply that g avoids A . As h covers

M with respect to A , |h ∩ g| = ω. Choose n < m ∈ dom (g) such that g(m) = h(m). But by

clause (2) of Lemma 3.4.8, there is r ≤ q such that r 
 m ∈ dom (f̊) ∧ f̊(m) = g(m) = h(m),

which contradicts (∗∗) above. a

Corollary 3.4.10. Let A ⊂ ωω be a strongly MAD family. Let P = Fn(ω, 2). A is P-

indestructible. In fact, A is strongly P-indestructible.

a

An immediate consequence of the Cohen indestructibility of strongly MAD families is a

strengthening of a result of Steprāns [20] which says that strongly MAD families cannot be

analytic.

Corollary 3.4.11. If A ⊂ ωω is strongly MAD, then A does not contain perfect sets.

Proof. Suppose for a contradiction that T ⊂ ω<ω is a perfect tree such that [T ] ⊂ A . Let

P = Fn(ω, 2) be Cohen forcing and G be a (V,P) generic filter. Since T is perfect, [T ] has a

new branch in V[G]. That is, there is a b ∈ [T ] ∩V[G], which is not a member of V. We will

argue that b is a.d. from A , contradicting the Cohen indestructibility of A . First of all, notice

that in V, the following statement is true: any two distinct branches through T are a.d. This

statement is Π1
1 and hence absolute. So it is still true in V[G] that any two distinct branches

through T are a.d. In particular, b is a.d. from [T ]∩V. Next, suppose that f ∈ A \ ([T ]∩V).

Notice that in V, the following statement holds: f is a.d. from every branch through T . This
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is again Π1
1, and hence absolute. Thus in V[G] every branch through T is a.d. from f . In

particular, b is a.d. from f , and we are done. a

We now proceed to demonstrate that a certain class of forcings, including such well–known

ones as the Miller and Sacks forcings, strongly preserve strongly MAD families. We adopt a

general framework and show that all forcings that satisfy certain conditions (Definition 3.4.13)

have this property. We will then show that Miller and Sacks forcings do satisfy these conditions.

These conditions might seem technical, but they are a natural abstraction of the properties of

the above mentioned forcings. This will be clear from the proof of Theorem 3.4.25

Definition 3.4.12. Let (P,≤) be a poset. We will say that (P,≤) has fusion if there is a

sequence 〈≤n : n ∈ ω〉 of partial orderings on P such that

1. ∀p, q ∈ P [q ≤n p =⇒ q ≤n−1 p], with ≤−1 being ≤

2. if 〈pn : n ∈ ω〉 is a sequence with pn+1 ≤n pn, then ∃q ∈ P∀n ∈ ω [ q ≤n pn].

Definition 3.4.13. Let P be a poset. We will say that P has diagonal fusion if there exist

a sequence 〈≤n : n ∈ ω〉 of partial orderings on P, a strictly increasing sequence of natural

numbers 〈in : n ∈ ω〉 with i0 = 0, and for each p ∈ P a sequence Ip = 〈pi : i ∈ ω〉 ∈ Pω such

that the following hold

1. P has fusion with respect to 〈≤n : n ∈ ω〉

2. ∀i ∈ ω [pi ≤p]

3. if q ≤ p, then ∃∞i ∈ ω [q 6⊥ pi]

4. if q ≤n p, then ∀i < in [qi ≤ pi], where Iq = 〈qi : i ∈ ω〉

5. if 〈ri : in ≤ i < in+1〉 is a sequence so that ∀i ∈ [in, in+1) [ri ≤ pi], then ∃q ≤n p ∀i ∈

[in, in+1) [qi ≤ ri], where Iq = 〈qi : i ∈ ω〉.
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Our terminology is motivated by analogy with Miller forcing, where the notion of diagonal

fusion across a Miller tree occurs. It will be shown in Theorem 3.4.25 that conditions (1)–(5)

are abstractions of what goes on in the case of diagonal fusion through a Miller tree. In the

case of Miller forcing, IT , as a set, is just the collection of all subtrees of T that correspond

to the successors of split nodes of the tree T . Condition (5) corresponds to amalgamating

extensions of these into the Miller tree T .

Remark 3.4.14. We point out here that all our proofs will go through under the following

slight weakening of condition (5) above:

for any i ∈ [in, in+1), if ri ≤ pi, then there is a q ≤n p such that qi ≤ ri (5’)

and ∀in ≤ i′ < i [qi′ ≤ pi′ ] .

Intuitively, (5) seems stronger than (5’) because (5) allows us to “amalgamate” the ri into q

simultaneously, whereas with (5’), we must do this successively, one i at a time. We do not

use (5’) in our proofs because it makes the notation more cumbersome, and it doesn’t introduce

any new ideas into the proofs. We will leave it to the reader to verify that (5’) is indeed enough

for the proofs in this section.

Lemma 3.4.15. If P has diagonal fusion, then P is Axiom A.

Proof. By assumption, there is a sequence 〈≤n : n ∈ ω〉 of partial orderings on P witnessing

that P has fusion. We will check that this same sequence also witnesses that P is Axiom A. To

this end, suppose that x̊ is a P name such that 
 x̊ ∈ V. Let p be any condition and let n ∈ ω.

We build a sequence 〈pm : m ∈ ω〉 with p0 = p such that pm+1 ≤n+m pm as follows. Suppose

that at stage m + 1 we are given pm. Let Ipm = 〈pm
i : i ∈ ω〉. For each i ∈ [in+m, in+m+1)

choose rm
i ≤ pm

i and xm
i such that rm

i 
 x̊ = xm
i . Now, we can find a condition pm+1 ≤n+mp

m

such that ∀i ∈ [in+m, in+m+1)
[
pm+1

i ≤ rm
i

]
, where Ipm+1 = 〈pm+1

i : i ∈ ω〉. Let X = {xm
i :

m ∈ ω ∧ i ∈ [in+m, in+m+1)} and let q ∈ P be such that ∀m ∈ ω [q ≤n+m pm]. X is clearly a
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countable set. We will argue that q 
 x̊ ∈ X. Put Iq = 〈qi : i ∈ ω〉. Let r ≤ q. Find m and

i ∈ [in+m, in+m+1) such that r 6⊥ qi. Since q ≤n+m+1 p
m+1, we have qi ≤ pm+1

i ≤ rm
i . But

then we can choose s ∈ P extending both r and rm
i , whence s 
 x̊ = xm

i ∈ X. a

We now show that if P has diagonal fusion, then P strongly preserves strongly MAD families.

The steps are analogous to the steps for Cohen forcing.

Lemma 3.4.16. Let P be a poset with diagonal fusion. Let f̊ be a P name and suppose

that 
 f̊ is an infinite partial function. Let
{
f̊l : l ∈ ω

}
be a set of P names such that ∀l ∈

ω
[


 f̊l ⊂ f̊ is an infinite partial function
]
. Let p ∈ P and let n ∈ ω. There is q ≤n p and an

infinite partial function g such that

1. ∀l ∈ ω
[
q 


∣∣∣g ∩ f̊l

∣∣∣ = ω
]

2. ∀k ∈ dom (g)∃i
[
qi 
 k ∈ dom (f̊) ∧ f̊(k) = g(k)

]
, where Iq = 〈qi : i ∈ ω〉.

Proof. We build g by induction as the union of an increasing sequence of finite partial functions

gj . In fact, we will build two sequences 〈gj : −1 ≤ j < ω〉 and 〈pj : j ∈ ω〉 ⊂ P such that for

each j ≥ 0

(a) p0 = p and pj+1 ≤n+j p
j

(b) g−1 = 0 and gj−1 ⊂ gj is a finite partial function

(c) for each i ∈ [in+j , in+j+1) and for each l ≤ j there is a k(i, j, l) > j and a m(i, j, l) ∈ ω so

that
[
pj+1

i 
 k(i, j, l) ∈ dom (f̊l) ∧ f̊l(k(i, j, l)) = m(i, j, l)
]
, where Ipj+1 = 〈pj+1

i : i ∈ ω〉

(d) gj = gj−1 ∪ {〈k(i, j, l),m(i, j, l)〉 : i ∈ [in+j , in+j+1) ∧ l ≤ j}.

Let q ∈ P be such that q ≤n+j pj and let g =
⋃
gj . We will first argue that q and g

satisfy clauses (1) and (2). Put Iq = 〈qi : i ∈ ω〉. To verify (1), fix l ∈ ω. Let r ≤ q and

k ∈ ω be given. We know ∃∞i ∈ ω [r 6⊥ qi]. Choose j ≥ k, l and i ∈ [in+j , in+j+1) such
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that r 6⊥ qi. As l ≤ j, there is a k(i, j, l) > j ≥ k and a m(i, j, l) ∈ ω such that k(i, j, l) ∈

dom (g), g(k(i, j, l)) = m(i, j, l), and pj+1
i 
 k(i, j, l) ∈ dom (f̊l) ∧ f̊l(k(i, j, l)) = m(i, j, l). But

q ≤n+j+1 p
j+1. Therefore, qi ≤ pj+1

i . Hence, we can find s ∈ P extending both r and pj+1
i ,

whence s 
 k(i, j, l) ∈ dom (f̊l) ∧ f̊l(k(i, j, l)) = m(i, j, l) = g(k(i, j, l)). As k(i, j, l) > k, this

verifies (1).

Next to verify (2), suppose that k ∈ dom (g). By clause (d), k = k(i, j, l) and g(k) =

m(i, j, l) for some l ≤ j and i ∈ [in+j , in+j+1). We can conclude from clause (c) that

pj+1
i 
 k ∈ dom (f̊l) ∧ f̊l(k) = m(i, j, l) = g(k). But since f̊l is forced to be a sub–function of

f̊ , pj+1
i 
 k ∈ dom (f̊) ∧ f̊(k) = g(k). As q ≤n+j+1 p

j+1, qi ≤ pj+1
i . Therefore, we get that

qi 
 k ∈ dom (f̊) ∧ f̊(k) = g(k), which is as required.

Now, we describe the construction of 〈gj : −1 ≤ j < ω〉 and 〈pj : j ∈ ω〉. We set g−1 = 0

and p0 = p. At stage j ≥ 0 suppose we are given gj−1 and pj . Put Ipj = 〈pj
i : i ∈ ω〉. gj−1 being

a finite partial function, we can set k = max (dom (gj−1)). As each f̊l is forced to be an infinite

partial function, we can find a sequence of conditions 〈rj
i : i ∈ [in+j , in+j+1)〉 and two sequences

of numbers 〈k(i, j, l) : i ∈ [in+j , in+j+1) ∧ l ≤ j〉 and 〈m(i, j, l) : i ∈ [in+j , in+j+1) ∧ l ≤ j〉

satisfying

(i) rj
i ≤ pj

i and rj
i 
 k(i, j, l) ∈ dom (f̊l) ∧ f̊l(k(i, j, l)) = m(i, j, l)

(ii) k(i, j, l) > max ({k, j}) and k(i, j, l) < k(i′, j, l′) whenever (i, l) < (i′, l′) lexicographically.

By clause (5) of Definition 3.4.13, we can find pj+1 ≤n+j p
j such that for each i ∈ [in+j , in+j+1),

pj+1
i ≤ rj

i . Since the k(i, j, l) are distinct for distinct pairs (i, l), we can set gj = gj−1 ∪

{〈k(i, j, l),m(i, j, l)〉 : i ∈ [in+j , in+j+l)∧ l ≤ j}. It is clear that gj and pj+1 are as required. a

Lemma 3.4.17. Let A ⊂ ωω be a strongly MAD family and let P be a poset with diagonal

fusion. Let M ≺ H(θ) be countable with A ,P ∈ M . Suppose f̊ ∈ M is a P name such

that 
 f̊ is an infinite partial function avoiding A . Suppose h ∈ A covers M with respect
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to A . Let p ∈ M be a condition and let j ∈ ω. There is a r ≤ p such that r ∈ M and

∃k > j
[
r 
 k ∈ dom (f̊) ∧ f̊(k) = h(k)

]
.

Proof. We can apply Lemma 3.4.7 to f̊ to find a set of names
{
f̊l : l ∈ ω

}
∈ M that satisfy

clauses (1) and (2) of Lemma 3.4.7. Notice that the hypotheses of Lemma 3.4.16 are satisfied

by P, f̊ ,
{
f̊l : l ∈ ω

}
, and p. So we can find q ≤ p with q ∈ M and an infinite partial function

g ∈ M which satisfy clauses (1) and (2) of Lemma 3.4.16. Put Iq = 〈qi : i ∈ ω〉. Notice that

since q ∈ M , Iq ∈ M , and by elementarity, Iq ⊂ M . Now, observe that clause (2) of Lemma

3.4.7 and clause (1) of Lemma 3.4.16 together imply that g avoids A . Therefore, |h ∩ g| = ω.

Choose k > j such that k ∈ dom (g) and h(k) = g(k). By clause (2) of Lemma 3.4.16, there is

i ∈ ω such that qi 
 k ∈ dom (f̊) ∧ f̊(k) = g(k) = h(k). As qi ∈ M and as qi ≤ q, we can set

r = qi. Clearly, r and k are as required. a

Theorem 3.4.18. Let A ⊂ ωω be a strongly MAD family. Let P be a poset with diagonal

fusion. Then P strongly preserves A .

