
Characterizing the Computable Structures:
Boolean Algebras and Linear Orders

By

Asher M. Kach

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2007



i

Abstract

A countable structure (with finite signature) is computable if its universe can be identi-

fied with ω in such a way as to make the relations and operations computable functions.

In this thesis, I study which Boolean algebras and linear orders are computable.

Making use of Ketonen invariants, I study the Boolean algebras of low Ketonen

depth, both classically and effectively. Classically, I give an explicit characterization

of the depth zero Boolean algebras; provide continuum many examples of depth one,

rank ω Boolean algebras with range ω + 1; and provide continuum many examples of

depth ω, rank one Boolean algebras. Effectively, I show for sets S ⊆ ω +1 with greatest

element, the depth zero Boolean algebras Bu(S) and Bv(S) are computable if and only if

S \{ω} is Σ0
n7→2n+3 in the Feiner Σ-hierarchy.

Making use of the existing notion of limitwise monotonic functions and the new notion

of limit infimum functions, I characterize which shuffle sums of ordinals below ω + 1

have computable copies. Additionally, I show that the notions of limitwise monotonic

functions relative to 0′ and limit infimum functions coincide.
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Chapter 1

Introduction

This work lies at the interface of logic and algebra, focusing on the effective content of

algebraic structures. It is motivated by the following general question:

Question 1.1. What countable algebraic structures are effective? In other words, what

countable algebraic structures can, in principle, be implemented on a computer?

The notion of a computable structure makes this idea precise.

Definition 1.2. A countable algebraic structure having only finitely many functions and

relations is computable if its universe can be identified with ω in such a way that the

functions and relations become computable operations on ω.

We address Question 1.1 for two classes of algebraic structures: Boolean algebras

(viewed as structures B = (B : +, ·,−, 0, 1)) and linear orders (viewed as structures

L = (L :≺)).

1.1 Main Results

For Boolean algebras, we study the class with small Ketonen depth. In addition to

various algebraic results, we provide the following classical characterization of the sets S

with computable depth zero Boolean algebras.
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Theorem 1.3. For sets S ⊆ ω + 1 with greatest element, the following are equivalent:

1. The depth zero Boolean algebra Bu(S) is computable.

2. The depth zero Boolean algebra Bv(S) is computable.

3. The set S \{ω} is Σ0
n7→2n+3 in the Feiner Σ-hierarchy.

For linear orders, we study the class of shuffle sums of ordinals below ω+1. The main

result is the following classical characterization of the sets S ⊆ ω + 1 with computable

shuffle sums.

Theorem 1.4. For sets S ⊆ ω + 1, the following are equivalent:

1. The shuffle sum σ(S) is computable, i.e., the linear order obtained by interleaving

copies of the order types of the ordinals in S is computable.

2. The set S is a limit infimum set, i.e., there is a total computable function g(x, s)

such that the function f(x) = lim infs g(x, s) enumerates S under the convention

that f(x) = ω if lim infs g(x, s) = ∞.

3. The set S is a limitwise monotonic set relative to 0′, i.e., there is a total 0′-

computable function g̃(x, t) satisfying g̃(x, t) ≤ g̃(x, t + 1) such that the func-

tion f̃(x) = limt g̃(x, t) enumerates S under the convention that f̃(x) = ω if

lims g̃(x, s) = ∞.

Other results discuss the relationship between these sets and the Σ0
3 sets.

For basic background on computability theory, the reader is referred to [20] or [22].

Although our notation is for the most part standard, we review general notation in

Section 1.2, notation specific to linear orders in Section 1.3, and notational conventions
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in Section 1.4. Chapter 2 is our study of Boolean algebras of small Ketonen depth, and

Chapter 3 is our study of shuffle sums of ordinals.

The reader is referred to Section 2.1 and Section 3.1 for introductory material on

Boolean algebras and shuffle sums, respectively.

1.2 General Notation

Although the notation used generally conforms to that found in [22], we review the

notation that will appear throughout the thesis.

The primary objects we deal with are sets, ordinals, functions, and strings. We will

use the symbol S primarily to denote a set of ordinals, with |S| denoting the cardinality

of S. We will represent the set of ordinals {β : β < α} by α. We will use f , g, and h,

as well as f̃ , g̃, and h̃, to denote total functions.

The set of finite binary strings (i.e., strings in the alphabet {0, 1}) will be denoted

by 2<ω; the set of infinite binary strings will be denoted by 2ω. The set of binary strings

of length k will be denoted by 2k. The length of a binary string τ ∈ 2<ω will be denoted

by |τ |. Concatenation of binary strings τ1, τ2 ∈ 2<ω will be denoted by τ1
a τ2. The set of

binary strings will be ordered lexicographically. The empty string will be denoted by ε.

The notation 〈·, ·〉 will denote an effective pairing function 〈·, ·〉 : ω × ω → ω. The

symbol Q will be used to denote the rational numbers, and the symbol C will be used

to denote the Cantor set.
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1.3 Notation for Linear Orders

If L = (L :≺) is a linear order and La = (La :≺a) is a linear order for each a ∈ L, then

the notation
∑

a∈L La represents the lexicographic sum of the orders La. In particular,

it is the linear order with universe {(a, b) : a ∈ L, b ∈ La} under the lexicographic order

induced by ≺ and {≺a}a∈L.

If L = (L :≺) is a linear order, we will use the symbols −∞ and +∞ when denoting

intervals in L. In particular, we will write (−∞, a) and (a, +∞) to denote the sets

{z ∈ L : z ≺ a} and {z ∈ L : z � a}, respectively.

1.4 Notational Conventions

As we will have little need to refer to partial computable functions, we depart from the

usual computability-theoretic convention of using lower case Greek letters primarily to

denote partial functions. The symbol σ will exclusively denote either a measure or a

shuffle sum; the symbol τ will denote a binary string; the symbol ϕe will denote the eth

partial computable function.

In many places, we will have a total function serving as an approximation of another

function. For example, a common situation will be f(x) = lims g(x, s). We will use the

hat symbol to denote the modulus of convergence, i.e., we will denote the least t with

the property that g(x, s) = f(x) for all s ≥ t by ŝ.
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Chapter 2

Boolean Algebras of Small Ketonen

Depth

2.1 Introduction

A fundamental problem in the field of algebra is to classify the isomorphism types exist-

ing within a class of structures. If the class of structures is sufficiently well understood

classically, computable model theorists are able to ask which of these isomorphism types

have effective representations.

For several naturally occurring classes of algebraic structures, the classical charac-

terization is rather straightforward. Vector spaces over the rationals and algebraically

closed fields of characteristic zero, for example, are both characterized by a single cardi-

nal number (their dimension or their transcendence degree, respectively). Characterizing

the computable vector spaces and algebraically closed fields is straightforward, there be-

ing an effective representation if and only if the cardinal invariant is countable.

In this chapter, we restrict our attention to the class of countable Boolean algebras,

addressing both of these questions in turn. Ketonen, in [14], found algebraic invariants

(Ketonen invariants) that characterize the isomorphism type of a countable Boolean

algebra. The main algebraic result below explicitly shows the connection between a
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depth zero Boolean algebra and the set of ordinals it encodes (Section 2.3.1). Other

classical results demonstrate the existence of continuum many depth one, rank ω Boolean

algebras with range ω + 1 (Section 2.3.2) and of continuum many depth ω, rank one

Boolean algebras (Section 2.3.3).

As one might expect, there is a connection between the complexity of the set of

ordinals a depth zero Boolean algebra encodes and whether the Boolean algebra has

an effective representation. The main computability-theoretic result of the chapter will

show exactly which depth zero, rank ω Boolean algebras are computable (Section 2.4).

As the class of sets computable in ∅(ω) is too large for our purposes, we modify the

Feiner hierarchy developed in [7] to characterize the sets with computable depth zero,

rank ω Boolean algebras. The primary directions of the main result are proved separately

(Section 2.5 and Section 2.6).

Before these classical and computability results, we begin with background, notation,

and a review of Ketonen invariants (Section 2.2). After, we finish with applications to

the Lown conjecture (Section 2.7) and future directions (Section 2.8).

2.2 Background and Notation

Although a thorough discussion of Ketonen invariants is beyond the scope of this thesis

(see [14] for the original paper or [18] for an alternative exposition), we do discuss the

background necessary to understand them. Before doing so, we begin with the following

important convention.

Convention 2.1. Throughout, a Boolean algebra will refer exclusively to a countable

Boolean algebra. A linear order will refer exclusively to a countable linear order.
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We continue by reviewing Boolean algebras and Ketonen invariants in Section 2.2.1

and defining the Feiner hierarchy in Section 2.2.2.

2.2.1 Boolean Algebras and Ketonen Invariants

We briefly recall that we view Boolean algebras as structures in the signature B = (B :

+, ·,−, 0, 1). We use the notation x⊕ y to denote the element x + y with the additional

hypothesis that xy = 0. As we will frequently have the need to use the symbols 0 and 1

to denote ordinals, we will always refer to the largest and smallest elements of a Boolean

algebra as 1B and 0B. Certain other elements of Boolean algebras are also of particular

importance.

Definition 2.2. A non-zero element x is an atom if the only element strictly below x

is the zero element 0B.

An element x is a 0-atom if it is an atom. An element x is an α-atom for α > 0 if

it cannot be expressed as a finite join of β-atoms for β < α, but for all y, either xy or

x(−y) can be expressed in this form.

A non-zero element x is atomless if it bounds no atoms, i.e., there is no atom y

with y ≤ x.

Several linear orders will also play a prominent role.

Definition 2.3. Let η denote the order type of the rational numbers, i.e., a countable

dense linear order without endpoints.

Let Fin denote any order type consisting of at least two, but at most finitely many,

points.
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As specifying the construction of a fixed Boolean algebra B can often be quite cum-

bersome, we will often describe the construction of a linear order L whose interval algebra

is isomorphic to B.

Definition 2.4. Let L be a linear order with least element x0 with the topology generated

by basic open sets [a, b). The interval algebra of L, denoted BL, is the Boolean algebra

whose universe is the set of clopen subsets of L. The operations of join, meet, and

complementation in the Boolean algebra BL are given by taking the union, intersection,

and complementation of the clopen sets.

If B is a Boolean algebra, then L is a linear order that generates B if B ∼= BL.

An important fact is that both directions of the Stone Representation Theorem, i.e.,

the transitions from a Boolean algebra B to a linear order LB that generates it, and from

a linear order L to its interval algebra BL, are effective. We emphasize that LB need not

be unique, and, in most cases, is actually far from unique. However, by applying certain

algebraic manipulations to any such L, a unique invariant can be obtained. The first of

these manipulations is the Cantor-Bendixson derivative.

As we will have need to use the half-open topology with basic open sets [a, b), we

alter the standard Cantor-Bendixson derivative slightly.

Definition 2.5. Let L be a linear order with least element x0 under the half-open topol-

ogy, i.e., the topology with basic open sets [a, b). The Cantor-Bendixson derivative of L,

denoted L′, is the linear order with universe

{x0} ∪ {x ∈ L : x is not isolated in L}

if L is infinite and empty universe if L is finite.
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The αth Cantor-Bendixson derivative, denoted L(α), is defined recursively by L(0) = L,

L(α+1) = (L(α))′, and L(γ) = ∩β<γL(β) for limit ordinals γ.

The Cantor-Bendixson rank of L is the least ordinal ν such that L(ν) = L(ν+1) if such

an ordinal exists. The perfect kernel of L are the points in L(ν).

For countable linear orders L with least element under the half-open topology, the

Cantor-Bendixson rank exists and is countable. There are two possibilities for L(ν):

either L(ν) = ∅ or L(ν) = 1 + η (which we identify with [0, 1) ∩Q). When L(ν) = ∅, the

Boolean algebra BL is called superatomic. These Boolean algebras are well understood

both classically (they are exactly the class of α-atoms) and computability-theoretically

(computable if and only if α < ωCK
1 ), so we restrict our attention to the less understood

case when L(ν) = 1 + η. In this case, one approach to describing the algebraic structure

of BL is through rank functions, measures, and monoid derivatives, as done by Ketonen

in [14]. As with Cantor-Bendixson derivatives, we alter the presentation to suit our

needs.

Definition 2.6. The rank function for a linear order L of rank ν is the map rL :

L(ν) → ω1 given by

r(x) = min
{

β : x 6∈ (L(β)\L(ν))
}

,

i.e., the minimum ordinal β such that x is not in the closure of L(β)\L(ν).

For a point x in the perfect kernel of L, the rank function describes the number of

Cantor-Bendixson derivatives required until x is no longer a limit of points not in the

perfect kernel. Unfortunately, there may be a disconnect between ν(L) and the ranks

of points in the perfect kernel of L. When they coincide, we call the Boolean algebra

uniform.
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Definition 2.7. A countable Boolean algebra B is uniform if

ν(L) = sup
x∈L(ν)

r(x).

Restricting one’s attention to the uniform Boolean algebras does no harm (classically

or effectively) as the following proposition and corollary demonstrate in conjunction with

the superatomic Boolean algebras being well understood (classically and effectively).

Proposition 2.8 ([14]). Every countable Boolean algebra is the disjoint sum of a uni-

form Boolean algebra and a superatomic Boolean algebra.

Corollary 2.9. Every computable Boolean algebra is the disjoint sum of a computable

uniform Boolean algebra and a computable superatomic Boolean algebra.

Proof. Let B be a computable Boolean algebra. From Proposition 2.8, we obtain a

decomposition B ∼= Bu⊕Bs with Bu uniform and Bs superatomic. Then both Bu and Bs

are computable, being intervals in the algebra B.

Before we can make the transition from rank functions to measures, we introduce

the countable free Boolean algebra.

Definition 2.10. The countable free Boolean algebra F is the (unique) non-trivial

countable Boolean algebra having no atoms.

We view F as being the Boolean algebra generated by the set of strings τ ∈ 2<ω, i.e.,

elements are finite unions of these cones. We also view F as being the interval algebra

of the linear order [0, 1) ∩Q.

Definition 2.11. Let L be a linear order with non-empty perfect kernel, which we iden-

tify with [0, 1) ∩ Q. The measure σ = σr associated to the rank function r = rL is the
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map σ : F → ω1 given by

σ(x) = sup{r(p) : p ∈ x}

for non-zero x ∈ F and σ(0F) = o, where o is a special symbol satisfying o < α for all

ordinals α.

Because of the natural correspondence between F and 2<ω, a measure can be viewed

as a map from 2<ω to ω1.

Remark 2.12. Any map ρ : 2<ω → ω1 satisfying

ρ(τ) = max{ρ(τ a 0), ρ(τ a 1)}

for all τ ∈ 2<ω generates a measure σρ : F → ω1 by defining σρ(x) = sup{ρ(τ) : τ ∈ x}.

The map ρ can be viewed as an ordinal labeled complete binary branching tree Tρ

where the label at a node τ in the tree is ρ(τ).

In order to help prevent confusion, in this chapter we reserve the symbol σ exclu-

sively for measures and the symbol τ exclusively for binary strings. In order to avoid

cumbersome language, we make little distinction between ρ, σρ, and Tρ. We also make

little distinction between a measure σ, the Boolean algebra Bσ, and any linear order L

that generates Bσ. As the context will always make the meaning transparent, there

should be no confusion.

We end our discussion of Ketonen invariants by introducing monoid derivatives and

depth.

Definition 2.13. If σ : F → ω1 is a measure, define maps ∆ασ with domain F for

α < ω1 recursively by setting ∆0σ = σ,

∆α+1σ(x) = {(∆ασ(x1), . . . , ∆
ασ(xn)) : x = x1 ⊕ · · · ⊕ xn},
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and ∆γσ(x) as the inverse limit of the ∆βσ(x) for β < γ for limit ordinals γ.

The set ∆ασ(1B) is the αth derivative of Bσ.

Definition 2.14. The depth of a measure σ : F → ω1 is the least countable ordinal

δ = δ(σ) such that

∀x∀y
[
∆δσ(x) = ∆δσ(y) =⇒ ∆δ+1σ(x) = ∆δ+1σ(y)

]
. (2.1)

A fundamental result by Ketonen is that for every measure σ, the depth of σ is

well-defined (i.e., there exists such an ordinal δ). In addition, the derivative ∆δ+2σ(1B)

characterizes the isomorphism type of Bσ. Slightly more is true, namely that ∆δ+1σ(1B)

characterizes the isomorphism type of Bσ amongst the Boolean algebras with depth at

most δ.

Although we end our discussion of Ketonen invariants here, the reader is referred

to [14] or [18] for a more thorough exposition. Ketonen in [14] injects these derivatives

into the Ketonen hierarchy and explores which derivatives can be obtained.

The reader is also referred to [8] or [19] for an exposition of Ershov-Tarski invariants.

These invariants (which are far simpler) characterize the elementary equivalence classes

of the countable Boolean algebras rather than their isomorphism classes, as Ketonen

invariants do.

2.2.2 The Feiner Hierarchy and Modifications

In [7], Feiner defined a hierarchy of complexities for certain sets S computable in ∅(ω) =

{〈k,m〉 : m ∈ ∅(k)}. Before defining this hierarchy, we define the notation ∅(≤n) for

n ∈ ω. We assume the reader is familiar with fundamental notions of computability

theory. The reader is referred to [20] or [22] for such background.
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Definition 2.15. For n ∈ ω, define ∅(≤n) to be the set

∅(≤n) = {〈k,m〉 : m ∈ ∅(k), k ≤ n}.

Several observations should quickly be made. The sets ∅(n) and ∅(≤n) are Turing

equivalent, and in fact Turing equivalent uniformly in n. Also, we have ∅(≤i) ⊆ ∅(≤j) ⊆

∅(ω) whenever i ≤ j < ω. The former property ensures using ∅(≤n) instead of ∅(n) is

sensical; the latter property simplifies the definition of the Feiner hierarchy, which we

now give.

Definition 2.16. Let S ⊆ ω be a set computable in ∅(ω). Then S is (a, b) in the Feiner

hierarchy if there exists an index e such that

1. The function ϕ∅(ω)

e is total and is the characteristic function of S, i.e., ϕ∅(ω)

e (n) ↓=

χS(n) for all n.

2. The computations ϕ∅(≤bn+a)

e (n) and ϕ∅(ω)

e (n) are equal; in particular, neither queries

any number 〈k, m〉 with k > bn + a.

Essentially, a set S is (a, b) in the Feiner hierarchy if membership of n in S can be

determined uniformly from the oracle ∅(bn+a). Alternately, the second requirement of

Definition 2.16 can be viewed as a special kind of restriction on the use of the computa-

tion ϕ∅(ω)

e (n). Whereas the normal restriction is that the oracle cannot be queried above

some fixed number, here the restriction is that the oracle cannot be queried above some

fixed column (in particular, the column bn + a).

For our purposes, we will need membership of n in S to be an existential question

over the oracle rather than be computable over the oracle. We therefore introduce a new

hierarchy which is a modification of the Feiner hierarchy.
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Definition 2.17. Let S ⊆ ω be a set computable in ∅(ω). Then S is Σ0
n7→bn+a in the

Feiner Σ-hierarchy if there exists an index e such that

1. The set S satisfies S = W ∅(ω)

e .

2. The computations ϕ∅(≤bn+a)

e (n) and ϕ∅(ω)

e (n) are equal; in particular, neither queries

any number 〈k, m〉 with k > bn + a.