Proof. Fix a countable elementary submodel M ≺ H(θ) with A ,P ∈M . Let h ∈ A cover M

with respect to A and let p ∈M be a condition. We must find a q ≤ p which is (M,P) generic

such that q 
 h covers M [G̊] with respect to A . We will use Lemma 3.4.15 to ensure that q

is (M,P) generic and use Lemma 3.4.17 to ensure that q 
 h covers M [G̊] with respect to A .

Let 〈α̊n : n ∈ ω〉 enumerate all α̊ ∈ M ∩ VP such that 
 α̊ is an ordinal. Let 〈f̊j : j ∈ ω〉

enumerate all f̊ ∈ M ∩VP such that 
 f̊ is an infinite partial function avoiding A . We will

build a sequence 〈pn : n ∈ ω〉 ⊂ P ∩M such that the following hold

(a) p0 = p and pn+1 ≤n p
n

(b) pn+1 
 α̊n ∈M

(c) for each i ∈ [in, in+1) and for each j ≤ n there is a number k(i, n, j) > n such that[
pn+1

i 
 k(i, n, j) ∈ dom (f̊j) ∧ f̊j(k(i, n, j)) = h(k(i, n, j))
]
.
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Let q ∈ P be a condition so that q ≤n pn for all n ∈ ω. We will first argue that q is as

required. Indeed, it is clear from (b) above that q is (M,P) generic. We will argue that

q 
 h covers M [G̊] with respect to A . Let G be a (V,P) generic filter with q ∈ G and let

f ∈ M [G] be an infinite partial function avoiding A . By elementarity of M , there is f̊ ∈ M

with f̊ [G] = f such that 
 f̊ is an infinite partial function avoiding A . Therefore, f̊ = f̊j

for some j ∈ ω. It is enough to show that q 

∣∣∣h ∩ f̊j

∣∣∣ = ω. Fix r ≤ q and k ∈ ω. Put

Iq = {qi : i ∈ ω}. We know that ∃∞i ∈ ω [r 6⊥ qi]. So we can choose n ≥ max {j, k} and

i ∈ [in, in+1) such that r 6⊥ qi. Since j ≤ n, by (c) above, there is k(i, n, j) > n such that pn+1
i 


k(i, n, j) ∈ dom (f̊j) ∧ f̊j(k(i, n, j)) = h(k(i, n, j)). But since q ≤n+1 p
n+1, qi ≤ pn+1

i . So we

may choose s ≤ r with the property that s 
 k(i, n, j) ∈ dom (f̊j) ∧ f̊j(k(i, n, j)) = h(k(i, n, j)).

This is as required because k(i, n, j) > k.

We now describe how to construct 〈pn : n ∈ ω〉. Set p0 = p and suppose that at stage n,

pn ∈M is given to us. We first apply Lemma 3.4.15 to pn and α̊n within M to find p̃n ≤n p
n

with p̃n ∈ M such that p̃n 
 α̊n ∈M . Put Ip̃n = 〈p̃n
i : i ∈ ω〉. Note that Ip̃n ⊂ M . Fix any

i ∈ [in, in+1). Notice that p̃n
i ∈M . As 〈f̊j : j ≤ n〉 ⊂M , we can apply Lemma 3.4.17 to p̃n

i n+1

times to find rn
i ≤ p̃n

i with rn
i ∈M and numbers k(i, n, 0), . . . , k(i, n, n) ∈ ω, all of them greater

than n, such that ∀j ≤ n
[
rn
i 
 k(i, n, j) ∈ dom (f̊j) ∧ f̊j(k(i, n, j)) = h(k(i, n, j))

]
. Now, 〈rn

i :

i ∈ [in, in+1)〉 is a finite sequence of things in M . Therefore 〈rn
i : i ∈ [in, in+1)〉 ∈ M . Hence,

we can apply (5) of Definition 3.4.13 to p̃n to find pn+1 ≤n p̃n with pn+1 ∈ M such that

∀i ∈ [in, in+1)
[
pn+1

i ≤ rn
i

]
. It is clear that pn+1 is as needed. a

We now prove that Miller and Sacks forcings have diagonal fusion. We check the details

only for Miller forcing, as it is the more difficult case. The proof for Sacks forcing is very

similar, but easier.

Definition 3.4.19. Let T be a sub–tree of either ω<ω or 2<ω. If s ∈ T , we will write succT (s)

to denote {s_〈n〉 : s_〈n〉 ∈ T}. If T ⊂ 2<ω, then split (T ) = {s ∈ T : |succT (s)| = 2}, while if
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T ⊂ ω<ω, then split (T ) = {s ∈ T : |succT (s)| = ω}. In both cases, split+ (T ) =
⋃
{succT (s) :

s ∈ split (T )}. If n ∈ ω, splitn (T ) = {s ∈ split (T ) : |{t ( s : t ∈ split (T )}| = n}. split+n (T )

will denote
⋃
{succT (s) : s ∈ splitn (T )}.

Definition 3.4.20. Let T be a sub–tree of 2<ω. We will say that T is perfect if ∀s ∈ T∃t ∈

split (T ) [s ⊂ t]. If T is a sub–tree of ω<ω, we will say that T is superperfect if for each s ∈ T

either |succT (s)| = 1 or |succT (s)| = ω and if in addition to this ∀s ∈ T∃t ∈ split (T ) [s ⊂ t].

Definition 3.4.21. M will denote Miller forcing, M = {T ⊂ ω<ω : T is superperfect}, ordered

by inclusion. S will denote Sacks forcing, S = {T ⊂ 2<ω : T is perfect}, ordered by inclusion.

Several distinct notions of fusion can be defined on M. The strongest such notion requires

a ≤n extension to preserve all nth split nodes. However, this is too strong for proving that

M strongly preserves strongly MAD families because in order to ensure that our extensions

stay within the elementary submodel M , we need to be able to get away with preserving only

finitely many nodes at a time. So we will use the weaker notion of fusion which is sometimes

known as diagonal fusion across the Miller tree T (hence the terminology of Definition 3.4.13).

Definition 3.4.22. Let T ∈ M. As T is superperfect, there is a natural bijection from ω<ω

onto split (T ). If s ∈ ω<ω, we will let T (s) denote the split node of T corresponding to s under

this bijection. If i ∈ ω, then T (s, i) will denote the ith element of succT (T (s)) under the natural

ordering on succT (T (s)). Finally, if s ∈ T , we will write Ts to denote {t ∈ T : s ⊂ t ∨ t ⊂ s}.

Given T ∈ M, IT as a set, will just be {Tt : t ∈ split+ (T )}. But to ensure that the

conditions of Definition 3.4.13 are satisfied we must enumerate this set in a very particular

way.

Definition 3.4.23. We define a sequence of finite subsets of ω<ω as follows. Σ0 = {〈〉}. Given

Σn, Σn+1 = {s_〈i〉 : s ∈ Σn ∧ i ≤ n} ∪ {〈〉}. Notice that Σn+1 ⊃ Σn and that
⋃

Σn = ω<ω.
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Definition 3.4.24. Let T 1 ≤ T 0 ∈ M. For any n ∈ ω, we will say T 1 ≤n T 0 if ∀s ∈

Σn

[
T 1(s) = T 0(s)

]
.

Theorem 3.4.25. M has diagonal fusion.

Proof. We will show that 〈≤n : n ∈ ω〉 as defined above witnesses that M has diagonal fusion.

Indeed, it is clear that M has fusion with respect to 〈≤n : n ∈ ω〉. We will check that the

other conditions hold. Fix T ∈ M. We will define IT as follows. Set in = |Σn| − 1. Now, let

e : ω → (ω<ω \ {〈〉}) be a one–to–one onto enumeration such that e′′[0, in) = Σn \ {〈〉}. If

i ∈ [in, in+1), then e(i) ∈ Σn+1 \Σn. So there is a unique s ∈ Σn and a unique j ≤ n such that

e(i) = s_〈j〉. Let ti = T (s, j). We will set Ti = Tti . Now, it is clear that IT = 〈Ti : i ∈ ω〉 =

{Tt : t ∈ split+ (T )}. Therefore, Ti ≤ T , and if T ′ ≤ T , then ∃∞i ∈ ω [T ′ 6⊥ Ti].

Now suppose that T 1 ≤n T
0 and let i < in. We must argue that T 1

i ≤ T 0
i . Indeed, if n = 0,

there is nothing to be proved. So suppose that n > 0. As e(i) ∈ Σn \{〈〉}, we can find (unique)

s ∈ Σn−1 and j ≤ n − 1 so that e(i) = s_〈j〉. Notice that T 1
i = T 1

t1i
, where t1i = T 1(s, j) and

that T 0
i = T 0

t0i
, where t0i = T 0(s, j). Since T 1 ≤n T

0, we know that T 1(s_〈j〉) = T 0(s_〈j〉).

It follows from this that t1i = t0i . But since T 1 ⊂ T 0, it is easy to see that T 1
t1i

= T 1
t0i
⊂ T 0

t0i
,

whence T 1
i ≤ T 0

i .

Now it only remains to verify clause (5) of Definition 3.4.13. To this end, fix n ∈ ω and

T 0 ∈ M. Let 〈T ′i : i ∈ [in, in+1)〉 be a sequence such that ∀i ∈ [in, in+1)
[
T ′i ≤ T 0

i

]
. We

wish to amalgamate the T ′i into T0. It is clear that any two distinct s 6= t ∈ Σn+1 \ Σn are

incomparable nodes in ω<ω. Therefore, if s = s̃_〈j〉 and if t = t̃_〈k〉, then T 0(s̃, j) and T 0(t̃, k)

are incomparable nodes in the tree T 0. Thus it follows that if i 6= i′ are distinct elements in

[in, in+1), then t0i and t0i′ are incomparable nodes in T 0. But now, we can get T 1 ≤n T
0 simply

by replacing T 0
t0i

in T 0 with T ′i for each i ∈ [in, in+1). Now, T 1 is as required, and this finishes

the proof. a

Corollary 3.4.26. If A ⊂ ωω is a strongly MAD family, then M and S strongly preserve A .



61

a

We end this section with a conjecture regarding preservation of strongly MAD families.

Our notion of strongly preserving a strongly MAD family (Definition 3.4.3) is very similar to

the following notion which has been considered in the literature in connection with the problem

of preserving non meager sets (see [5], [12] or [30]).

Definition 3.4.27. Let P be a poset. We will say that P preserves vC if the following holds.

For every M ≺ H(θ), M countable, with P ∈ M , whenever p ∈ P ∩M and x is a Cohen real

over M , there is q ≤ p which is (M,P) generic such that q 
 x is a Cohen real over M [G̊].

The proof of Theorem 3.4.18 can be easily modified to show that if P has diagonal fusion,

then P preserves vC. We are not aware of any posets that preserve vC but do not strongly

preserve strongly MAD families. We make the following conjecture.

Conjecture 3.4.28. Let A ⊂ ωω be a strongly MAD family and let P be a poset that preserves

vC. A is strongly P–indestructible. Moreover, P strongly preserves A .

3.5 Some Preservation Theorems for Countable Support Iter-

ations

Our main goal in this section is to prove that the property of strongly preserving a strongly

MAD family is preserved by the countable support iteration of proper posets. By the results

of the last section, this will imply that the countable support iteration of Sacks and Miller

forcings strongly preserve strongly MAD families.

We assume that the reader is familiar with the basic theory of iterated forcing, including

some preservation theorems, such as the preservation of properness. The reader may consult [1],

[12], [30] or [31] for a good introduction. Our presentation will generally follow that of

Abraham [1].
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En route to proving our main theorem, we will show the following. Suppose γ is a limit

ordinal and that 〈Pα, Q̊α : α ≤ γ〉 is a countable support iteration of proper posets. If for

all α < γ, Pα does not add an eventually different real, then Pγ does not add an eventually

different real either. To the best of our knowledge, this result (Theorem 3.5.8) is new. Shelah,

Judah and Goldstern (see [30]) have shown that the countable support iteration of posets which

preserve vC itself preserves vC (Definition 3.4.27). The property of preserving vC appears

to be slightly stronger than that of not adding eventually different reals. On the other hand,

our result puts a condition on initial segments of the iteration, and not on the iterands. A

partial result towards our theorem was obtained by Shelah and Kellner [21], who proved it for

the case of Suslin forcings as well as some nep forcings.

Before giving the proofs of our results, we collect together some basic facts about countable

support iterations that we will use.

Lemma 3.5.1 (See the proof of Lemma 2.8 in [1]). Let γ be a limit ordinal and let 〈Pα, Q̊α :

α ≤ γ〉 be a CS iteration. Let M ≺ H(θ) be countable and suppose that 〈Pα, Q̊α : α ≤ γ〉 ∈M .

Put γ′ = sup (γ ∩M) and let 〈γn : n ∈ ω〉 ⊂ γ ∩M be an increasing sequence that is cofinal in

γ′. Suppose that 〈qn : n ∈ ω〉 and 〈p̊n : n ∈ ω〉 are two sequences such that the following hold:

1. qn ∈ Pγn and qn+1 � γn = qn

2. p̊n ∈ VPγn and qn 
γn p̊n ∈M ∩ Pγ ∧ p̊n � γn ∈ G̊γn

3. qn+1 
γn+1 p̊n+1 ≤ p̊n.

If q = (
⋃
qn)_

1̊ ∈ Pγ, then ∀n ∈ ω
[
q 
γ p̊n ∈ G̊γ

]
.

a

Lemma 3.5.2 (See Lemma 2.8 of [1]). Let 〈Pα, Q̊α : α ≤ γ〉 be a CS iteration such that ∀α <

γ
[


α Q̊α is proper
]
. Let M ≺ H(θ) be countable and suppose that 〈Pα, Q̊α : α ≤ γ〉 ∈ M .
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Let γ0 ∈ γ ∩M and suppose that q0 ∈ Pγ0 is a (M,Pγ0) generic condition. Suppose p̊0 ∈ VPγ0

and q0 
γ0 p̊0 ∈ Pγ ∩M ∧ p̊0 � γ0 ∈ G̊γ0. There is a (M,Pγ) generic condition q ∈ Pγ such

that q � γ0 = q0 and q 
γ p̊0 ∈ G̊γ.

a

Definition 3.5.3. Let P and Q be posets and suppose that π : Q → P is an onto map. We

will say that π is a projection if the following hold:

1. π is order preserving. That is, if q1 ≤ q0, then π(q1) ≤ π(q0)

2. for every q0 ∈ Q if p ≤ π(q0), then ∃q1 ≤ q0 [π(q1) = p].

Definition 3.5.4. Let (P,≤P) and (Q,≤Q) be posets and let π : Q → P be a projection. If

G ⊂ P is a (V,P) generic filter, then in V[G] we define the poset Q/G = {q ∈ Q : π(q) ∈ G}

ordered by ≤Q. In V, we let Q/G̊ be a full P name for Q/G.

Lemma 3.5.5 (See section 4 of [12]). Let P and Q be posets and let π : Q → P be a projection.

There is a dense embedding i : Q → P ∗Q/G̊ given by i(q) = 〈π(q), q〉. Moreover, if 〈Pα, Q̊α :

α ≤ γ〉 is an iteration, then for each α ≤ γ the map πγα : Pγ → Pα given by πγα(p) = p � α

is a projection. Therefore, if α ≤ γ and if Gγ ⊂ Pγ is a (V,Pγ) generic filter, then there is

a (V[Gα],Pγ/Gα) generic filter H so that in V [Gγ ], Gγ = Gα ∗ H holds. In fact, this H is

equal to Gγ.

a

Definition 3.5.6. Suppose 〈Pα, Q̊α : α ≤ γ〉 is an iteration and let α ≤ γ. By Lemma 3.5.5,

Pγ densely embeds into Pα ∗ Pγ/G̊α. Thus we may think of any Pγ name as a Pα name for a

Pγ/G̊α name. Thus, given a Pγ name x̊, we use x̊[G̊α] to denote a canonical Pα name for a

Pγ/G̊α name representing x̊. If Gα is a (V,Pα) generic filter, we will write x̊[Gα] to denote

the evaluation of x̊[G̊α] by Gα. Therefore, if Gγ is a (V,Pγ) generic filter, then in V[Gγ ],
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x̊[Gγ ] = x̊[Gα][H] holds, where H is a (V[Gα],Pγ/Gα) generic filter such that Gγ = Gα ∗H.

By Lemma 3.5.5, H = Gγ.

We are now ready to prove our main results. We begin by showing that a CS iteration of

proper forcings of limit length does not add an eventually different real if no initial segment

does.

Lemma 3.5.7. Let V0 ⊂ V1 be transitive universes satisfying ZFC and suppose that for every

f ∈ ωω ∩V1 there is a slalom S ∈ V0 such that ∃∞n ∈ ω [f(n) ∈ S(n)]. No f ∈ ωω ∩V1 is

eventually different from ωω ∩V0.

Proof. Working in V0 partition ω into a sequence of intervals 〈In : n ∈ ω〉 ∈ V0 such that

∀n ∈ ω [|In| = 2n]. Put X =
⋃
ωIn . Notice that for each n ∈ ω, ωIn ∩V1 = ωIn ∩V0. Let

f ∈ ωω ∩V1. Working in V1 define a function F : ω → X by stipulating that F (n) = f � In ∈

ωIn . Since we can code elements of Xω by elements of ωω, we can find S ∈ V0 such that

1. S : ω → [X]<ω

2. ∀n ∈ ω [|S(n)| ≤ 2n]

3. ∃∞n ∈ ω [F (n) ∈ S(n)].

WLOG we may assume that for all n ∈ ω, S(n) ⊂ ωIn and that |S(n)| = 2n because we may

modify S to make both of these things true without affecting the truth of (3) above. Put

S(n) = {σn
0 , . . . , σ

n
2n−1} and In = {in0 , . . . , in2n−1}. For each n ∈ ω and for each 0 ≤ j < 2n

define g(inj ) = σn
j (inj ). This definition makes sense because by assumption, σn

j ∈ ωIn , and so

σn
j is defined at inj . Clearly, g ∈ ωω ∩V0. We will argue in V1 that ∃∞n ∈ ω [f(n) = g(n)].

We know that A = {n ∈ ω : F (n) ∈ S(n)} is infinite. For each n ∈ A, there is a 0 ≤ jn < 2n

such that f � In = σn
jn

. Therefore, for each n ∈ A, g
(
injn

)
= σn

jn

(
injn

)
= f

(
injn

)
. Since the In

are disjoint, the set
{
injn

: n ∈ A
}

is infinite, and we are done. a
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Theorem 3.5.8. Let γ be a limit ordinal and let 〈Pα, Q̊α : α ≤ γ〉 be a CS iteration such

that ∀α < γ
[


α Q̊α is proper
]
. Suppose that for all α < γ, Pα does not add an eventually

different real. Pγ does not add an eventually different real either.

Proof. Let f̊ be a Pγ name such that 
γ f̊ ∈ ωω, and let p0 ∈ Pγ be a condition. Fix a countable

M ≺ H(θ) with 〈Pα, Q̊α : α ≤ γ〉, f̊ , p0 ∈ M . Let S : ω → [ω]<ω be a slalom such that for

all f ∈ ωω ∩M , ∀∞n ∈ ω [f(n) ∈ S(n)]. We will find q ∈ Pγ such that q 
γ p0 ∈ G̊γ and

q 
γ ∃∞n ∈ ω
[
f̊(n) ∈ S(n)

]
. By Lemma 3.5.7, this is sufficient. Put γ′ = sup (M ∩ γ) and

let 〈γn : n ∈ ω〉 ⊂ M ∩ γ be an increasing sequence that is cofinal in γ′. We will build two

sequences 〈qn : n ∈ ω〉 and 〈p̊n : n ∈ ω〉 such that the following hold

1. qn ∈ Pγn , qn is (M,Pγn) generic, and qn+1 � γn = qn

2. p̊0 = p0, p̊n ∈ VPγn , and qn 
γn p̊n ∈M ∩ Pγ ∧ p̊n � γn ∈ G̊γn

3. qn+1 
γn+1 p̊n+1 ≤ p̊n.

4. qn+1 
γn+1 p̊n+1 
Pγ/G̊γn+1
∃k ≥ n

[
f̊ [G̊γn+1 ] (k) ∈ S(k)

]
.

Before showing how to build such a sequence, we show that it is sufficient to do so. Let

q = (
⋃
qn)_

1̊ ∈ Pγ . By Lemma 3.5.1, ∀n ∈ ω
[
q 
γ p̊n ∈ G̊γ

]
. In particular, q 
γ p0 ∈ G̊γ .

We will argue that q 
γ ∃∞n ∈ ω
[
f̊(n) ∈ S(n)

]
. Indeed let r ≤ q and let n ∈ ω. Fix a (V,Pγ)

generic filter Gγ , with r ∈ Gγ . By Lemma 3.5.5, we know that Gγ is
(
V[Gγn+1 ],Pγ/Gγn+1

)
generic and that in V[Gγ ], Gγ = Gγn+1 ∗ Gγ holds. Notice that q ∈ Gγ and therefore,

qn+1 ∈ Gγn+1 . Also, since p̊n+1 is a Pγn+1 name, p̊n+1[Gγ ] = p̊n+1[Gγn+1 ]. It follows from clauses

(2) and (4) that p̊n+1[Gγ ] ∈ M ∩ Pγ , that p̊n+1[Gγ ] � γn+1 ∈ Gγn+1 , and that in V[Gγn+1 ],

p̊n+1[Gγ ] 
Pγ/Gγn+1
∃k ≥ n

[
f̊ [Gγn+1 ] (k) ∈ S(k)

]
. However, as observed above, Lemma 3.5.1

implies that p̊n+1[Gγ ] ∈ Gγ . Therefore in V[Gγ ], there is a k ≥ n such that f̊ [Gγn+1 ][Gγ ](k) ∈

S(k). But f̊ [Gγn+1 ][Gγ ] = f̊ [Gγ ]. So f̊ [Gγ ] (k) ∈ S(k). Since r ∈ Gγ , we may find s ≤ r such

that s 
γ f̊(k) ∈ S(k). As k ≥ n, this finishes the proof.
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We now describe how to construct 〈qn : n ∈ ω〉 and 〈p̊n : n ∈ ω〉. p̊0 is just p0, the given

condition. Since p0 ∈M ∩ Pγ and since γ0 ∈M , p0 � γ0 ∈M ∩ Pγ0 . As Pγ0 is proper, we may

find a (M,Pγ0) generic condition q0 ≤ p0 � γ0. Because q0 ≤ p0 � γ0, q0 
γ0 p0 � γ0 ∈ G̊γ0 .

Now suppose that qn and p̊n are given to us. By clause (1), qn is (M,Pγn) generic, and by clause

(2), qn 
γn p̊n ∈M ∩ Pγ ∧ p̊n � γn ∈ G̊γn . Now this means that the hypothesis of Lemma 3.5.2

are satisfied by the iteration 〈Pα, Q̊α : α ≤ γn+1〉, the elementary submodel M , the ordinal γn,

the condition qn and by a Pγn name forced by qn to equal p̊n � γn+1. So by Lemma 3.5.2, we

can find a (M,Pγn+1) generic condition qn+1 such that

(a) qn+1 � γn = qn

(b) qn+1 
γn+1 p̊n � γn+1 ∈ G̊γn+1 .

To find p̊n+1, we proceed as follows. Choose a (V,Pγn+1) filter Gγn+1 with qn+1 ∈ Gγn+1 . Since

p̊n is a Pγn name, p̊n[Gγn+1 ] = p̊n[Gγn ]. Therefore p̊n[Gγn+1 ] ∈ M ∩ Pγ and by (b) above,

p̊n[Gγn+1 ] � γn+1 ∈ Gγn+1 . Now, notice that M [Gγn+1 ] ≺ H(θ)[Gγn+1 ], and that H(θ)[Gγn+1 ] is

the same as H(θ) as computed within the universe V[Gγn+1 ]. Observe also that both Pγ/Gγn+1

and f̊ [Gγn+1 ] are elements of M [Gγn+1 ]. Thus we conclude that p̊n[Gγn+1 ] ∈ Pγ/Gγn+1 ∩

M [Gγn+1 ]. Moreover, we have that 
Pγ/Gγn+1
f̊ [Gγn+1 ] ∈ ωω. Thus by elementarity, we can

find a sequence of conditions 〈pi : i ∈ ω〉 ∈ M [Gγn+1 ] and a function f ∈ ωω ∩M [Gγn+1 ] such

that the following hold:

(i) p0 = p̊n[Gγn+1 ] and ∀i ∈ ω
[
pi ∈ Pγ/Gγn+1

]
(ii) pi+1 ≤ pi

(iii) ∀i ∈ ω
[
pi 
Pγ/Gγn+1

f̊ [Gγn+1 ] (i) = f(i)
]
.

Recall that qn+1 is a (M,Pγn+1) generic condition. Therefore, M [Gγn+1 ] ∩ Pγ = M ∩ Pγ . It

follows that 〈pi : i ∈ ω〉 ⊂M (even though it is not an element of M). Now, since Pγn+1 does
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not add eventually different reals, we can find g ∈ ωω ∩M such that |f ∩ g| = ω. But we chose

S so that ∀∞i ∈ ω [g(i) ∈ S(i)]. Therefore, we can find k ≥ n such that f(k) ∈ S(k). Now by

(i)–(iii) above, pk has the following properties in V[Gγn+1 ]

(+) pk ∈M ∩ Pγ and pk � γn+1 ∈ Gγn+1

(++) pk ≤ p̊n[Gγn+1 ]

(+++) pk 
Pγ/Gγn+1
∃k ≥ n

[
f̊ [Gγn+1 ] (k) ∈ S(k)

]
.