Equivalently, a set S is Σ0
n7→bn+a in the Feiner Σ-hierarchy if membership of n in S

is a Σ0
bn+a question uniformly in n.

In this thesis we will only consider the special case when a = 3 and b = 2.

2.3 Algebraic Study of Boolean Algebras

As part of his work in [11], Heindorf showed that there are only countably many finite

depth, finite rank Boolean algebras. These Boolean algebras have arisen in a variety

of contexts: they are exactly the countable Boolean algebras that have a countably

categorical weak second-order theory (see [17]); they are exactly the interval algebras of

compact zero-dimensional metric spaces of finite type (see [9]); and they are exactly the

class of finitary Boolean algebras (see [11]).

We demonstrate that Heindorf’s result is optimal in a strong sense. Keeping the

depth parameter as small as possible (i.e., zero) and allowing the rank parameter to be

as small as possible but not finite (i.e., ω), there are continuum many Boolean algebras,

two for each subset S ⊆ ω + 1 with greatest element (one for those S with |S| = 1).

Keeping the rank parameter as small as possible (i.e., one [zero introduces trivialities])

and allowing the depth parameter to be as small as possible but not finite (i.e., ω), again
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there are continuum many examples.

In Section 2.3.1, we provide an algebraic characterization of the depth zero measures

(of arbitrary rank) and, as a corollary, obtain the existence of continuum many depth

zero, rank ω Boolean algebras. Although the image of the depth zero Boolean algebras in

the Ketonen hierarchy was previously known (see Proposition 1.18.5 of [18]), the depth

zero measures were not explicitly clear. In addition to providing a tractable description

of these measures, our work is effective enough to allow us to analyze which depth zero

Boolean algebras have effective representations in Section 2.4.

In Section 2.3.2, we construct continuum many depth one, rank ω Boolean algebras

with range ω+1. Whereas distinct depth zero measures have the same general structure

(with differences only in the range of the measures), these examples have structural

differences between distinct measures.

In Section 2.3.3, we finish our algebraic study of Boolean algebras by constructing

continuum many depth ω, rank one Boolean algebras. Our technique will be a refinement

of a general construction by Pierce in [18].

As preparation, we define certain strings τ ∈ 2<ω to be repeater strings, almost

repeater strings, and xor strings.

Definition 2.18. A string τ ∈ 2<ω is a repeater string if the length |τ | of τ is even and

τ(2i) = τ(2i + 1) for all i < |τ |/2.

A string τ ∈ 2<ω is an almost repeater string if τ is a repeater string or of the form

τ = τ ′ a 0 or τ = τ ′ a 1 for some repeater string τ ′.

A string τ ∈ 2<ω is an xor string if either τ = 01 or τ = 10.
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2.3.1 Depth Zero Boolean Algebras

A depth zero Boolean algebra B is almost uniquely characterized by the range S of

its measure σB. In fact, all that is needed to make this characterization unique is

the additional information of whether there are disjoint elements x and y in B with

σ(x) = max(S) = σ(y). The intuition for this is relatively straightforward: specifying

the measure of an element in a fixed depth zero Boolean algebra dictates the isomorphism

type of the element. Hence specifying the range of the measure should dictate the entire

Boolean algebra.

We demonstrate the existence of two depth zero Boolean algebras with range S,

termed Bu(S) and Bv(S), for each set S ⊆ ω1 with greatest element. We then show

that there are at most two such Boolean algebras, from which the ability to (almost)

characterize a depth zero Boolean algebra by the range of its measure follows.

We begin by showing the existence of Bu(S) and Bv(S) in the special case when S is a

non-zero ordinal. In the special case when S = 1, the Boolean algebras Bu(1) and Bv(1)

coincide.

Lemma 2.19. There is a depth zero measure with range 1 = {0}.

Proof. Let σu(1) and σv(1) be the measure generated by

σ(τ) = 0

for τ ∈ 2<ω. As for any x, the derivative ∆σ(x) is the set of all finite strings of 0s, the

measure σ is depth zero.

Although the tree Tu(1) = Tv(1) is quite simple, we include a diagram (see Figure 1)

illustrating an alternative recursive definition of the tree.
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0

Tu(1) = Tv(1) Tu(1) = Tv(1)

Figure 1: Tree for Tu(1) = Tv(1)

For larger ordinals α, the measures Tu(α+1) and Tv(α+1) do not coincide.

Lemma 2.20. For each non-zero countable ordinal α, there are two depth zero measures

with range α + 1 = {0, 1, . . . , α}.

Proof. We show the existence of the depth zero measures Bu(α+1) and Bv(α+1) by in-

duction on α. As preparation we fix, for each countable limit ordinal α, a bijection

fα : ω → α.

We continue by defining Bu(α+1) and Bv(α+1) when α = 1. Let σu(2) be the measure

generated by

σu(2)(τ) =


1 if τ is an almost repeater string,

0 otherwise,

for τ ∈ 2<ω and let σv(2) be the measure generated by

σv(2)(τ) =


1 if τ = 1k for some integer k,

0 otherwise,

for τ ∈ 2<ω. In order to assist the reader in understanding Bu(2) and Bv(2), we illustrate

the trees Tu(2) and Tv(2) with an alternative recursive definition (see Figure 2). For the

reader’s benefit, we also include illustrations of Tu(2) and Tv(2) with additional nodes

pictured (see Figure 3 and Figure 4).

The following observations imply that both σu(2) and σv(2) are depth zero.
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1

11

Tu(2) Tu(1) Tu(1) Tu(2)

1

Tu(1) Tv(2)

Figure 2: Trees for Tu(2) (left) and Tv(2) (right)

Tu(1) Tu(1)

1

1 1

1 1

1 1 1 1

1111

1 1 1 1 1 1 1

1 1 1 1 1 1

Tu(1) Tu(1)Tu(1) Tu(1)

Tu(1) Tu(1) Tu(1) Tu(1) Tu(1) Tu(1)

1

1Tu(1) Tu(1) 1

Figure 3: Tree for Tu(2) with Additional Nodes Pictured

1

1

1

1

1

1

Tu(1) Tv(2)

Tu(1)

Tu(1)

Tu(1)

Tu(1)

Tu(1)

Figure 4: Tree for Tv(2) with Additional Nodes Pictured
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u = 0 : If σu(2)(x) = 0, then ∆σu(2)(x) is the set of all finite strings of 0s.

u = 1 : If σu(2)(x) = 1, then ∆σu(2)(x) is the set of all finite strings of 0s and 1s with at

least one occurrence of 1.

v = 0 : If σv(2)(x) = 0, then ∆σv(2)(x) is the set of all finite strings of 0s.

v = 1 : If σv(2)(x) = 1, then ∆σv(2)(x) is the set of all finite strings of 0s and 1s containing

exactly one occurrence of 1.

We continue by defining Bu(α+1) and Bv(α+1) for successor ordinals α with α > 1. Let

σu(α+1) be the measure generated by

σu(α+1)(τ) =



α if τ is an almost repeater string,

σu(α)(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1

and xor string τ2,

for τ ∈ 2<ω and let σv(α+1) be the measure generated by

σv(α+1)(τ) =


α if τ = 1k for some integer k,

σu(α)(τ
′) if τ = 1k a 0 a τ ′ for some integer k and string τ ′,

for τ ∈ 2<ω. Again, we help the reader form a picture of these measures with illustrations

of the trees Tu(α+1) and Tv(α+1) defined recursively (see Figure 5).

The following observations imply that both of these measures are depth zero.

u = β : If σu(α+1)(x) = β < α, then ∆σu(α+1)(x) is the set of all finite strings of ordinals

in β + 1 with at least one occurrence of β.

u = α : If σu(α+1)(x) = α, then ∆σu(α+1)(x) is the set of all finite strings of ordinals

in α + 1 with at least one occurrence of α.
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α

α α

Tu(α+1) Tu(α) Tu(α)
Tu(α+1)

α

Tu(α) Tv(α+1)

Figure 5: Trees for Tu(α+1) (left) and Tv(α+1) (right)

v = β : If σv(α+1)(x) = β < α, then ∆σv(α+1)(x) is the set of all finite strings of ordinals

in β + 1 with at least one occurrence of β.

v = α : If σv(α+1)(x) = α, then ∆σv(α+1)(x) is the set of all finite strings of ordinals

in α + 1 containing exactly one occurrence of α.

We finish by defining Bu(α+1) and Bv(α+1) for limit ordinals α. Recalling the fixed

bijective functions fα : ω → α, let σu(α+1) be the measure generated by

σu(α+1)(τ) =



α if τ is an almost repeater string,

σu(fα(k))(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1 of

length k = |τ1|−2
2

and xor string τ2,

for τ ∈ 2<ω and let σv(α+1) be the measure generated by

σv(α+1)(τ) =


α if τ = 1k for some integer k,

σu(fα(k))(τ
′) if τ = 1k a 0 a τ ′ for the integer k and string τ ′,

for τ ∈ 2<ω.

We illustrate the trees Tu(α+1) and Tv(α+1) for limit ordinals in the special case when α

is ω and the bijection fω : ω → ω is given by n 7→ n (see Figure 6 and Figure 7).

The following observations imply that both of these measures are depth zero.
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ω

ω ω
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ω

ω

ω

ω ω ω

ωω

ω

ω

ω

ω ω

ωω

ω ω

ω ω

ωω

Tu(1) Tu(1)

Tu(2) Tu(2) Tu(2) Tu(2)

Tu(3) Tu(3) ω Tu(3) Tu(3) Tu(3) Tu(3) Tu(3) ωTu(3)

Figure 6: Tree for Tu(ω+1)

ω

ω

ω

ω

Tu(1)

Tu(2)

Tu(3)

Figure 7: Tree for Tv(ω+1)
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u = β : If σu(α+1)(x) = β < α, then ∆σu(α+1)(x) is the set of all finite strings of ordinals

in β + 1 with at least one occurrence of β.

u = α : If σu(α+1)(x) = α, then ∆σu(α+1)(x) is the set of all finite strings of ordinals

in α + 1 with at least one occurrence of α.

v = β : If σv(α+1)(x) = β < α, then ∆σv(α+1)(x) is the set of all finite strings of ordinals

in β + 1 with at least one occurrence of β.

v = α : If σv(α+1)(x) = α, then ∆σv(α+1)(x) is the set of all finite strings of ordinals

in α + 1 containing exactly one occurrence of α.

We conclude that for each non-zero countable ordinal α, there are two depth zero

measures with range α + 1 = {0, 1, . . . , α}.

The transition from successor ordinals to arbitrary subsets of ω1 with greatest element

requires the observation that the order type of any subset of ω1 with greatest element

is a countable successor ordinal.

Proposition 2.21. For each set S ⊆ ω1 satisfying |S| = 1, there is a depth zero measure

with range S. For each set S ⊆ ω1 with greatest element satisfying |S| > 1, there are

two distinct depth zero measures with range S.

Proof. Let α + 1 be the order type of S, noting that the order type of S is a successor

ordinal as S is a set with a greatest element. Let g : α + 1 → S be the order preserving

bijection that witnesses S has order type α + 1.

Let σu(S) be the measure generated by

σu(S)(τ) = g(σu(α+1)(τ))
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for τ ∈ 2<ω and let σv(S) be the measure generated by

σv(S)(τ) = g(σv(α+1)(τ))

for τ ∈ 2<ω.

The measures σu(S) and σv(S) are depth zero as a consequence of σu(α+1) and σv(α+1)

being depth zero. If |S| = 1, then σu(S) and σv(S) coincide as σu(1) = σv(1); if |S| > 1,

then σu(S) and σv(S) are distinct as σu(α+1) 6= σv(α+1) if α > 0.

We continue by demonstrating that for each set S ⊆ ω1 with greatest element, there

are at most two depth zero measures with range S. In order to do so, we use the

work of Heindorf. Specifically, we establish that every depth zero Boolean algebra is

pseudo-indecomposable and primitive and appeal to a result in [11].

For an element x in a Boolean algebra B, we use the notation Bx to denote the

interval in B below x, i.e., the Boolean algebra with universe {zx : z ∈ B}.

Definition 2.22. A Boolean algebra B is pseudo-indecomposable if for every x ∈ B,

either B ∼= Bx or B ∼= B−x. An element x ∈ B is pseudo-indecomposable if Bx is

pseudo-indecomposable.

Definition 2.23. A Boolean algebra B is primitive if every element in B is a disjoint

union of finitely many pseudo-indecomposable elements.

Lemma 2.24. If B is a depth zero Boolean algebra, then B is pseudo-indecomposable

and primitive.

Proof. We begin by showing that Bx is pseudo-indecomposable for an arbitrary element x

of a depth zero Boolean algebra B. In order to do so, let z be an arbitrary element of Bx.
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As the depth of B was zero, the depth of Bx is also zero. Thus if σBx(z) = σBx (1Bx),

then Bx
∼= (Bx)z follows immediately from Bx being depth zero. If instead σBx(z) 6=

σBx (1Bx), then σBx(−z) = σBx (1Bx) as σBx(1Bx) = max{σBx(z), σBx(−z)}, and so Bx
∼=

(Bx)−z as a consequence of Bx being depth zero. Hence Bx is pseudo-indecomposable as

either Bx
∼= (Bx)z or Bx

∼= (Bx)−z for every element z ∈ Bx.

As every Bx is pseudo-indecomposable, it follows that B is primitive. The pseudo-

indecomposability of B is precisely the pseudo-indecomposability of Bx when x = 1B.

The following lemma of Heindorf’s allows us to conclude that there are no other

depth zero Boolean algebras besides those described in Proposition 2.21. It is restated

using our notation and language.

Lemma 2.25 ([11]). Let σ be a measure with range S for a pseudo-indecomposable

and primitive Boolean algebra B. Then there are at most two possibilities for ∆σ(1B).

Moreover one of these possibilities does not exist in the degenerate case when |S| = 1.

It follows that the Boolean algebras given by the measures in Proposition 2.21 are

the only depth zero Boolean algebras. We summarize this in the following theorem.

Theorem 2.26. For each set S ⊆ ω1 satisfying |S| = 1, there is exactly one depth

zero Boolean algebra with range S, namely Bu(S) = Bv(S). For each set S ⊆ ω1 with

greatest element satisfying |S| > 1, there are exactly two depth zero Boolean algebras

with range S, namely Bu(S) and Bv(S).

Proof. By Proposition 2.21, there are at least this many depth zero Boolean algebras.

As a consequence of Lemma 2.25, there are not more than this many, using Lemma 2.24

to obtain the hypotheses of Lemma 2.25.
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The following corollary is then immediate.

Corollary 2.27. There are continuum many depth zero, rank ω Boolean algebras.

Rather than appealing to results about pseudo-indecomposable and primitive Boolean

algebras, the existence of at most two depth zero measures with range S can be shown

directly from the depth zero hypothesis. As Lemma 2.24 implies Proposition 2.28, we

keep the proof to a sketch.

Proposition 2.28. For each set S ⊆ ω1 with greatest element, there are at most two

depth zero measures with range S.

Proof (Sketch). Let α = max(S), which we note must exist since S has a greatest

element. We consider a depth zero Boolean algebra B with range S. If β < α is

in S, there is an element y with σ(y) = β. Then as σ(1B) = α = σ(1B − y) and

(α, β) = (σ(1B − y), σ(y)) ∈ ∆σ(1B), from the depth zero hypothesis we have that

(α, β) ∈ ∆σ(1B − y). Repeating this argument using 1B − y and any ordinal β′ < α

in S, we conclude that (α, β1, . . . , βn) ∈ ∆σ(1B) for any ordinals β1, . . . , βn < α in S.

Moreover, no ordinal δ not in S can appear in an element of ∆σ(1B).

If (α, α) ∈ ∆σ(1B), then there is a partition 1B = x1 ⊕ x2 with σ(x1) = α = σ(x2).

As B was depth zero and σ(x1) = σ(1B) = σ(x2), we must have (α, α) ∈ ∆σ(x1), ∆σ(x2).

Then there are partitions x1 = x11 ⊕ x12 and x2 = x21 ⊕ x22 with σ(x11) = α = σ(x12)

and σ(x21) = α = σ(x22). Repeating this argument, it follows that (α, . . . , α) ∈ ∆σ(1B).

It follows that if (α, α) 6∈ ∆σ(1B), then ∆σ(1B) consists of the set of all finite se-

quences of ordinals from S containing exactly one occurrence of α. Otherwise ∆σ(1B)

consists of the set of all finite sequences of ordinals from S containing at least one

occurrence of α.
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We remark that an algebraic characterization of the depth zero Boolean algebras

is not new. Pierce in [18] gave a slightly different classification using a notion called

the local refinement property. The explicit characterization given here will be necessary

later when we characterize which depth zero Boolean algebras are computable.

2.3.2 Depth One, Rank ω Boolean Algebras

When exhibiting the continuum many depth zero, rank ω Boolean algebras, in some

sense all the measures were the same structurally. A monotone function g : ω → ω, as in

Proposition 2.21, differentiated distinct measures rather than some structural property

of the measures.

If the depth parameter is allowed to increase to one, keeping the rank ω, again there

are continuum many Boolean algebras. However, unlike in the depth zero case, there

are continuum many with range exactly ω + 1.

Proposition 2.29. There are continuum many depth one, rank ω Boolean algebras with

range ω + 1.

Proof. We demonstrate the existence of continuum many such measures by encoding

subsets of the positive integers. For each set S (possibly without greatest element) with

0 6∈ S ⊆ ω, we define a measure σS. The idea is to have the measure Bv({0,n}) appear if

and only if n ∈ S and to have the measure Bu({0,n}) appear if and only if n 6∈ S. Let σS
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Figure 8: Tree for T S if S = {1, 3, 5, . . . }

be the measure generated by

σS(τ) =



ω if τ is an almost repeater string,

σu({0,n})(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1 of length 2n

and xor string τ2, and n ∈ S,

σv({0,n})(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1 of length 2n

and xor string τ2, and n 6∈ S,

for τ ∈ 2<ω. We illustrate the measure σS when S = {1, 3, 5, . . . } (see Figure 8).

The range of σS is easily seen to be ω + 1 as σS(02n10) = n and σ(ε) = ω. Be-

fore demonstrating the injectivity of the map S 7→ σS and that σS is depth one, we

demonstrate the following claim.

Claim 2.29.1. If σS(x) = n, then x can be decomposed as x = y ⊕ z with σS(y) = n,

σS(z) < n, and all sequences of ∆σS(y) consisting only of 0’s and n’s.

Proof. Let x be such that σS(x) = n. Then x, viewed as a finite sum of elements of 2<ω,
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can be decomposed as the disjoint sum of elements appearing in a copy of Tu({0,n})

or Tv({0,n}) and elements not appearing in a copy of Tu({0,n}) or Tv({0,n}). This decompo-

sition suffices.

We continue by demonstrating the injectivity of the map S 7→ σS and that σS is

depth one.

Claim 2.29.2. The map S 7→ σS is injective.

Proof. We argue that there is an element x ∈ B with σS(x) = n and ∆σS(x) containing

sequences of arbitrarily many n’s if and only if n ∈ S. By Claim 2.29.1, we may write x

as the sum of elements y and z with σS(y) = n, σS(z) < n, and ∆σS(y) containing

sequences of only 0’s and n’s.