Since Gγn+1 was an arbitrary (V,Pγn+1) generic filter containing qn+1, we can use the maximal

principle in V to end the proof by finding a Pγn+1 name p̊n+1 so that

(∗) qn+1 
γn+1 p̊n+1 ∈M ∩ Pγ ∧ p̊n+1 � γn+1 ∈ G̊γn+1

(∗∗) qn+1 
γn+1 p̊n+1 ≤ p̊n

(∗ ∗ ∗) qn+1 
γn+1 p̊n+1 
Pγ/G̊γn+1
∃k ≥ n

[
f̊ [G̊γn+1 ] (k) ∈ S(k)

]
.

a

We will use Theorem 3.5.8 to show that the property of strongly preserving a strongly MAD

family is preserved. Our proof of this will proceed by induction. However, just as in the case

of the proof of the preservation of properness, we will have to make an inductive assumption

that is stronger than simply what we want to prove. We state it below for the case of a two

step iteration.

Convention 3.5.9. In the context of the next Lemma, in order to avoid unnecessary repeti-

tions, we will adopt the convention that for any poset P, G̊P is the canonical P name for a P

generic filter.

Lemma 3.5.10. Let A ⊂ ωω be a strongly MAD family. Let P be a poset which strongly

preserves A and let Q̊ be a P name for a poset so that 
P Q̊ strongly preserves A . Suppose
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M ≺ H(θ) is countable with A ,P, Q̊ ∈ M . Fix h ∈ A that covers M with respect to A . Let

p ∈ P and let r̊ be a P name such that

1. p is (M,P) generic

2. p 
P h covers M [G̊P] with respect to A

3. p 
P r̊ ∈ P ∗ Q̊ ∩M ∧ r̊(0) ∈ G̊P.

In this case, there is a q̊ ∈ dom (Q̊) such that

(1+) 〈p, q̊〉 is (M,P ∗ Q̊) generic

(2+) 〈p, q̊〉 
P∗Q̊ h covers M [G̊P∗Q̊] with respect to A

(3+) 〈p, q̊〉 
P∗Q̊ r̊ ∈ G̊P∗Q̊.

Proof. Let GP be a (V,P) generic filter with p ∈ GP. Within V [GP ], form M [GP] and notice

that M [GP] ≺ H(θ) [GP] and that H(θ) [GP] is the same as H(θ) as computed within V [GP].

Now, by assumption, h covers M [GP] with respect to A . Also, A , Q̊ [GP] ∈ M [GP], and

Q̊ [GP] strongly preserves A . Next, by assumption, r̊ [GP] ∈ P∗Q̊∩M . So there are p′ ∈ P∩M

and q̊′ ∈ dom (Q̊) ∩M such that r̊ [GP] (0) = p′ and r̊ [GP] (1) = q̊′. Moreover, p′ ∈ GP. It

follows that q̊′ [GP] ∈ Q̊ [GP] ∩M [GP]. Thus, we may find a q ≤ q̊′ [GP] such that in V [GP]

(a) q ∈ Q̊ [GP] is (M [GP] , Q̊ [GP]) generic

(b) q 
Q̊[GP] h covers M [GP]
[
G̊Q̊[GP]

]
with respect to A .

(c) q ≤ r̊[GP](1)[GP].

Therefore, since GP was an arbitrary (V,P) generic filter containing p, we may use the maximal

principle in V to find q̊ ∈ dom (Q̊) such that

(a′) p 
P q̊ ∈ Q̊ is (M [G̊P], Q̊) generic
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(b′) p 
P q̊ 
Q̊ h covers M [G̊P][G̊Q̊] with respect to A .

(c′) p 
P q̊ ≤ r̊(1)[G̊P].

We argue that q̊ is as needed. Indeed, by (a′) above and by the fact that p is (M,P) generic,

it is easily follows that 〈p, q̊〉 is (M,P ∗ Q̊) generic.

Next, we argue that 〈p, q̊〉 
P∗Q̊ h covers M [G̊P∗Q̊] with respect to A . Let GP∗Q̊ be a (V,P∗

Q̊) generic filter with 〈p, q̊〉 ∈ GP∗Q̊. Notice that there is a (V,P) generic filter GP and a

(V[GP], Q̊[GP]) generic filter GQ̊[GP] such that in V[GP∗Q̊], GP∗Q̊ = GP ∗ GQ̊[GP]. Moreover,

p ∈ GP and q̊[GP] ∈ GQ̊[GP]. Therefore in V[GP∗Q̊], we have that h covers M [GP]
[
GQ̊[GP]

]
with

respect to A . Now, let f ∈M [GP∗Q̊] be an infinte partial function avoiding A . We can find a

P ∗ Q̊ name f̊ ∈ M with f̊ [GP∗Q̊] = f . But we can think of f̊ as a P name for a Q̊ name. So

there is a P name f̊ [G̊P] ∈M such that f̊ [GP]
[
GQ̊[GP]

]
= f̊ [GP∗Q̊] = f . Thus f̊ [GP] is a Q̊[GP]

name in M [GP] and so f ∈M [GP]
[
GQ̊[GP]

]
. Therefore, |h ∩ f | = ω, as needed.

Finally we must argue that 〈p, q̊〉 
P∗Q̊ r̊ ∈ G̊P∗Q̊. Let GP∗Q̊, GP and GQ̊[GP] be as in the last

paragraph. Once again, notice that since 〈p, q̊〉 ∈ GP∗Q̊, p ∈ GP and q̊[GP] ∈ GQ̊[GP]. Notice also

that since r̊ is a P name, r̊[GP∗Q̊] = r̊[GP]. Within V[GP], we have that r̊[GP] = 〈p′, q̊′〉 ∈ P∗ Q̊,

where p′ ∈ P and q̊′ ∈ dom (Q̊). Also by (3) above, p′ ∈ GP, and so, q̊′[GP] ∈ Q̊[GP]. Moreover,

by (c′) above, q̊[GP] ≤ q̊′[GP]. Since q̊[GP] ∈ GQ̊[GP], q̊
′[GP] ∈ GQ̊[GP] as well. Therefore, in

V[GP∗Q̊], it follows that 〈p′, q̊′〉 = r̊[GP∗Q̊] ∈ GP∗Q̊, as required. a

We will now prove the same for iterations of arbitrary length. We will make use of Theorem

3.5.8 in conjunction with the following, which is similar to Lemma 3.4.7.

Lemma 3.5.11. Let A ⊂ ωω be an infinite a.d. family and let P be a poset that does

not add any eventually different reals. Let f̊ be a P name for which the following holds:


 f̊ is an infinite partial function avoiding A . For each p ∈ P, there is q ≤ p and an infinite

partial function f avoiding A such that for each n ∈ dom (f) there exists r ≤ q such that
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r 
 n ∈ dom (f̊) ∧ f̊(n) = f(n).

Proof. We use the well known fact that a poset which does not add eventually different reals

does not make V ∩ ωω meager (see proof of Lemma 2.4.8 in [5]). By Lemma 3.4.7, there is a

countable set of P names
{
f̊i : i ∈ ω

}
such that

1. 
 f̊i ⊂ f̊ is an infinite partial function

2. 
 ∀g ⊂ ω × ω
[
if ∀i ∈ ω

[∣∣∣g ∩ f̊i

∣∣∣ = ω
]
, then g avoids A

]
.

Fix a condition p ∈ P. As P does not make V∩ωω meager, there is q ≤ p and h ∈ ωω such that

for each i ∈ ω, q 

∣∣∣h ∩ f̊i

∣∣∣ = ω. Put X =
{
n ∈ ω : ∃r ≤ q

[
r 
 n ∈ dom (f̊) ∧ h(n) = f̊(n)

]}
and set f = h � X. To finish the proof, by (2) above, it is enough to check that for each

i ∈ ω, q 

∣∣∣f ∩ f̊i

∣∣∣ = ω. Indeed, suppose r ≤ q and k ∈ ω. Since q 

∣∣∣h ∩ f̊i

∣∣∣ = ω, there is

s ≤ r and n > k such that s 
 n ∈ dom (f̊i) ∧ h(n) = f̊i(n). But since 
 f̊i ⊂ f̊ , it follows that

s 
 n ∈ dom (f̊) ∧ h(n) = f̊(n), which means that n ∈ dom (f). a

Theorem 3.5.12. Let A ⊂ ωω be a strongly MAD family. Let 〈Pα, Q̊α : α ≤ γ〉 be a CS

iteration such that ∀α < γ
[


α Q̊α strongly preserves A
]
. Let M ≺ H(θ) be countable with

〈Pα, Q̊α : α ≤ γ〉,A ∈M . Let h ∈ A cover M with respect to A . Suppose γ0 ∈ γ ∩M and let

q0 ∈ Pγ0 be a (M,Pγ0) generic condition such that q0 
γ0 h covers M [G̊γ0 ] with respect to A .

Let p̊0 be a Pγ0 name such that q0 
γ0 p̊0 ∈ Pγ ∩M ∧ p̊0 � γ0 ∈ G̊γ0. There is a q ∈ Pγ with

q � γ0 = q0, which is (M,Pγ) generic, such that q 
γ h covers M [G̊γ ] with respect to A , and

such that q 
γ p̊0 ∈ G̊γ. In particular, Pγ strongly preserves A .

Proof. Before proving the main claim of the Theorem, we remark that the last sentence of the

Theorem easily follows from the main claim. To see this, suppose p0 ∈ Pγ ∩M is a condition.

Now, apply the main claim of the Theorem with γ0 = 0, the trivial condition as q0, and p̊0 = p0.

The proof of the main claim is by induction on γ. Let us assume that the theorem holds

for all α < γ. The case when γ is a successor has already been dealt with in Lemma 3.5.10. So
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we assume that γ is a limit ordinal. We observe that it follows from our inductive hypothesis

that no Pα adds eventually different reals, for α < γ. As γ is a limit ordinal, it follows from

Theorem 3.5.8 that Pγ does not add an eventually different real. We will make use of this

observation in what follows.

Put γ′ = sup (γ ∩M) and let 〈γn : n ∈ ω〉 ⊂ M ∩ γ be an increasing sequence that is

cofinal in γ′. Let 〈Dn : n ∈ ω〉 enumerate all the dense open subsets of Pγ that are elements

of M . Also, we let 〈f̊i : i ∈ ω〉 enumerate all Pγ names in M for which it is the case that


γ f̊i is an infinite partial function avoiding A . We will build two sequences 〈qn : n ∈ ω〉 and

〈p̊n : n ∈ ω〉 such that the following hold:

1. q0 is given, qn ∈ Pγn , qn is (M,Pγn) generic, and qn+1 � γn = qn

2. qn 
γn h covers M [G̊γn ] with respect to A

3. p̊0 = p0, p̊n ∈ VPγn , and qn 
γn p̊n ∈M ∩ Pγ ∧ p̊n � γn ∈ G̊γn

4. qn+1 
γn+1 p̊n+1 ∈ Dn ∧ p̊n+1 ≤ p̊n.

5. ∀i ≤ n
[
qn+1 
γn+1 Φi

]
, where Φi is this formula in Pγn+1 forcing language:

p̊n+1 
Pγ/G̊γn+1
∃kn

i ≥ n
[
kn

i ∈ dom
(
f̊i[G̊γn+1 ]

)
∧ f̊i[G̊γn+1 ] (kn

i ) = h(kn
i )

]
.

Before describing how to construct such sequences, we will argue that it is enough to do so.

Put q = (
⋃
qn)_

1̊ ∈ Pγ . By lemma 3.5.1, ∀n ∈ ω
[
q 
γ p̊n ∈ G̊γ

]
. We will first argue that

q is (M,Pγ) generic. It suffices to show that for each n ∈ ω, q 
γ Dn ∩M ∩ G̊γ 6= 0. But

by clauses (3) and (4) and by Lemma 3.5.1, it is clear that q 
γ p̊n+1 ∈ Dn ∩M ∩ G̊γ . That

q 
γ h covers M [G̊γ ] with respect to A will be verified next. We will first argue that it is

sufficient to show that ∀i ∈ ω
[
q 
γ

∣∣∣h ∩ f̊i

∣∣∣ = ω
]
. Assume this and let Gγ be a (V,Pγ) generic

filter with q ∈ Gγ . Let f ∈ M [Gγ ] be an infinite partial function avoiding A . There is a Pγ

name f̊ ∈ M such that f̊ [Gγ ] = f . But by elementarity of M , we can find such a f̊ with the
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additional property that 
γ f̊ is an infinite partial function avoiding A . Thus, f = f̊i[Gγ ],

for some i ∈ ω, and so |h ∩ f | = ω. We will now check that ∀i ∈ ω
[
q 
γ

∣∣∣h ∩ f̊i

∣∣∣ = ω
]
. Fix

i ∈ ω. Let r ≤ q and let m ∈ ω. Choose a (V,Pγ) generic filter with r ∈ Gγ . Choose

n ∈ ω with m, i ≤ n. By Lemma 3.5.5, we know that Gγ is
(
V[Gγn+1 ],Pγ/Gγn+1

)
generic

and that in V[Gγ ], Gγ = Gγn+1 ∗ Gγ holds. Notice that q ∈ Gγ and therefore, qn+1 ∈

Gγn+1 . Also, since p̊n+1 is a Pγn+1 name, p̊n+1[Gγ ] = p̊n+1[Gγn+1 ]. It follows from clauses

(3) and (5) that p̊n+1[Gγ ] ∈ M ∩ Pγ , that p̊n+1[Gγ ] � γn+1 ∈ Gγn+1 , and that in V[Gγn+1 ],

p̊n+1[Gγ ] 
Pγ/Gγn+1
∃kn

i ≥ n
[
kn

i ∈ dom
(
f̊i[Gγn+1 ]

)
∧ f̊i[Gγn+1 ](k

n
i ) = h(kn

i )
]
. On the other

hand, we know from Lemma 3.5.1 that p̊n+1[Gγ ] ∈ Gγ . Therefore, in V[Gγ ], we are able to find

a kn
i ≥ n ≥ m such that kn

i ∈ dom
(
f̊i[Gγn+1 ][Gγ ]

)
and f̊i[Gγn+1 ][Gγ ] (kn

i ) = h(kn
i ). However,

f̊i[Gγn+1 ][Gγ ] = f̊i[Gγ ]. As r ∈ Gγ , there is s ≤ r so that s 
γ k
n
i ∈ dom (f̊i) ∧ f̊i(kn

i ) = h(kn
i ).