If n ∈ S, then y is part of at least one tree Tu({0,n}). Hence if n ∈ S, then ∆σS(y)

(and thus ∆σS(x)) contains sequences of arbitrarily many n’s. If instead n 6∈ S, then y

is a sum of trees Tv({0,n}). Hence if n 6∈ S, then ∆σS(y) (and thus ∆σS(x)) contains

sequences of only boundedly many n’s.

It follows that if S1 6= S2, then σS1 6∼= σS2 , so that the map S 7→ σS is injective.

Claim 2.29.3. For any set S satisfying |S| ≥ 2, the measure σS is depth one.

Proof. In order to show that σS is depth one, we argue that the isomorphism type of

an element x is determined by ∆σS(x). In order to do so, we use induction on σS(x).

The base case of σS(x) = 0 is trivial, so we consider x with σS(x) = n for n > 0 and

assume that the isomorphism type of an element is determined by its first derivative if

its measure value is smaller than n.
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By Claim 2.29.1, we may write x as the sum of elements y and z with σS(y) = n,

σS(z) < n, and ∆σS(y) containing sequences of only 0’s and n’s. The inductive hypoth-

esis gives that z is uniquely determined. As y contains only sequences of 0’s and n’s, the

maximal number of n’s occurring in a sequence of ∆σS(y) characterizes the isomorphism

type of y. It follows that the isomorphism type of x is characterized by ∆σS(x).

If σS(x) = ω, then the isomorphism type of x is clearly determined by ∆σS(x).

We note that σS is not depth zero if |S| ≥ 2. For if n1, n2 ∈ S with n1 < n2, there

are elements x1 and x2 with σS(x1) = n1 and σS(x2) = n2. Then σS(x2) = σS(x1 + x2),

but ∆σS(x2) 6= ∆σS(x1 + x2), and so σS is not depth zero.

It follows that there is a distinct depth one, rank ω Boolean algebra with range ω+1

for each set S with |S| ≥ 2. We conclude there are continuum many such Boolean

algebras.

We remark that the depth one, rank ω Boolean algebras with range ω+1 exhibited in

Proposition 2.29 are not exhaustive of this class. It is also possible to code membership

of n in S by using Bu({0,1,...,n}) and Bv({0,1,...,n}), for example.

2.3.3 Depth ω, Rank One Boolean Algebras

In order to exhibit continuum many depth ω, rank one Boolean algebras, it becomes

useful to define a map π from the space of measures to the space of rank one measures.

Before doing so, we define an auxiliary measure ςα for each countable non-limit ordinal α.

Definition 2.30. For each countable successor ordinal α + 1, let Xα+1 be a subset of

Cantor space homeomorphic to the ordinal ωα + 1. If α = 0, we use the (temporary)

convention that ω0 = 0.
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Figure 9: Trees for ς1 (left) and ς2 (right). Note that we show the preimage of one rather
than the ordinal labels.

Let ς0 be the zero measure. For countable successor ordinals α + 1, let ςα+1 be the

measure generated by the characteristic function of Xα+1.

We illustrate ς1 and ς2 by showing the preimage of one (see Figure 9).

Not surprisingly, there is a relationship between α and the depth of ςα+1.

Proposition 2.31 (Heindorf in [18]). The depth of ςα+1 is α.

For an arbitrary measure σ, the measure π(σ) is, in some sense, a composition of the

general structure of depth zero measures interleaved with the measures ςα for the values

of α appearing in the range of σ.

Definition 2.32. If τ ∈ 2<ω is a repeater string of length |τ |, the string

τ ′ = τ(0) a τ(2) a . . . a τ(k)

is a witnesses to τ being a repeater string, where k =
|τ | − 1

2
.

Definition 2.33. Fix, for each countable limit ordinal α, a bijection fα : ω → α. For a
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Figure 10: Tree for π(σu(2))

measure σ, define the measure π(σ) to be the measure generated by

π(σ)(τ) =



1 if τ is an almost repeater string,

ςσ(τ ′)(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1

witnessed by τ ′, xor string τ2, and σ(τ ′) is

not a limit ordinal,

ςfσ(τ ′)(k)(τ3) if τ = τ1
a τ2

a τ3 for some repeater string τ1

witnessed by τ ′ of length k, xor string τ2,

and σ(τ ′) is a limit ordinal,

for τ ∈ 2<ω.

We illustrate π(σu(2)) by showing the location of the ςα (see Figure 10).

Proposition 2.34. The measure π(σ) is a measure, i.e., it satisfies

π(σ)(τ) = max{π(σ)(τ a 0), π(σ)(τ a 1)}

for all τ ∈ 2<ω.
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The map σ → π(σ) is well-defined on homeomorphism types, i.e., if σ1
∼= σ2, then

π(σ1) ∼= π(σ2).

The map σ → π(σ) is injective.

Proof. The map π(σ) : 2<ω → ω1 satisfies π(σ)(τ) = max{π(σ)(τ a 0), π(σ)(τ a 1)} as

the ςα are measures and ςα(ε) = 1. If σ1
∼= σ2, then any witnessing homeomorphism

induces a homeomorphism witnessing π(σ1) ∼= π(σ2). Thus π is well defined. Conversely

if π(σ1) ∼= π(σ2), then the witnessing homeomorphism induces a homeomorphism wit-

nessing σ1
∼= σ2. Thus π is injective.

The measure π(σ) is directly related to the Boolean algebra Bσ. Every Boolean

algebra can be realized as a closed subset of Cantor space. The measure π(σ) is the

characteristic function of one such subset.

Although the map π is defined on the space of all measures, we apply it only to the

depth zero Boolean algebras Bu(S) with S ⊆ ω + 1. In this case, the map π does not

increase the depth beyond ω.

Proposition 2.35. For any set S ⊆ ω + 1 with greatest element, the measure π(σu(S))

has depth at most ω.

Proof. In order to show that π(σu(S)) has depth at most ω, we argue that non-isomorphic

elements have unequal ωth derivatives. We therefore suppose that x 6∼= y and consider

the cases when neither, one, or both of x and y contain a perfect kernel of rank one

points above themselves.

If neither x nor y contain a perfect kernel of rank one points above themselves,

then their homeomorphism type is given by a countable ordinal below ωω. By Proposi-

tion 2.31, they will have unequal ωth derivatives.
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If exactly one of x or y contains a perfect kernel of rank one points above themselves

(without loss of generality x), then the homemorphism type of y is given by a countable

ordinal below ωω. Again by Proposition 2.31, they will have unequal ωth derivatives.

If both x and y contain a perfect kernel of rank one points above themselves, then x

and y correspond to the image of elements x′ and y′ in σu(S) under π. Since π is injective,

we must have that x′ 6∼= y′. Since σu(S) is depth zero, we must have σu(S)(x
′) 6= σu(S)(y

′).

It then follows from Proposition 2.31 that the elements x = π(x′) and y = π(y′) will

have unequal ωth derivatives.

We obtain the following corollary, making use of Corollary 2.27.

Corollary 2.36. There are continuum many depth ω, rank one measures.

We note that the above is a refinement of Corollary 1.11.3 in [18] where Pierce

produces continuum many rank one Boolean algebras. Following the notation in [18], in

the above we have that Vk is the set of paths in 2ω with rank at least k for the measure

σv(ω+1). The strictly increasing map α : ω → ω corresponding to a set S = {a0 < a1 <

a2 < . . . } is α(n) = an.

2.4 Computable Characterization

Having characterized the algebraic structure of the depth zero Boolean algebras in Sec-

tion 2.3.1, we turn our attention to characterizing those which have effective represen-

tations. We begin by relating the complexity of a measure σ and its derivative ∆σ(1B).

In order to be able to code the finite sequences in ∆σ(1B) as integers, we fix an

ordinal λ < ωCK
1 and an ordinal notation for λ, which we denote by `. An ordinal α less
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than λ is then associated with its unique ordinal notation a satisfying a <O `. Having

identified ordinals with their ordinal notations, finite sequences of ordinals less than λ

can be coded using the standard encoding of finite sequences of integers. The reader is

referred to [3] for background on ordinal notations.

In order to be able to maintain uniformity, the following important convention will

be assumed for the rest of the paper.

Convention 2.37. Fix an ordinal λ < ωCK
1 . From here on, an ordinal will refer ex-

clusively to an ordinal less than λ. A Boolean algebra will refer to a Boolean algebra of

rank less than λ. A measure will refer to a measure of rank less than λ.

The set ∆σ(1B) is then a set of integers. In order to prevent cumbersome language,

we abuse notation and view the first derivative as containing sequences (α1, . . . , αn) of

ordinals rather than integers coding sequences of integers, each of which in turn is coding

an ordinal.

With these conventions in place, we relate the complexity of a measure σ and its

derivative ∆σ(1B).

Proposition 2.38. If σ is computable, then ∆σ(1B) is computably enumerable. More-

over, there is an effective procedure which, given an index for a measure σ, yields an

index for ∆σ(1B).

Proof. As there is an effective enumeration {(x1, . . . , xm(n))}n∈ω of all the disjoint parti-

tions of 1F , the set ∆σ(1B) = {(σ(x1), . . . , σ(xm(n)))}n∈ω is computably enumerable if σ

is computable.

We cannot hope for the converse of Proposition 2.38 to be true, as in general the first
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derivative ∆σ(1B) does not dictate the measure σ. Modifying the statement to reflect

this ambiguity in σ, the converse does hold.

Proposition 2.39. If ∆σ(1B) is computably enumerable, then there is a computable

measure σ̂ satisfying ∆σ(1B) = ∆σ̂(1B). Moreover, there is an effective procedure which,

given an index ∆σ(1B), yields an index for such a measure σ̂.

In addition, the depth of the computable measure σ̂ produced can be partially con-

trolled: if ∆σ(1B) is the first derivative of a depth zero measure, then the σ̂ produced

will be depth zero.