As kn
i ≥ m, this is as needed.

Next we describe how to construct 〈qn : n ∈ ω〉 and 〈p̊n : n ∈ ω〉. q0 and p̊0 are both given

to us. Now assume that qn and p̊n are given. We can apply the inductive hypothesis to the

iteration 〈Pα, Q̊α : α ≤ γn+1〉, the elementary submodel M , the ordinal γn, the condition qn

and a Pγn name forced by qn to equal p̊n � γn+1 to find a (M,Pγn+1) generic condition qn+1

such that

(a) qn+1 � γn = qn

(b) qn+1 
γn+1 h covers M [G̊γn+1 ] with respect to A

(c) qn+1 
γn+1 p̊n � γn+1 ∈ G̊γn+1 .

To find p̊n+1 we proceed as follows. Let Gγn+1 be a (V,Pγn+1) generic filter with qn+1 ∈ Gγn+1 .

We begin with some general observations. Note that p̊n[Gγn+1 ] ∈ Pγ ∩M . Also, p̊n[Gγn+1 ] �

γn+1 ∈ Gγn+1 . Thus we conclude that p̊n[Gγn+1 ] is a condition in Pγ/Gγn+1 ∩ M [Gγn+1 ].

Moreover, Pγ/Gγn+1 ∈ M [Gγn+1 ]. Now, we will describe how to take care of the dense
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open set Dn. We make use of the fact that if π : Q → P is a projection, and if D ⊂ Q

is dense and if G ⊂ P is a (V,P) generic filter, then in V[G], D/G = D ∩ Q/G is dense

in Q/G. Applying this to Pγ , Pγn+1 and Dn, we conclude that Dn ∩ Pγ/Gγn+1 is dense in

Pγ/Gγn+1 . Since Dn, p̊n[Gγn+1 ] ∈ M [Gγn+1 ], we can find a p0 ∈ Dn ∩ Pγ/Gγn+1 ∩M [Gγn+1 ]

such that p0 ≤ p̊n[Gγn+1 ]. We note here that since Dn is open, any further extension of p0

will stay within Dn. Next, we describe how to deal with f̊0[Gγn+1 ]. First of all, since in the

ground model V, 
γ f̊0 is an infinite partial function avoiding A , we have that in V[Gγn+1 ],


Pγ/Gγn+1
f̊0[Gγn+1 ] is an infinite partial function avoiding A . Moreover, we observed above

that Pγ does not add eventually different reals. As Pγ is forcing equivalent to Pγn+1 ∗ Pγ/G̊γn+1 ,

it follows that Pγ/Gγn+1 does not add eventually different reals over V[Gγn+1 ]. As f̊0[Gγn+1 ] ∈

M [Gγn+1 ], we can apply Lemma 3.5.11 to Pγ/Gγn+1 to find a p̃0 ∈ Pγ/Gγn+1 ∩M [Gγn+1 ] with

p̃0 ≤ p0 and an infinite partial function f ∈ M [Gγn+1 ] as in the Lemma which avoids A . But

by (b) above, h covers M [Gγn+1 ] with respect to A . Therefore, |h ∩ f | = ω. Choose kn
0 ≥ n

such that kn
0 ∈ dom (f) and h(n) = f(n). By the Lemma, there is a p1 ≤ p̃0 in Pγ/Gγn+1 ∩

M [Gγn+1 ] so that p1 
Pγ/Gγn+1
kn

0 ∈ dom
(
f̊0[Gγn+1 ]

)
∧ f̊0[Gγn+1 ](k

n
0 ) = f(kn

0 ) = h(kn
0 ). Re-

peating this argument another n times we get pn+1 ∈ Pγ/Gγn+1 ∩ M [Gγn+1 ] with pn+1 ≤

p̊n[Gγn+1 ] as well as numbers kn
i ≥ n, for each i ≤ n so that for each such i, we have

pn+1 
Pγ/Gγn+1
kn

i ∈ dom
(
f̊i[Gγn+1 ]

)
∧ f̊i[Gγn+1 ](k

n
i ) = h(kn

i ). Now, we note that since qn+1

is a (M,Pγn+1) condition and qn+1 ∈ Gγn+1 , M [Pγn+1 ] ∩ Pγ = M ∩ Pγ . Therefore, pn+1 is in

fact in M . Thus we have found a condition pn+1 with the following properties:

(i) pn+1 ∈ Pγ ∩M and pn+1 � γn+1 ∈ Gγn+1 .

(ii) pn+1 ≤ p̊n[Gγn+1 ] and pn+1 ∈ Dn

(iii) ∀i ≤ n
[
pn+1 
Pγ/Gγn+1

Φi

]
, where Φi is this formula

∃kn
i ≥ n

[
kn

i ∈ dom
(
f̊i[Gγn+1 ]

)
∧ f̊i[Gγn+1 ](k

n
i ) = h(kn

i )
]
.
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Since Gγn+1 was an arbitrary (V,Pγn+1) generic filter containing qn+1 we can use the maximal

principle in V to find a Pγn+1 name p̊n+1 so that

(i′) qn+1 
γn+1 p̊n+1 ∈ Pγ ∩M ∧ p̊n+1 � γn+1 ∈ G̊γn+1 .

(ii′) qn+1 
γn+1 p̊n+1 ≤ p̊n ∧ p̊n+1 ∈ Dn

(iii′) ∀i ≤ n
[
qn+1 
γn+1 Φi

]
, where Φi is this formula

p̊n+1 
Pγ/G̊γn+1
∃kn

i ≥ n
[
kn

i ∈ dom
(
f̊i[G̊γn+1 ]

)
∧ f̊i[G̊γn+1 ](k

n
i ) = h(kn

i )
]
.

a

Corollary 3.5.13. Let A ⊂ ωω be a strongly MAD family. If 〈Pα, Q̊α : α ≤ γ〉 is a CS

iteration such that ∀α < γ
[


α Q̊α has diagonal fusion
]
, then Pγ strongly preserves A . In

particular is ∀α < γ
[


α Q̊α = M ∧ Q̊α = S
]
, then Pγ strongly preserves A .

a

3.6 It is Consistent That There are no Strongly MAD Families

of Size c

In this section we show that it is consistent that there are no strongly MAD families of size

continuum. In fact, we will show that this holds in the Cohen model: the model one gets by

adding ℵ2 Cohen reals to a ground model satisfying CH. The proof is similar to the well known

result, due to Kunen, that in the Cohen model there are no well ordered chains of length ω2 in

P(ω)/Fin. Given a name for a strongly MAD family of size ℵ2, we use an elementary submodel

to restrict the name to an initial segment of the iteration, and then we get a contradiction

using the Cohen-indestructability of strongly MAD families.

Theorem 3.6.1. There are no strongly MAD families of size continuum in the Cohen model.
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Proof. Let 〈̊hα : α < ω2〉 be a collection of Fn(ω2, 2) names such that 
ω2 〈̊hα : α < ω2〉 is a

strongly MAD family in ωω. We may assume that each h̊α is a nice name for a subset of ω×ω.

Fix M so that M ≺ H(θ) with 〈̊hα : α < ω2〉 ∈ M , Mω ⊂ M and |M | = ω1. We can do this

because CH is assumed to be true in the ground model. Let δ = M ∩ ω2. Note that for each

α < δ, h̊α ∈M . Thus, h̊α is a Fn(δ, 2) name, for each α < δ. We will now prove:

Lemma 3.6.2. 
δ 〈̊hα : α < δ〉 is a strongly MAD family in ωω.

Proof. It is clear that for any α < β < δ, 
δ

∣∣∣̊hα ∩ h̊β

∣∣∣ < ω. Now, fix p ∈ Fn(δ, 2) and let

〈f̊i : i ∈ ω〉 be a collection of Fn(δ, 2) names for reals such that:

p 
δ〈f̊i : i ∈ ω〉 is a countable family avoiding 〈̊hα : α < δ〉. (∗1)

Again, we may assume that each f̊i is a nice name for a subset of ω × ω. We will find a

q ∈ Fn(δ, 2) extending p, and α ∈ δ such that ∀i ∈ ω
[
q 
δ

∣∣∣f̊i ∩ h̊α

∣∣∣ = ω
]
. Clearly, this is

sufficient to prove the Lemma. We will prove this via a series of claims. We first claim:

Claim 3.6.3. Let X ∈M be a countable set. Any nice Fn(δ, 2) name for a subset of X is an

element of M .

Proof. Any nice Fn(δ, 2) name for a subset of X may be identified with a set of the form

{Ax : x ∈ X}, where each Ax is an antichain in Fn(δ, 2). Since Fn(δ, 2) is CCC, each Ax is a

countable subset of M . Since Mω ⊂ M , it follows that Ax ∈ M , for each x ∈ X. Now, since

X is countable, we conclude that {Ax : x ∈ X} ∈M . a

Claim 3.6.4. p 
ω2〈f̊i : i ∈ ω〉 is a countable family of reals avoiding 〈̊hα : α < ω2〉.

Proof. Suppose not. Then the following statement is true:

∃q ∈ Fn(ω2, 2)∃i ∈ ω∃α0, . . . ,αn ∈ ω2 (∗2)[
q ≤ p ∧ q 
ω2 f̊i⊂∗̊hα0 ∪ · · · ∪ h̊αn

]
.
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From Claim 3.6.3, we gather that for each i ∈ ω, f̊i ∈M , and hence that 〈f̊i : i ∈ ω〉 ∈ M .

Thus, all of the parameters occurring in (∗2) are elements of M , whence we conclude that (∗2)

is true in M . Therefore, we get q ∈ Fn(δ, 2), i ∈ ω and α0, . . . , αn ∈ δ so that q ≤ p and

q 
ω2 f̊i ⊂∗ h̊α0 ∪· · ·∪ h̊αn . But since q ∈ Fn(δ, 2) and since f̊i and h̊α0 , . . . , h̊αn are all Fn(δ, 2)

names, we get that q 
δf̊i ⊂∗ h̊α0 ∪ · · · ∪ h̊αn . But this contradicts (∗1) above. a

Now to prove the Lemma, by claim 3.6.4, the following is true:

∃q ∈ Fn(ω2, 2)∃α ∈ ω2

[
q ≤ p ∧ ∀i ∈ ω

[
q 
ω2

∣∣∣f̊i ∩ h̊α

∣∣∣ = ω
]]

(∗3)

Again, all the parameters occurring in (∗3) are in M . So (∗3) is true in M , and so we get

q ∈ Fn(δ, 2) and α ∈ δ such that q ≤ p and ∀i ∈ ω
[
q 
ω2

∣∣∣f̊i ∩ h̊α

∣∣∣ = ω
]
. But again, since

q ∈ Fn(δ, 2) and since f̊i and h̊α are Fn(δ, 2) names, we get that ∀i ∈ ω
[
q 
δ

∣∣∣f̊i ∩ h̊α

∣∣∣ = ω
]
,

which is exactly as required. a

Now we can get a contradiction using the Cohen indestructibility of strongly MAD families.

Let G be a (V, Fn(ω2, 2)) generic filter, and let Gδ denote the restriction of G to Fn(δ, 2).

By Lemma 3.6.2, A = {̊hα [Gδ] : α ∈ δ} is a strongly MAD family in V [Gδ]. In V [G],

h̊δ [G] is almost disjoint from A . However, every real in V [G] is in an extension of the form

V [Gδ] [H], where H is (V [Gδ] , Fn(ω, 2)) generic. So for some H that is (V [Gδ] , Fn(ω, 2))

generic, V [Gδ] [H] thinks that A is not maximal. But this contradicts Corollary 3.4.10 and

we are done. a

Remark 3.6.5. Our argument actually shows that if any number of Cohen reals are added to

a model satisfying CH, then there are no strongly MAD families of size greater than ℵ1 in the

resulting model.

Remark 3.6.6. We can use the fact that strongly MAD families are iterated Sacks and iterated

Miller indestructible to prove a similar result for the Sacks and Miller models.
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3.7 Miscellaneous Results

We gather together here some assorted results that do not belong in any of the previous sections.

Our first result grew out of a conversation we had in a bar with Michael Hrušák. It is possible

to consider the notion of a strongly MAD family for families of subsets of ω too. The definition

of this concept is identical to our Definition 1.3.6, but with ωω replaced everywhere by [ω]ω,

and with the additional requirement that the family be infinite. It is shown in Hrušák and

Garćıa Ferreira [16] and Kurilić [23] that a MAD family of subsets of ω is Cohen–indestructible

iff it is “somewhere” strongly MAD. This led Hrušák to suggest that a similar result is true for

MAD families of functions as well. We will show below that this is not the case. Indeed, we will

show that assuming CH, we can construct a Cohen–indestructible MAD family of functions

that is “nowhere” Van Douwen MAD (and hence “nowhere” Strongly MAD). This shows that

Cohen–indestructibility is somewhat different for MAD families of functions.

Theorem 3.7.1. Assume CH. There is a Cohen–indestructible MAD family A ⊂ ωω with

trivial trace (see Definition 1.3.9).

Proof. To ensure that our family is Cohen–indestructible, we will do a construction similar to

the one in Kunen [22]. Let P = Fn(ω, 2). Since we are assuming CH, there are only ω1 nice P

names for elements of ωω. Let 〈〈pα, f̊α〉 : α < ω1〉 enumerate all pairs 〈p, f̊〉 such that p ∈ P

and f̊ is a nice P name for an element of ωω. Let 〈gα : α < ω1〉 enumerate ωω. An ideal I of

subset of ω is said to be dense if ∀a ∈ [ω]ω∃b ∈ [a]ω [ b ∈ I]. Fix a proper, non–principal dense

ideal on ω. Notice that for any such ideal I, if {ai : i ∈ ω} ⊂ I is a countable collection of

infinite sets, then there is an infinite set b ∈ I such that ∀i ∈ ω [ |b ∩ ai| < ω]. Now, we will

build two sequences 〈Aα : α < ω1〉 and 〈Bα : α < ω1〉 such that the following hold:

1. Aα ⊂ ωω is a countable a.d. family

2. Bα is a countable set of infinite partial functions
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3. ∀f ∈ Bα [dom (f) ∈ I]

4. ∀α < β < ω1 [Aα ⊂ Aβ ∧Bα ⊂ Bβ]

5. ∀h ∈ Aα∀f ∈ Bα [|h ∩ f | < ω]

6. if gα avoids
⋃
{Aβ : β < α}, then there is f ⊂ gα so that f ∈ Bα

7. if pα 
 f̊α is a.d. from
⋃
{Aβ : β < α}, then ∃h ∈ Aα

[
pα 


∣∣∣h ∩ f̊α

∣∣∣ = ω
]
.

Our MAD family A will be
⋃

Aα. It is clear from clauses (5) and (6) that A has trivial trace,

while it is easy to see that clause (7) implies that A is Cohen–indestructible.

Assume that 〈Aβ : β < α〉 and 〈Bβ : β < α〉 have already been constructed. Set C =
⋃

Aβ

and B =
⋃

Bβ. C ⊂ ωω is a countable a.d. family and B is a countable family of infinite

partial functions. Moreover, ∀f ∈ B∀h ∈ C [|h ∩ f | < ω]. We will first define Bα, taking care

of clause (6). Consider gα. If gα does not avoid C , there is nothing to be done, and we simply

set Bα = B. Now, let us assume that gα avoids C . Since C is countable, this assumption

implies that C ∩ gα is neither a finite nor an infinite MAD family on gα. So there is an infinite

partial function p ⊂ gα which is a.d. from C . Since I is a dense ideal, there is an infinite

partial functions f ⊂ p with dom (f) ∈ I. As p is a.d. from C , f is also a.d. from C , and

therefore, we can set Bα = B ∪ {f}.

Next, we define Aα. Once again, if pα 1f̊α is a.d. from C , there is nothing to be done,

and we set Aα = C . Now, assume that pα 
 f̊α is a.d. from C . Put Bα = {fi : i ∈ ω} and

C = {hi : i ∈ ω}. For each i ∈ ω, put ai = dom (fi). Thus {ai : i ∈ ω} is a countable

collection of infinite sets in I. By our observation above, there is an infinite set b ∈ I such that

∀i ∈ ω [ |b ∩ ai| < ω]. We will define an infinite partial function h0 with dom (h0) ⊂ b such that

pα 

∣∣∣h0 ∩ f̊α

∣∣∣ = ω. Observe that for any i ∈ ω, h0 ∩ fi will be finite. To get h0 we proceed

as follows. Let {qi : i ∈ ω} enumerate {q ∈ P : q ≤ pα}. We will build h0 as the union of an
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increasing sequence of finite partial functions. We will build a sequence 〈h0
i : −1 ≤ i < ω〉 such

that for each i ≥ 0

(a) h0
−1 = 0 and h0

i is a finite partial function with dom (h0
i ) ⊂ b

(b) h0
i−1 ⊂ h0

i and ∀j ≤ i
[
h0

i ∩ hj ⊂ h0
i−1 ∩ hj

]
(c) ∃ki ≥ i ∃r ≤ qi

[
ki ∈ dom (h0

i ) ∧ r 
 h0
i (ki) = f̊α(ki)

]
.

Put h0 =
⋃
h0

i . It is clear from clause (b) that h0 is a.d. from hi for all i ∈ ω. Also, we have

from clause (a) that dom (h0) ⊂ b. We will argue that pα 

∣∣∣h0 ∩ f̊α

∣∣∣ = ω. Let q ≤ pα and let

n ∈ ω. There are infinitely many conditions below q. Hence we can find i > n such that qi ≤ q.

But now by clause (c) there is a ki ≥ i > n and r ≤ qi ≤ q such that ki ∈ dom (h0
i ) ⊂ dom (h0)

and r 
 f̊α(ki) = h0
i (ki) = h0(ki).

We will now describe how to construct 〈h0
i : −1 ≤ i < ω〉. h0

−1 is 0. At stage i ≥ 0, assume

that h0
i−1 is given to us. We wish to define h0

i so that clause (c) is satisfied. But we need to be

sure that we introduce no new agreements between h0
i and any of the members of {h0, . . . , hi}.

We know that qi 
 f̊α is a.d. from {h0, . . . , hi}. Hence, there is r̃ ≤ qi and l ∈ ω such that

r̃ 
 ∀k > l
[
f̊α(k) /∈ {h0(k), . . . , hi(k)}

]
. Put m = max (dom (h0

i−1)). Since b is an infinite set

there is a ki ∈ b with ki > max {m, l, i}. Now, since f̊α is a name for an element of ωω, we

can find r ≤ r̃ and n ∈ ω such that r 
 f̊α(ki) = n. Notice that our choice of r̃ entails that

n /∈ {h0(ki), . . . , hi(ki)}. Since ki > m, we can define h0
i = h0

i−1 ∪ {〈ki, n〉}. As ki ∈ b, this is

as required.

We are almost done. We just need to extend h0 to a total function. Since both Bα and C

are countable, there is a total function h′ ∈ ωω such that ∀i ∈ ω [ |h′ ∩ fi| < ω ∧ |h′ ∩ hi| < ω].

Put X = dom (h0) and Y = ω \X. Put h1 = h′ � Y and set h = h0 ∪ h1. It is clear that h is

a.d. from both Bα and C . So we may set Aα = C ∪ {h}, and this ends the proof. a

Despite certain differences, there are close connections between the notion of a strongly
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MAD family of functions and the notion of a strongly MAD family of sets. In particular, the

existence of the former implies the existence of the latter.

Lemma 3.7.2. If there is a strongly MAD family in ωω, then there is a strongly MAD family

in [ω]ω.

Proof. Let A ⊂ ωω be strongly MAD. For each n ∈ ω, let Cn be the nth vertical column

of ω × ω. That is, Cn = {〈n,m〉 : m ∈ ω}. It is clear that each Cn is a.d. from A . Thus

A ∪ {Cn : n ∈ ω} is an infinite a.d. family in [ω × ω]ω. We will argue that it is strongly MAD

in [ω × ω]ω. Let {An : n ∈ ω} ⊂ [ω × ω]ω be a countable family avoiding A ∪{Cn : n ∈ ω}. We

will find infinite partial functions fn ⊂ An avoiding A . The argument is similar to the proof of

Lemma 3.3.4. We will first argue that An has infinite intersection with infinitely many members

of A . Suppose this if false. Fix {h0, . . . , hk} ⊂ A such that for any h ∈ A , if |h ∩An| = ω,

then h = hi for some 0 ≤ i ≤ k. Put B = An \ h0 ∪ · · · ∪ hk. Our assumption implies that B

is a.d. from A . Therefore, since strongly MAD families are Van Douwen MAD, it follows that

there is no infinite partial function p ⊂ B. Thus for all but finitely many n ∈ ω, Cn ∩ B = 0.

But then there is n ∈ ω such that B ⊂ C0∪ · · ·∪Cn, whence An ⊂ h0∪ · · ·∪hk ∪C0∪ · · ·∪Cn,

contradicting our assumption that An avoids A ∪ {Cn : n ∈ ω}. Hence we can fix an infinite

set {hi : i ∈ ω} ⊂ A such that ∀i ∈ ω [|hi ∩An| = ω]. Now, put pi = hi ∩ An. This is an

infinite partial function. It is possible to choose infinite partial functions gi ⊂ pi such that

∀ i < j < ω [dom (gi) ∩ dom (gj) = 0]. Put fn =
⋃
gi. This is an infinite partial function and

clearly fn ⊂ An. Moreover, fn has infinite intersection with infinitely many members of A . So

fn avoids A . Thus {fn : n ∈ ω} is a countable family of infinite partial functions avoiding A .

So by Lemma 3.1.4 we can find h ∈ A such that ∀n ∈ ω [ |h ∩ fn| = ω]. But since fn ⊂ An,

we get that ∀n ∈ ω [|h ∩An| = ω]. a

We do not know if the converse is true:
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Question 3.7.3. Suppose that there is a strongly MAD family in [ω]ω. Is there a strongly

MAD family in ωω?

Lemma 3.7.2 also yields a connection between the indestructability properties of strongly

MAD families in ωω and those of strongly MAD families in [ω]ω.

Lemma 3.7.4. Let P be any poset. Suppose that any strongly MAD family in [ω]ω is strongly

P-indestructible (see Definition 3.4.1). Let A ⊂ ωω be strongly MAD. A is strongly P-

indestructible.

Proof. As in Lemma 3.7.2, let Cn be the nth vertical column of ω× ω. We know from Lemma

3.7.2 that A ∪ {Cn : n ∈ ω} is a strongly MAD family in [ω × ω]ω. Now, let G be a (V,P)

generic filter. By assumption, in V[G], A ∪ {Cn : n ∈ ω} remains a strongly MAD family in

[ω × ω]ω. In V[G], let {fi : i ∈ ω} ⊂ ωω be a countable family avoiding A . As each fi is a.d.

from each Cn, it follows that {fi : i ∈ ω} ⊂ [ω × ω]ω still avoids A ∪ {Cn : n ∈ ω}. But then

there must be h ∈ A such that ∀i ∈ ω [|h ∩ fi| = ω]. a
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Chapter 4

Consistency of no Gregory Trees

With Large Continuum

Kunen and Hart [14] introduced the notion of a weird topological space in connection with

the question of which compact spaces satisfy the Complex version of the Stone–Weierstrass

theorem. In this context, they wanted to know if there is a compact Hausdorff space which

is hereditarily Lindelöf (HL), is not totally disconnected, but does not contain a copy of the

Cantor set. They showed that this question is independent of the axioms of ZFC. Their

proof involved looking at a certain kind of subtree of 2<ω1 that was implicit in the work of

Gregory [13], which they called a Gregory tree. The present chapter addresses some questions

about Gregory trees that were left open in Kunen and Hart [14]

Definition 4.0.5 (Definition 1.2 of [14]). A space X is weird if X is compact and not scattered,

and there is no P ⊂ X such that P is perfect and totally disconnected.

Definition 4.0.6. A Cantor tree of sequences (a CT) is a subset {fσ : σ ∈ 2<ω} of 2<ω1

such that for all σ ∈ 2<ω, fσ_0 and fσ_1 are incompatible nodes in 2<ω1 that extend fσ. A

subtree T of 2<ω1 is said to have the Cantor Tree Property (CTP) if: 1) for every f ∈ T,

f_0, f_1 ∈ T; 2) given any Cantor tree {fσ : σ ∈ 2<ω} ⊂ T, there is x ∈ 2ω and g ∈ T such

that ∀n ∈ ω [fx�n ⊂ g]. Finally, a subtree T of 2<ω1 is a Gregory tree if it has the CTP, but

does not have a cofinal branch.