Proof. We describe an effective procedure to define a measure σ̂ in ω many stages from

∆σ(1B) with the intention that ∆σ(1B) = ∆σ̂(1B). In order to guarantee that σ̂ is total,

and thus computable, at stage k we will ensure that σ̂ is defined on all strings τ with

|τ | ≤ k.

The construction of σ̂ is an interplay between trying to split enough (have all elements

of ∆σ(1B) belong to ∆σ̂(1B)), not split too much (have all elements of ∆σ̂(1B) belong

to ∆σ(1B)), and split densely enough (have σ̂ be depth zero, if possible).

In order to ensure that we split enough, we formalize a set of requirements Φj for

j ∈ ω.

Requirement Φj: If (α0, . . . , αn) is the jth element of ∆σ(1B), then there are

disjoint x0, . . . , xn such that σ̂(xi) = αi for i ≤ n.

The construction will work to satisfy the Φj in increasing order, noting that once Φj is

satisfied, it can never be injured.

In order to ensure that we do not split too much, at every stage k we ensure that

(σ̂(τ))τ∈2k is an element of ∆σ(1B).
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In order to ensure that we split densely enough, at every stage k and for every

ordinal α, we rank the α-priority of the strings τ ∈ 2k−1 as follows (with lexicographic

order breaking ties).

• If σ̂(τ) < α, then τ has no α-priority.

• If σ̂(τ) = α, then the α-priority of τ is |τ | − |τ ′|, where τ ′ is the longest substring

of τ such that σ̂(τ ′ a 0) = α = σ̂(τ ′ a 1). If no such substring τ ′ exists, then the

α-priority of τ is |τ |.

• If σ̂(τ) > α, then the α-priority of τ is |τ | − |τ ′|, where τ ′ is the longest substring

of τ such that τ ′ has an extension τ ′′ with σ̂(τ ′′) = α. If no such substring τ ′ exists,

then the α-priority of τ is |τ |.

In order to track the construction, we maintain a dynamic parameter µ specifying

the minimal ordinal in the range of σ seen thus far. Its value may change multiple times

during a single stage.

Construction: At stage 0, search for the (unique) sequence in ∆σ(1B) consisting of

exactly one ordinal (i.e., the sequence (σ(1B))). Define σ̂(ε) = σ(1B). Set µ to be the

minimum ordinal seen in the range of σ while searching ∆σ(1B) for the value of σ(1B).

At stage k for k > 0, let Hk be the sequence of ordinals (with multiplicity) (σ̂(τ))τ∈2k−1 .

Let j = jk be minimal such that the requirement Φj has not yet been satisfied. A re-

quirement Φj is satisfied at stage k if Hk is an extension of the jth element of ∆σ(1B).

Decrease the value of µ appropriately if a smaller ordinal was seen in the range of σ

while determining j.
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Let Zk be the sequence of ordinals (with multiplicity) appearing in the jth element

of ∆σ(1B) but not in Hk. For each α ∈ Zk, let τα be the string τ in 2k−1 with highest

α-priority. As there must be a string τ ∈ 2k−1 with σ̂(τ) = σ(1B) ≥ α, there must be a

string with some α-priority, so this is well-defined.

We define σ̂(τ a 0) and σ̂(τ a 1) for all τ ∈ 2k−1 in two steps. For those strings τ satis-

fying τ = τα for some α ∈ Zk, we define σ̂(τ a 0) = σ̂(τ) and σ̂(τ a 1) =

max{α ∈ Zk : τ = τα}. For those strings τ satisfying τ 6= τα for all α ∈ Zk, we

define σ̂(τ a 0) = σ̂(τ). We then search for a sequence ζ in ∆σ(1B) extending the se-

quence Pk = (σ̂(τ) : σ̂(τ) defined)τ∈2k by the requisite number of appearances of µ. If

while searching for such a sequence ζ we find a new minimal ordinal in the range of σ,

we update µ immediately. When such a sequence ζ is found, define σ̂(τ a 1) = µ for all

those τ satisfying τ 6= τα for all α ∈ Zk.

Verification: It remains to argue that σ̂ is a total (and thus computable) measure, that

∆σ(1B) = ∆σ̂(1B), and that σ̂ is depth zero if possible. We begin with a claim showing

that σ̂ is a measure satisfying ∆σ̂(1B) ⊆ ∆σ(1B).

Claim 2.39.1. For every integer k, the map σ̂ is defined on all τ ∈ 2k−1, satisfies

σ̂(τ) = max{σ̂(τ a 0), σ̂(τ a 1)} for all τ ∈ 2k−1, and the sequence (σ̂(τ))τ∈2k is an

element of ∆σ(1B).

Proof. We prove the claim by induction on k. When k = 0, we have σ̂(ε) = σ(1B),

noting that the search for the sequence in ∆σ(1B) containing exactly one ordinal will

terminate.

Assuming the claim for all m < k, we show the claim for k. The search for a

sequence ζ will terminate. By the inductive hypothesis, we have that Hk ∈ ∆σ(1B).
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The extension of Hk to Pk will preserve this inclusion as Pk is a simultaneous refinement

of Hk and the jth sequence in ∆σ(1B). If the current value of µ reflects the true minimum

of the range of σ, then the desired sequence ζ must exist and be a refinement of Pk.

If the current value of µ is incorrect, we will either find such a sequence ζ before the

correct value of µ is found, or we will find the correct value of µ and later find such a

sequence ζ.

It follows that σ̂ is defined on 2k, and, by construction, therefore satisfies σ̂(τ) =

max{σ̂(τ a 0), σ̂(τ a 1)}. The choice of ζ guarantees that (σ̂(τ))τ∈2k ∈ ∆σ(1B).

It follows from the claim that σ̂ is a total (and thus computable) measure and that

∆σ̂(1B) ⊆ ∆σ(1B). To show the reverse inclusion, it suffices to establish that every

requirement Φj is eventually satisfied. For if the x0, . . . , xn witnessing that Φj is satisfied

do not sum to 1B, by changing one xi with σ̂(xi) = σ(1B) to 1B−x0−· · ·−xi−1−xi+1−

· · · − xn, we have that (α0, . . . , αn) ∈ ∆σ̂(1B). In order to show that Φj is satisfied, it

suffices to show Zk+1 ( Zk if jk+1 = jk. Let α = max Zk. Then the string τ ∈ 2k−1 with

maximal α-priority will have an extension with measure value α, namely τ a 1. Thus α

will appear in Zk+1 with multiplicity at least one less than in Zk. We note that the

above is justified as there must be at least one string τ ∈ 2k−1 with some α-priority as

a string τ ∈ 2k−1 with σ̂(τ) = σ(1B) ≥ α must exist. We conclude ∆σ(1B) ⊆ ∆σ̂(1B),

and thus ∆σ(1B) = ∆σ̂(1B) .

We finish by demonstrating σ̂ is depth zero, if possible. The following claim will be

the backbone of this argument.

Claim 2.39.2. If σ̂(τ) = α and there are arbitrarily many disjoint nodes in σ with

measure value β ≤ α, then there are arbitrarily many nodes in σ̂ above τ with measure
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value β.

Proof. If β = min S, then β will appear above every node with measure value α, so we

assume that β > min S. After the stage where µ = min S, the only new instances of β

appearing in the tree (either above a node with measure greater than β or a node of

measure β splitting) are as a result of β belonging to some Zk. By hypothesis, there

will be requirements Φj necessitating arbitrarily many disjoint elements with measure

value β. It follows that β will appear above every τ with σ̂(τ) = β as a consequence of

the β-priorities.

If ∆σ(1B) is the derivative of a depth zero measure σu(S), then every α ∈ S and τ with

σ̂(τ) = α satisfies the hypothesis of the claim. It follows that if if σ̂(τ1) = α = σ̂(τ2),

then ∆σ̂(τ1) = ∆σ̂(τ2), from which we conclude that σ̂ is depth zero.

If ∆σ(1B) is the derivative of a depth zero measure σv(S), then every α ∈ S with

α < max S and τ with σ̂(τ) = α satisfies the hypothesis of the claim. It follows that

if σ̂(τ1) = α = σ̂(τ2), then ∆σ̂(τ1) = ∆σ̂(τ2). On the other hand if α = max S and τ1

and τ2 satisfy σ̂(τ1) = α = σ̂(τ2), then the proof of the claim is valid for β < α. We

therefore conclude that σ̂ is depth zero.

This completes the proof of Proposition 2.39.

As ∆σ(1B) = ∆σ̂(1B) implies σ ∼= σ̂ if both σ and σ̂ are depth zero, we obtain the fol-

lowing corollary after observing the uniformity present in the proofs of Proposition 2.38

and Proposition 2.39.

Corollary 2.40. If Bσ is a depth zero Boolean algebra, then σ is computable (i.e., there

is a computable measure σ̂ with σ ∼= σ̂) if and only if ∆σ(1B) is computably enumerable.
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Moreover, there is a procedure that, given an index for a depth zero measure σ, gives an

index for ∆σ(1B), and vice versa.

In addition to there being a relationship between the complexity of σ and ∆σ(1B),

there is a relationship between their complexity and the complexity of Bσ. Although

much more is true, we begin by observing that if σ (of arbitrary depth) is computable,

then Bσ is also computable.

Proposition 2.41. If the measure σ is computable, then the Boolean algebra Bσ is

computable.

Proof. The relationship between σ and Bσ as described in the background is effective.

It might seem reasonable to conjecture that the converse is also true, namely that

a depth zero measure σ is computable if and only if the Boolean algebra Bσ. However

this is far from true, as the following theorem demonstrates.