Gregory trees occur in Gregory [13], where it is proved that 2ℵ0 < 2ℵ1 implies that there
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is a Gregory tree. This result is of interest because a Gregory tree, when viewed as a forcing

notion, is totally proper, and moreover, it kills itself. That is, given a Gregory tree T, we can

view T as a forcing notion with the following ordering: ∀f, g ∈ T [g ≤ f iff g ⊃ f ]. It is easy

to see that T is a totally proper poset, that is, it is proper and does not add any reals (see

Lemma 5.5 of [14]). Moreover, forcing with T adds a cofinal branch through T. Thus it is

possible to kill any given Gregory tree without adding reals. But Gregory’s result shows that

it is not possible to iterate this without adding reals.

The connection between Gregory trees and weird spaces is given by the following result of

Kunen and Hart [14].

Theorem 4.0.7 (see Lemma 5.7 of [14]). Assume that X is compact, HL, and not totally

disconnected, and assume that X has no subspace homeomorphic to the Cantor set. Then

there is a Gregory tree. a

As Gregory trees are totally proper, PFA implies that there are no Gregory trees (and

hence no weird spaces). It is well known that PFA implies that c = ℵ2. So a natural question

is:

Question 4.0.8. Is it consistent to have no Gregory trees and c arbitrarily large?

Firstly, we remark that even though 2ℵ0 < 2ℵ1 implies that there is a Gregory tree,

these two statements are not equivalent. To see this start with a model where 2ℵ0 = ℵ2 <

ℵ3 = 2ℵ1 . In this model there is a Gregory tree. Now, force with Fn(ω2, 2, ω1) = {p :

p is a partial function from ω2 to 2 ∧ |p| ≤ ω1}. This poset is closed under decreasing se-

quences of length ω1. So it add no new functions from either ω or ω1 into the ground model.

So any Gregory tree remains a Gregory tree in the generic extension. Moreover, 2ℵ0 = ℵ2

holds, and 2ℵ1 gets collapsed to ℵ2.

In this chapter we will show that the answer to Question 4.0.8 is affirmative. Given any
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κ > ω satisfying κ<κ = κ and ∀λ < κ [λω < κ], there is a c.c.c. forcing extension where there

are no Gregory trees and c = κ and Martin’s Axiom (MA) holds.

It is well–known that we cannot construct a model where c is large using countable support

iterations. If we are to use finite support, then to ensure ω1 is preserved, our iterands must

be c.c.c. posets. Hence, given a Gregory tree T, we would like to find a c.c.c. poset that adds

a cofinal branch through T. The most natural candidate is a Suslin subtree of the Gregory

tree T. It is shown in Kunen and Hart [14] that if we assume ♦, then every subtree of 2<ω1

with the CTP contains a Suslin subtree (see Lemma 5.8 of [14]). Now, if we want to do an

iteration of length ω2, this is enough because ♦ is preserved by posets of size atmost ℵ1, and

so, at any stage α < ω2, ♦ will be true (assuming it holds in the ground model), allowing us to

force with a Suslin subtree of some Gregory tree we want to kill at that stage. But if we want

to make c > ℵ2, then we must do a longer iteration, and then, ♦ will fail at stages α ≥ ω2.

In general, it will not be the case that at every stage α ≥ ω2, every Gregory tree contains a

Suslin subtree. The main lemma of this chapter will be that this still holds at certain stages:

those where cf (α) = ω1. We will then show, by an elementary submodel argument, that any

name for a Gregory tree in the final model reflects to a Gregory tree on a club of ω1 limits of

κ. Therefore, we can use ♦ on the ω1 limits of κ to kill off all Gregory trees.

We proceed to the proof of the main lemma (see Theorem 4.0.12). It is well known that

one can construct a Suslin tree after adding ℵ1 Cohen reals (see, for example, Theorem 3.1

and Theorem 6.1 of [29]). Our argument is similar to this.

Lemma 4.0.9. Suppose γ is a limit ordinal with cf (γ) ≥ ω1. Let 〈Pα, Q̊α : α ≤ γ〉 be a FS

iteration of c.c.c. forcings. Suppose |X| ≤ ω and å ∈ VPγ such that 
γ å ⊂ X. There is a

sequence 〈̊aα : α < γ〉 such that:

1. åα is a nice Pα name for a subset of X

2. ∃ α0 < γ∀ α0 ≤ α < γ [ 
γ åα = å].
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Proof. Without loss of generality, å is a nice Pγ name for a subset of X. Thus we may identify

å with 〈Ax : x ∈ X〉, where each Ax ⊂ Pγ is an antichain in Pγ . For each α < γ and x ∈ X,

put Aα
x = {p ∈ Ax : suppt (p) ⊂ α}. Define Bα

x = {p � α : p ∈ Aα
x}. It is easy to see that Bα

x is

an antichain in Pα. Thus, for each α < γ, the set {Bα
x : x ∈ X} may be identified with a nice

Pα name for a subset of X, say åα. We will argue that 〈̊aα : α < γ〉 has property (2) above.

Fix Gγ , a (V,Pγ) generic filter. In V [Gγ ], each åα[Gγ ] is a subset of X. So is å[Gγ ]. Now,

for each x ∈ å[Gγ ], choose px ∈ Gγ ∩ Ax. As the cofinality of γ is unchanged and |X| ≤ ω,

we may choose α0 < γ such that ∀x ∈ X [suppt (px) ⊂ α0]. Now, take α0 ≤ α < γ. We will

argue that åα[Gγ ] = å[Gγ ]. Firstly, suppose x ∈ åα[Gγ ] = åα[Gα]. We can find p ∈ Gγ such

that p � α ∈ Gα ∩ Bα
x . Now, it is easy to see that (p � α)_

1̊ ∈ Gγ ∩ Ax, whence x ∈ å[Gγ ].

Next, suppose that x ∈ å[Gγ ]. Then px ∈ Gγ ∩ Ax. But suppt (px) ⊂ α0 ⊂ α. So px ∈ Aα
x .

Therefore, px � α ∈ Bα
x ∩Gα, whence x ∈ åα[Gα] = åα[Gγ ].

Now, back in the ground model V, we can use the maximal principal to find α̊0 ∈ VPγ

such that 
γ α̊0 < γ ∧ ∀α ≥ α̊0 [̊aα = å]. But Pγ is a c.c.c. poset and cf (γ) ≥ ω1. So there is

α0 < γ such that 
γ α̊0 < α0. If α0 ≤ α < γ, 
γ åα = å. a

Lemma 4.0.10. Suppose γ is a limit ordinal with cf (γ) = ω1. Let 〈γα : α < ω1〉 ⊂ γ

be an increasing sequence of limit ordinals cofinal in γ. Suppose 〈Pα, Q̊α : α ≤ γ〉 is a FS

iteration of c.c.c. forcings. For each δ, α < ω1, let 2̊<δ
α and F̊δ

α be Pγα names such that


γα 2̊<δ
α = 2<δ ∧ F̊δ

α =
[
2<δ

]≤ω. Let Gγ be a (V,Pγ) generic filter. Working within V [Gγ ],

define for each δ, α < ω1, 2<δ
α = 2̊<δ

α [Gγ ] and Fδ
α = F̊δ

α[Gγ ]. Still within V[Gγ ], suppose

T ⊂ 2<ω1 such that ∀δ < ω1

[∣∣T ∩ 2<δ
∣∣ ≤ ω

]
. There is a club C ⊂ ω1 such that for each δ ∈ C,

T ∩ 2<δ ∈ Fδ
δ , and hence T ∩ 2<δ ⊂ 2<δ

δ .

Proof. First note that in V [Gγ ], |T | ≤ ω1. So put T = {fα
i : α < ω1 ∧ i ∈ ω}, where

{fα
i : i ∈ ω} = T ∩ 2α. In the ground model V, choose Pγ names {̊a(α, i) : α < ω1 ∧ i ∈ ω}

with 
γ å(α, i) ∈ 2α such that å(α, i)[Gγ ] = fα
i . Now, by Lemma 4.0.9 we can find a sequence
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〈̊a(α, i, β) : α < ω1 ∧ i ∈ ω ∧ β < γ〉 so that

1. å(α, i, β) is a nice Pβ name for an element of 2α

2. ∀α < ω1∀i ∈ ω∃βα
i < γ∀ βα

i ≤ β < γ [ 
γ å(α, i, β) = å(α, i)].

Now, we return to V[Gγ ]. Let M ≺ H(θ) be a countable elementary submodel containing the

relevant objects. Put δ = M ∩ω1. To prove the Lemma, it suffices to show that T ∩ 2<δ ∈ Fδ
δ .

First of all, note that T∩2<δ = {fα
i : i ∈ ω∧α < δ} = {̊a(α, i)[Gγ ] : α < δ∧i ∈ ω}. This follows

from our stipulation above that for all α < ω1, {fα
i : i ∈ ω} = T∩2α, and that å(α, i)[Gγ ] = fα

i .

It follows from this observation that T ∩ 2<δ ⊂ M . Now, from (2) above we know that for

each α < δ and i ∈ ω, there is βα
i < γ such that ∀ βα

i ≤ β < γ [̊a(α, i, β)[Gγ ] = fα
i ]. Since

all the relevant parameters are in M , we conclude that βα
i ∈ M ∩ γ, for each such α and i.

Now, for each such βα
i , there is a η < ω1 such that βα

i < γη. Again, since βα
i ∈ M , η < δ,

and so βα
i < γη < γδ. Thus we conclude that for each α < δ and i ∈ ω, fα

i = å(α, i, γδ)[Gγ ].

Therefore, T ∩ 2<δ = {̊a(α, i, γδ)[Gγ ] : α < δ ∧ i ∈ ω}. But each å(α, i, γδ) is a Pγδ
name.

So å(α, i, γδ)[Gγ ] = å(α, i, γδ)[Gγδ
]. Therefore, T ∩ 2<δ = {̊a(α, i, γδ)[Gγδ

] : α < δ ∧ i ∈ ω} ∈

V[Gγδ
], and so, T ∩ 2<δ ∈ Fδ

δ . a

Lemma 4.0.11. Assume that the hypotheses of the previous lemma (Lemma 4.0.10) are sat-

isfied. Fix a limit ordinal δ < ω1. Work within V[Gγ ]. Fix a countable subtree T0 ⊂ 2<δ
δ such

that T0 ∈ Fδ
δ . Assume that

1. for all f ∈ T0, f_0 ∈ T0 and f_1 ∈ T0

2. for all f ∈ T0, if ht (f) = α, then ∀ α < β < δ ∃g ∈ T0 [ht (g) = β ∧ f ⊂ g].

Fix x ∈ T0. There is a Cantor tree of sequences {fσ : σ ∈ 2<ω} ⊂ T0 so that

(a) f0 = x
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(b) for every α < δ there is m ∈ ω so that ∀σ ∈ 2m [ht (fσ) > α]

(c) if A ⊂ T0 is a maximal antichain in T0 with A ∈ Fδ
δ , then ∃m ∈ ω∀σ ∈ 2m∃f ∈

A [f ⊂ fσ].

Proof. We will use the well known fact that any finite support iteration of non–trivial forcings

of length ξ adds a Cohen real whenever cf (ξ) = ω. Moreover, the Cohen poset is forcing

equivalent to any countable non atomic poset. Therefore, if within V[Gγδ
], P is a countable

poset, then there is H ∈ V[Gγ ] which is a (V[Gγδ
],P) generic filter.

Now, notice that T0 ∈ V[Gγδ
] and that in V[Gγδ

], T0 is a subtree of 2<δ having properties

(1) and (2) above. We will force with the poset of “partial Cantor tree sequences starting at

x”. More formally, working within V[Gγδ
], we say that p is a partial Cantor tree of sequences

starting at x if there is n ∈ ω such that

(i) p : 2≤n → T0

(ii) p(0) = x

(iii) ∀σ ∈ 2<n [ p(σ_0) and p(σ_1) are incompatible extensions of p(σ)].

We then define Px = {p : p is a partial Cantor tree of sequences starting at x}, and we order

Px by stipulating that q ≤ p iff q ⊃ p. It is clear that Px is a countable poset, and so there will

be a (V[Gγδ
],Px) generic filter H in V[Gγ ]. We will check that

⋃
H will yield a Cantor tree

of sequences satisfying properties (a)–(c) above. Firstly, since T0 has property (1) above, it is

clear that Dn =
{
p ∈ Px : ∃m ≥ n

[
dom (p) = 2≤m

]}
is dense for each n. Therefore,

⋃
H will

be defined on all of 2<ω. Next, to check that
⋃
H has property (b), fix α < δ, we will check

that Dα = {q ∈ Px : ∃m ∈ ω [2m ⊂ dom (q) ∧ ∀σ ∈ 2m [ht (q(σ)) > α]]} is dense. Fix p ∈ Px

and put dom (p) = 2≤n. Now choose α < β < δ such that for each σ ∈ 2n, ht (p(σ)) + 1 < β.