Theorem 2.42. Let S ⊆ ω + 1 be a set with greatest element. Then the following are

equivalent:

1. The Boolean algebra Bu(S) is computable.

2. The Boolean algebra Bv(S) is computable.

3. The set S \{ω} is Σ0
n7→2n+3 in the Feiner Σ-hierarchy.

The proof of Theorem 2.42 is lengthy, and is thus split into Section 2.5 and Section 2.6

where we show (1), (2) =⇒ (3) and (3) =⇒ (1), (2), respectively.
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2.5 Proof of Theorem 2.42 (1), (2) =⇒ (3)

In order to show that S \{ω} is Σ0
n7→2n+3 in the Feiner Σ-hierarchy if Bu(S) or Bv(S) is

computable, we give, uniformly for each n ∈ ω, a sentence ϕn of complexity Σ0
2n+3. The

sentence ϕn will be constructed so that the depth zero Boolean algebras Bu(S) and Bv(S)

satisfy ϕn if and only if n ∈ S.

We start by noting the complexity of various well-known arithmetical formulas (see

[3], for example). There is a Π0
2 formula atomless(x) saying whether x is atomless.

There is also, for each computable ordinal α, a computable Π0
2α+1 formula atomα(x)

saying whether x is an α-atom.

Using these, we define the sentences ϕn and argue that the depth zero Boolean

algebras Bu(S) and Bv(S) satisfy ϕn if and only if n ∈ S.

Definition 2.43. Define ϕ0 to be the sentence

ϕ0 := ∃x atomless(x)

and define ϕn for n > 0 to be the sentence

ϕn := ∃x
[
∀y ≤ x [¬ atomn(y)] and ∀k ∃x1, . . . , xk

(xi disjoint and xi < x and atomn−1(xi))
]

Proposition 2.44. The depth zero Boolean algebras Bu(S) and Bv(S) satisfy ϕn if and

only if n ∈ S.

Proof. We consider the case when n = 0 separately from the case when n > 0. If n = 0,

then Bu(S) and Bv(S) satisfy ϕ0 if and only if they have an atomless element, which

happens if and only if 0 ∈ S.
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If n > 0, then Bu(S) and Bv(S) satisfy ϕn if and only if they have an element bounding

infinitely many (n− 1)-atoms but no n-atoms. An element witnessing this must be part

of the perfect kernel not bounding any n-atoms. For if it were not part of the perfect

kernel, then it would be superatomic, an impossibility. The measure of any such element

is thus n, which happens if and only if n ∈ S.

We finish by showing that (1), (2) =⇒ (3).

Theorem 2.45. If Bu(S) is computable, then S \{ω} is Σ0
n7→2n+3 in the Feiner Σ-hierarchy.

If Bv(S) is computable, then S \{ω} is Σ0
n7→2n+3 in the Feiner Σ-hierarchy.

Proof. We begin by analyzing the quantifier complexity of the ϕn. Since atomless(x)

has a Π0
2 representation, the sentence ϕ0 has quantifier complexity Σ0

3. Since atomn(x)

has a Π0
2n+1 representation, the sentence ϕn has quantifier complexity Σ0

2n+3 for n > 0.

As a consequence of Proposition 2.44, it follows that if Bu(S) (respectively Bv(S)) is

computable, then S is Σ0
n7→2n+3 in the Feiner Σ-hierarchy.

2.6 Proof of Theorem 2.42 (3) =⇒ (1), (2)

In order to show that Bu(S) and Bv(S) are computable if S \{ω} is Σ0
n7→2n+3 in the Feiner

Σ-hierarchy, we construct computable copies of them from an index e witnessing that

S \{ω} is Σ0
n7→2n+3 in the Feiner Σ-hierarchy. Before doing so, we prove a lemma which

will be iterated in the construction of Bu(S) and Bv(S). The lemma we prove is a mod-

ification of the following well-known theorem. We cite folklore as it appears numerous

times in the literature with various attributions.
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Theorem 2.46 (Folklore). There is a procedure, uniform in α and in a ∆0
2α+1 index

for the atomic diagram D(A) of a linear order A with distinguished least element, which

yields a ∆0
1 linear order L such that L ∼= ωα · A.

For depth zero Boolean algebras with S ⊆ ω + 1, it suffices to consider only finite

ordinals α. Thurber’s argument in [23] therefore serves as an outline to prove the main

technical lemma needed.

Lemma 2.47. There is a procedure, uniform in a ∆0
3 index for the atomic diagram D(A)

of a linear order A = (A :≺) = ({a0, a1, . . . } :≺) with distinguished least element a0

and an index for a Σ0
3 predicate ∃n∀u∃vR(n, u, v), which yields a ∆0

1 linear order L such

that L ∼=
∑

a∈A La, where Lan
∼= 1 + η + ω if ∀u∃vR(n, u, v) and Lan

∼= ω otherwise.

Proof. By hypothesis, we have a ∆0
3 function h such that h(n) codes the atomic diagram

of A restricted to {a0, a1, a2, . . . , an}. By the Limit Lemma, we also have a ∆0
2 function

g(n, s) and a ∆0
1 function f(n, s, k) (uniformly from an index for h) such that

lims g(n, s) = h(n) and limk f(n, s, k) = g(n, s).

We impose the following constraints on the approximations g(n, s) and f(n, s, k) without

any loss of uniformity.

1. The approximations g(n, s) say that a0 is the least element of A for all n and s.

2. The approximations f(n, s, k) say that a0 is the least element of A for all n, s,

and k.

3. The approximations g(n, s) satisfy g(m, s) ⊂ g(n, s) for all s and m < n, i.e., the

linear order specified by g(n, s) extends the linear order specified by g(m, s).
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4. The approximations f(n, s, k) satisfy f(m, s, k) ⊂ f(n, s, k) for all s, k, and m < n,

i.e., the linear order specified by f(n, s, k) extends the linear order specified by

f(m, s, k).

Using f we will try to build, for each point an in A, a linear order Ln at the location

in L where we believe an to be. The linear order Ln (termed a block) will consist of

three parts (termed segments): a singleton segment, a dynamic segment to the right of

the singleton segment, and a discrete segment to the right of the dynamic segment.

The singleton segment will start as a single point and never have additional points

added to it.

The dynamic segment will start as a single point and, in the limit, have order type η or

Fin. Whenever a new witness is found for an, i.e., a v is discovered such that R(n, u, v)

for the least u with no such pre-existing v, the dynamic segment is densified. More

specifically, new elements are added at either end of the dynamic segment and between

every pair of already existing elements in the dynamic segment. In order to help track

for which u witnesses v have been found for n, parameters un and vn are used.

The discrete segment will also start as a single point but, in the limit, have order

type ω. At each stage, a new element is added to the right end of the discrete segment.

The discrete segment will also serve as a garbage collection for unwanted blocks that

were mistakenly created as a consequence of misapproximations of h(n) by g(n, s) or

f(n, s, k).

At a given stage k, we will act on behalf of a pair (n, s) = (nk, sk) for some n ≤

s ≤ k using the approximation f(n, s, k). Several possibilities exist, which we describe

informally. Our approximation f(n, s, k) may suggest new work, in which case we begin

a new block Ln. Our approximation f(n, s, k) may agree with previous work, in which
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case we simply expand all linear orders Lm for m ≤ n. Our approximation f(n, s, k) may

disagree with the previous guess about the location of an, in which case we attach each Lm

for every m ≥ n to its predecessor by associating its points with its predecessor’s discrete

segment. Depending on certain conditions, elaborated on later, we begin building a new

instantiation of Ln at the new location of an or detach a previously attached instantiation

of Ln.

Since we may build a block Ln for an at a wrong location relative to Lm for m < n

because of a misapproximation, multiple instantiations of Ln for an may be started.

Ones believed to be incorrectly placed will be attached to their predecessor as suggested

above. In order to help determine whether a previously attached version should be

detached, each instantiation of a block Ln is tagged with a tuple (ñ, s̃, k̃). The value of s̃

will be the block’s approximation priority, which will be the value of sk when the block

is begun. The value of k̃ will be the block’s chronological priority, which will be the

value of k when the block is begun. If the chronological priorities of blocks Ln and Ln′

are k̃ and k̃′, we say that Ln is chronologically older than Ln′ if k̃ < k̃′.

In order to help track the construction and aid its success, an auxiliary function

r(n, s, k) and parameters nk and sk are used. The partial function r(n, s, k) describes

the approximation when we last acted on behalf of the pair (n, s). More specifically,

the value of r(n, s, k) is f(n, s, k′), where k′ is the last stage when we acted on behalf of

(n, s). The parameters nk and sk specify the pair (n, s) = (nk, sk) acted on behalf of at

stage k.

Construction: The construction involves ω many stages and builds a linear order L with

universe {b0, b1, b2, . . . }. At stage 0, we fix b0 as the least element of L, tag the block with
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the tuple (ñ, s̃, k̃) = (0, 0, 0), and commit ourselves to never putting anything before it.

We also set the parameters n0 and s0 to 0 and put r(0, 0, 0) = f(0, 0, 0).

At the end of each stage k − 1 for k ≥ 1, we assume that various blocks have been

started and tagged with tuples (ñ, s̃, k̃) with ñ ≤ s̃ ≤ k̃, that at stage k− 1 we acted on

behalf of the pair (nk−1, sk−1), and that we have defined a partial function r(n, s, k− 1)

for n ≤ s ≤ k − 1 which describes our last action for the pair (n, s).

Each stage k > 0 proceeds in three substages: defining the values of the parameters nk

and sk, acting on behalf of the pair (nk, sk), and enlarging all active blocks.

Substage 0 defines the values of the parameters nk and sk in the following manner.

Let sk be the least s ≤ sk−1 such that f(n, s, k) 6= r(n, s, k − 1) for some n ≤ s if such

an s exists; otherwise let sk = sk−1 + 1. Then let nk be the least n ≤ sk such that

f(n, sk, k) 6= r(n, sk, k − 1) if such an n exists; otherwise let nk = sk.