For each σ ∈ 2n, p(σ)_0 and p(σ)_1 are in T0. By property (2), we can find gσ
0 and gσ

1 in
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T0 with ht (gσ
0 ) = ht (gσ

1 ) = β such that p(σ)_0 ⊂ gσ
0 and p(σ)_1 ⊂ gσ

1 . Now, define q ⊃ p

by setting q(σ_0) = gσ
0 and q(σ_1) = gσ

1 , for each σ ∈ 2n. It is clear that q is as required.

Finally, for property (c), fix A ⊂ T0, a maximal antichain in T0, with A ∈ Fδ
δ . We will check

that DA = {q ∈ Px : ∃m ∈ ω [2m ⊂ dom (q) ∧ ∀σ ∈ 2m∃f ∈ A [f ⊂ q(σ)]]} is dense. First of all,

observe that since A is a maximal antichain in T0, for every h ∈ T0, there is g ∈ T0 such that

h ⊂ g ∧ ∃f ∈ A [f ⊂ g]. Fix p ∈ Px and put dom (p) = 2≤n. For each σ ∈ 2n, p(σ)_0 and

p(σ)_1 are in T0. Therefore, there exist gσ
0 ∈ T0 and gσ

1 ∈ T0 such that p(σ)_0 ⊂ gσ
0 and

p(σ)_1 ⊂ gσ
1 , and ∃f0, f1 ∈ A [f0 ⊂ gσ

0 ∧ f1 ⊂ gσ
1 ]. Now, define q ⊃ p by setting q(σ_0) = gσ

0

and q(σ_1) = gσ
1 . It is clear that q is a required. a

Theorem 4.0.12. Let γ be a limit ordinal with cf (γ) = ω1. Let 〈Pα, Q̊α : α ≤ γ〉 be a

FS iteration of (non–trivial) c.c.c. posets. Let Gγ be a (V,Pγ) generic filter. In V[Gγ ], let

T ⊂ 2<ω1 be a subtree having CTP. There is a Suslin subtree T0 ⊂ T .

Proof. We will work within V [Gγ ]. We will construct a Suslin subtree of T in a manner

similar to the usual construction of a Suslin tree from ♦. But we will substitute appeals to ♦

by appeals to Lemma 4.0.10 and Lemma 4.0.11. We will construct the levels of T0 by induction.

For δ < ω1, let T δ
0 denote T0 ∩ 2δ – i.e. the δth level of T0. Thus, we will specify T δ

0 at stage δ.

Now, fix an increasing sequence of limit ordinals 〈γα : α < ω1〉 ⊂ γ cofinal in γ. For each

α, δ < ω1, define 2<δ
α and Fδ

α exactly as in Lemma 4.0.10. Now, we will construct T0 ⊂ T so

that

1. T δ
0 is countable

2. T δ+1
0 = {f_0, f_1 : f ∈ T δ

0 }

3. if ξ < δ, then ∀f ∈ T ξ
0∃g ∈ T δ

0 [f ⊂ g]

4. Put T<δ
0 =

⋃
ξ<δT

ξ
0 . Suppose T<δ

0 ⊂ 2<δ
δ with T<δ

0 ∈ Fδ
δ . If A ⊂ T<δ

0 is a maximal

antichain in T<δ
0 with A ∈ Fδ

δ , then ∀g ∈ T δ
0 ∃f ∈ A [f ⊂ g].
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We will first check that it is sufficient to do this. As usual, because of properties (2) and

(3), it is enough to check that T0 has no uncountable antichains. Towards a contradiction, fix

A ⊂ T0, an uncountable antichain. By the usual argument (see Lemma 7.6 of [22]), there is

a club C0 ⊂ ω1 such that for all δ ∈ C0, A ∩ T<δ
0 is a maximal antichain in T<δ

0 . Because of

property (1), we can apply Lemma 4.0.10 to both T0 and to A to find a club C1 ⊂ ω1 such

that for all δ ∈ C1, T<δ
0 ⊂ 2<δ

δ and both T<δ
0 and A ∩ T<δ

0 are elements of Fδ
δ . But now, if

δ ∈ C0 ∩ C1, then by property (4), A ∩ T<δ
0 = A, a contradiction.

We now describe how to construct T δ
0 . If δ is a successor, then the construction is fully

specified by property (2). So we assume that δ is a limit ordinal. Put T<δ
0 =

⋃
ξ<δT

ξ
0 . If

T<δ
0 6⊂ 2<δ

δ or T<δ
0 /∈ Fδ

δ , then arbitrarily choose T δ
0 satisfying properties (1) and (3). It is

possible to do this while staying within T because T has CTP. Now, suppose T<δ
0 ⊂ 2<δ

δ and

T<δ
0 ∈ Fδ

δ . For each x ∈ T<δ
0 , we can apply Lemma 4.0.11 to find a Cantor tree of sequences

{fx
σ : σ ∈ 2<ω} ⊂ T<δ

0 satisfying properties (a)–(c) of Lemma 4.0.11. Because T has CTP

and because of property (b) of Lemma 4.0.11, there is gx ∈ T ∩ 2δ and yx ∈ 2ω such that

∀n ∈ ω
[
fx

yx�n ⊂ gx

]
. Put T δ

0 = {gx : x ∈ T<δ
0 }. Property (a) of Lemma 4.0.11 ensures that

x ⊂ gx. Property (c) of Lemma 4.0.11 ensures the property (4) above is satisfied. a

We are now ready to answer Question 4.0.8. Given κ > ω satisfying κ<κ = κ and ∀λ <

κ [λω < κ], we do an interation of length κ. We will use Theorem 4.0.12 to kill off some specific

Gregory tree at stages of cofinality ω1. To ensure there are no Gregory trees in the final model,

we need to be able to guess names for Gregory trees, and for these names to reflect on a club

of ω1 limits of κ. We will show next that this reflection happens. We will use ∀λ < κ [λω < κ]

here.

Lemma 4.0.13. Let κ > ω be a cardinal satisfying κ<κ = κ and ∀λ < κ [λω < κ]. Let

〈Pα, Q̊α : α ≤ κ〉 be a FS iteration of c.c.c. forcings, with |Pα| < κ, for all α < κ. Say

{̊a(α, β) : α < ω1 ∧ β < κ} ⊂ VPκ with
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1. 
κ å(α, β) ∈ 2α

2. 
κ {̊a(α, β) : α < ω1 ∧ β < κ} is a subtree of 2<ω1 with the CTP.

By Lemma 4.0.9, we can fix a sequence 〈̊a(α, β, γ) : α < ω1∧β < κ∧γ < κ〉 such that å(α, β, γ)

is a nice Pγ for an element of 2α and ∀α < ω1∀β < κ∃γα
β < κ∀γ ≥ γα

β [ 
κ å(α, β, γ) = å(α, β)].

There is a ω1–club C ⊂ κ such that for all δ ∈ C

(a) ∀α < ω1∀β < δ [ 
κ å(α, β, δ) = å(α, β)]

(b) 
δ {̊a(α, β, δ) : α < ω1 ∧ β < δ} is a subtree of 2<ω1 with CTP.

Proof. Let M ≺ H(θ) be an elementary submodel containing the relevant objects satisfying

(i) |M | < κ, δ = M ∩ κ is an ordinal less than κ and cf (δ) = ω1

(ii) Mω ⊂M .

It is possible to construct M having these properties because of our assumption that ∀λ <

κ [λω < κ]. It suffices to check that δ has properties (a) and (b). First of all, note that for all

α < ω1 and β < δ, γα
β ∈ M , and so γα

β < δ. It follows from this that 
κ å(α, β, δ) = å(α, β).

Next, it is easy to check that 
δ {̊a(α, β, δ) : α < ω1 ∧ β < δ} is a subtree of 2<ω1 . It is also

easy to verify that 
δ {̊a(α, β, δ) : α < ω1 ∧ β < δ} satisfies part (1) of the definition of CTP

(see Definition 4.0.6). We will check that this holds for part (2) of the definition.

Say {̊bσ : σ ∈ 2<ω} ⊂ VPδ such that


δ {̊bσ : σ ∈ 2<ω} is a CT in {̊a(α, β, δ) : α < ω1 ∧ β < δ}. (∗1)

Since Pδ is c.c.c. there is α0 < ω1 so that 
δ {̊bσ : σ ∈ 2<ω} ⊂ 2<α0 . Since cf (δ) = ω1, by

Lemma 4.0.9, there is a sequence 〈̊bβσ : σ ∈ 2<ω ∧ β < δ〉 such that b̊βσ is a nice Pβ name for

an element of 2<α0 and ∀σ ∈ 2<ω∃βσ < δ∀β ≥ βσ

[

δ b̊

β
σ = b̊σ

]
. We may choose β0 < δ such

that βσ < β0 for all σ ∈ 2<ω. Therefore, ∀σ ∈ 2<ω
[


δ b̊
β0
σ = b̊σ

]
. Thus, we may assume
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without loss of generality that each b̊σ is a nice Pβ0 name for an element of 2<α0 . Now,

|Pβ0 | < κ and Pβ0 ∈ M . It follows from this that Pβ0 ⊂ M . As Mω ⊂ M , we conclude that

{̊bσ : σ ∈ 2<ω} ∈M .

Now, it is easy to check that


κ {̊bσ : σ ∈ 2<ω} is a CT in {̊a(α, β) : α < ω1 ∧ β < κ}. (∗2)

By elementarity of M , there is x̊ ∈ VPκ ∩M such that


κ x̊ ∈ 2ω ∧ ∃α < ω1∃β < κ∀n ∈ ω
[̊
bx̊�n ⊂ å(α, β)

]
. (∗3)

Once again applying 4.0.9, we may assume without loss of generality that x̊ is a nice Pδ name

for an element of 2ω. Now, since Pκ is c.c.c. , (∗3) above together with the elementarity of M

implies that 
κ ∃β < δ∃α < ω1∀n ∈ ω
[̊
bx̊�n ⊂ å(α, β)

]
. But since 
κ å(α, β, δ) = å(α, β), for

all α < ω1 and β < δ, and since x̊ is a Pδ name, it is easy to check that


δ ∃β < δ∃α < ω1∀n ∈ ω
[̊
bx̊�n ⊂ å(α, β, δ)

]
This is as required, and we are done. a

Theorem 4.0.14. Let κ > ω be a cardinal satisfying κ<κ = κ and λ < κ [λω < κ]. Let S

be the stationary set {α < κ : cf (α) = ω1}. Assume ♦κ(S) holds. There is a c.c.c. forcing

extension where there are no Gregory trees and c = κ. Moreoever, we can have MA in this

model.

Proof. Fix a sequence 〈Aδ : δ ∈ S〉 witnessing ♦κ(S). We will build a FS iteration of c.c.c.

forcings 〈Pα, Q̊α : α ≤ κ〉 with
∣∣∣Q̊α

∣∣∣ < κ, for all α < κ. This will ensure that for all α < κ,

|Pα| < κ and that |Pκ| = κ. Now, fix δ ∈ S and suppose that Pδ has been constructed. Suppose

Aδ codes a sequence {̊a(α, β, γ) : α < ω1 ∧ β < δ ∧ γ < δ} such that

1. å(α, β, γ) is a nice Pγ name for an element of 2α
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2. ∀α < ω1∀β < δ∃γα
β < δ ∀γα

β ≤ γ < δ
[


δ å(α, β, γα
β ) = å(α, β, γ)

]
3. 
δ {̊a(α, β, γα

β ) : α < ω1 ∧ β < δ} is a subtree of 2<ω1 with CTP

Since cf (δ) = ω1, we can apply Theorem 4.0.12 to get that


δ ∃T0

[
T0 ⊂ {̊a(α, β, γα

β ) : α < ω1 ∧ β < δ} ∧ T0 is a Suslin tree
]

(∗)

Since Pδ is a c.c.c. poset with |Pδ| < κ and since ∀λ < κ [λω < κ], we can find a full Pδ name

Q̊ with
∣∣∣Q̊∣∣∣ < κ such that


δ

[
Q̊ ⊂ {̊a(α, β, γα

β ) : α < ω1 ∧ β < δ} ∧ Q̊ is a Suslin tree
]

(∗∗)

Now, we put Q̊δ = Q̊. It follows from the proof of Lemma 4.0.13 that doing this is sufficient

to ensure that there are no Gregory trees in the final model.

If we also want to get MA in the final model, we can do the usual bookkeeping argument.

It is clear that this can be combined with the construction above. We must only be sure that∣∣∣Q̊α

∣∣∣ < κ, for all α < κ. But the usual argument for MA only requires us to consider, at

any given stage α < κ, a Pα name for a poset Q̊ such that 
α

∣∣∣Q̊∣∣∣ < κ. Therefore, since

∀λ < κ [λω < κ], we can find a full Pα name Q̊α with
∣∣∣Q̊α

∣∣∣ < κ such that 
αQ̊ = Q̊α. a

We have had to assume that ∀λ < κ [λω < κ]. The first place where this assumption matters

is ℵ1, and there we know from Gregory’s result that it is impossible to have c = ℵ1 and not

have a Gregory tree. The next place where this matters is ℵω+1. Here we do not know the

answer.

Question 4.0.15. Assume MA and c = ℵω+1. Is there a Gregory tree?
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