Substage 1 acts on behalf of the pair (nk, sk) and defines more of the function r(n, s, k)

in the following manner. Our action depends on which of the following scenarios occurs:

we haven’t yet begun building a block Lnk
; we haven’t yet acted for (nk, sk), but what

we’ve done so far for (nk, s) for s < sk seems correct; we agree with what we’ve done so

far for (nk, sk); or we think the block built for (nk, sk) is at the wrong place.

1. Scenario: We haven’t yet begun building a block Lnk
. More precisely, the function

r(n, s, k) is undefined at nk for all values of s and k.

Action: We start a new block Lnk
for ank

, tag Lnk
with (nk, sk, k), initialize the

parameters unk
and vnk

, and update the function r(n, s, k) appropriately. More

precisely:
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We begin the block Lnk
in the place indicated by f(nk, sk, k) relative to the

blocks Lm for m < nk. In particular, we insert a new element as the single-

ton segment of Lnk
, a new element as the dynamic segment of Lnk

, and a new

element as the discrete segment of Lnk
.

We tag the block Lnk
with the tuple (ñ, s̃, k̃) = (nk, sk, k), thus giving it approxima-

tion priority sk and chronological priority k. These will never change. We initialize

the parameters unk
and vnk

(which are specific to this instantiation of Lnk
) to zero.

We also set r(nk, sk, k) = f(nk, sk, k) and set r(n, s, k) = r(n, s, k−1) for all n < nk

and s ≤ sk.

2. Scenario: We haven’t yet acted for (nk, sk), but what we’ve done so far for (nk, s)

for s < sk seems correct. More precisely, the function r(n, s, k) is undefined at nk

and sk for all values of k, but f(nk, sk, k) = r(nk, s
′, k−1) for all s′ with s̃ ≤ s′ < sk,

where s̃ is the approximation priority of the active instantiation of the block Lnk
.

Action: We update the function r(n, s, k) appropriately. More precisely:

We set r(nk, sk, k) = f(nk, sk, k) and set r(n, s, k) = r(n, s, k − 1) for all n ≤ nk

and s ≤ sk (excepting n = nk and s = sk).

3. Scenario: We agree with what we’ve done so far for (nk, sk). More precisely,

f(nk, sk, k) = r(nk, sk, k − 1).

Action: We update the function r(n, s, k) appropriately. More precisely:

We set r(n, s, k) = r(n, s, k − 1) for all n ≤ nk and s ≤ sk.
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4. Scenario: We think the block built for (nk, sk) is at the wrong place. More precisely,

f(nk, sk, k) 6= r(nk, sk, k − 1).

Action: We attempt to correct our previous “mistake” by attaching the blocks

thought wrongly built to their predecessor. We then build Lnk
at the new location,

either by starting a new instantiation of Lnk
or detaching a previously attached

instantiation. We then update the function r(n, s, k) appropriately. More precisely:

Each block Lm with m ≥ nk is attached to the block L`(m) immediately to its left,

beginning with Lnk
and counting upwards. We note the block L`(m) must exist

for each m as a result of Constraint 2. The attachment is done by associating all

the points in Lm with the discrete segment of the linear order L`(m). The points

from Lm retain the tuple with which they were tagged at their creation.

We illustrate an attachment involving several blocks (see Figure 11).

The instantiation of the block Lnk
at the location given by f(nk, sk, k) is either

built from scratch or possibly detached from the block Lm immediately to the left

of this location. The block is detached only if:

(a) It was previously started at some stage k′ at this location relative to a` for

` < nk, tagged with a tuple (ñ, s̃, k̃) satisfying ñ = nk and s̃ ≤ sk, and

attached to Lm at some stage k′′ with k′ < k′′ < k,

(b) There is no t with s̃ < t < sk such that f(nk, sk, k) 6= f(nk, t, k).

(c) Detaching the block would result in no chronologically older block being de-

tached.
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Figure 11: Block Attachment
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The detachment is done by splitting off all the elements in the block Lm that were

attached to Lm at the stage k′′ or were added to the block Lm to the right of these

elements.

We illustrate a detachment in which all the necessary conditions are met (see

Figure 12).

If no detachment occurs, we begin a new instantiation of the block Lnk
at the

location given by f(nk, sk, k). In particular, we insert a new element as the single-

ton element segment of Lnk
, a new element as the dynamic segment of Lnk

, and a

new element as the discrete segment of Lnk
. We also initialize new parameters unk

and vnk
(specific to this instantiation of Lnk

) to zero.

We set r(nk, sk, k) = f(nk, sk, k) and set r(n, s, k) = r(n, s, k − 1) for all n ≤ nk

and s ≤ sk (except n = nk and s = sk).

Substage 2 enlarges all blocks Ln for n ≤ nk in the following manner. The dynamic

segment is densified depending on whether R(n, un, vn) holds or not. If R(n, un, vn)

holds, then un is incremented, vn is reset to 0, and the dynamic segment is densified by

adding new elements at either end and between every pair of already existing elements of

the dynamic segment. If R(n, un, vn) fails to hold, we leave un unchanged, increment vn,

and do not modify the dynamic segment. Independent of whether R(n, un, vn) holds, a

new element is added at the right end of the discrete segment.

This completes the description of the construction.

Verification: In order to be sure that our construction yields
∑

a∈A La, we verify that a

block Ln of the correct order type is built at the correct location relative to blocks Lm

for m ≤ n. As blocks will be absorbed and unabsorbed into other blocks through the
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Figure 12: Block Detachment



52

processes of attachment and detachment, the owner of an instantiation of a block Ln at

stage k is the block Ln′ such that Ln is part of the discrete segment of Ln′ at stage k

(allowing the possibility of n = n′). A stage k where h(n) ⊆ f(nk, sk, k) is said to be a

true stage for n.

We begin by establishing the following claims.

• All wrongly started pieces are eventually found to be wrongly started and perma-

nently attached.

• For each n, a block Ln is built for an at the correct location relative to a` for ` < n

that is detached again after each time it is attached.

• For each n, the block Ln built for an at the correct location relative to a` for ` < n

is of the correct isomorphism type.

Roughly speaking, the first guarantees that we have no extra elements in the linear

order L while the second and third together guarantee that we have at least the appro-

priate elements in the linear order L. Before formalizing and proving these claims, we

show the following combinatorial claims about the construction.

Claim 2.47.1. For a fixed s, there are only finitely many k such that sk = s. Thus, for

a fixed s, there are only finitely many k such that sk ≤ s.

Proof. We show there are only finitely many k such that sk = s by induction on s. For

s = 0, we have sk = 0 if and only if k = 0 as there is only one possible atomic diagram

for the linear order consisting only of a0. Consequently the value of f(0, 0, k) is constant

in k, so r(0, 0, k) will be constant in k, and thus the condition f(0, 0, k) 6= r(0, 0, k − 1)

will never be met.
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Assuming sk = s for only finitely many k, we argue sk = s + 1 for only finitely

many k. If sk = s + 1, either sk−1 = s or f(n, s + 1, k) 6= r(n, s + 1, k − 1) for some

n ≤ s + 1. By the inductive hypothesis, the former can happen only finitely often.

Fixing n, let k̂ be least such that f(n, s + 1, k) = g(n, s + 1) for all k > k̂. For k ≥ k̂, we

will have the inequality f(n, s+1, k) 6= r(n, s+1, k− 1) for at most one k; if we witness

this inequality at stage k, we will set r(n, s+1, k) = f(n, s+1, k) and both f(n, s+1, ·)

and r(n, s + 1, ·) will be constant and equal thereafter. Thus the latter condition can

also happen only finitely often.

The first statement in the claim then follows by induction, from which the second

statement in the claim immediately follows.

Claim 2.47.2. For each n, there are infinitely many true stages for n.

Proof. We begin by noting that if k is a true stage for n, then k is a true stage for all

m < n by Constraint 4. Also as nk ≤ k for all k, a stage k can only be a true stage for

finitely many n. We therefore need only show that for each n, there is a stage k such

that k is a true stage for n.

In order to do so, fix n and let ŝ be least such that g(n, s) = h(n) for all s ≥ ŝ. Let k̂

be least such that f(n, ŝ, k) = g(n, ŝ) for all k ≥ k̂. Finally, let s′ be least greater than ŝ

such that f(n, s′, ·) has not yet converged to g(n, s) by stage k̂. If no such s′ exists, then

the claim follows as any stage k with nk ≥ n and sk ≥ ŝ is then a true stage for n.

Let k̂′ be least such that f(n, s′, k) = g(n, s′) for all k ≥ k̂′. At stage k̂′, we will

have nk̂′ ≤ n and sk̂′ ≤ s′. If nk̂′ = n and sk̂′ = s′, then k̂′ will be a true stage for n.

Otherwise, the first stage k > k̂′ with nk ≥ n and sk ≥ s′ will be a true stage for n.

We continue by proving the three claims.
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Claim 2.47.3. If a block Ln for an is started at the wrong location relative to Lm for

m < n, there is a stage k at which Ln is attached and never detached afterwards.

Proof. We prove the claim by using induction on the chronological priority of the wrongly

started block Ln. The oldest chronological block, the block L0 created at stage 0, is never

found to be wrongly started by Constraint 2. Proceeding with the induction, we assume

that n > 0 and that the claim is valid for all wrongly started blocks with stronger

chronological priority.

A block Ln for an can be wrongly started for several reasons: if g(n, s) was wrong

but we guessed correctly for it, i.e., f(n, s, k) = g(n, s) 6= h(n); if g(n, s) was correct but

we guessed incorrectly for it, i.e., f(n, s, k) 6= g(n, s) = h(n); and if g(n, s) was wrong

and we guessed incorrectly for it, i.e., f(n, s, k) 6= g(n, s) 6= h(n) 6= f(n, s, k).

In all cases, there is an ŝ such that g(n, s) = h(n) for all s ≥ ŝ and a k̂ such that

f(n, ŝ, k) = g(n, ŝ) = h(n) for all k ≥ k̂. The strategy in Scenario 4 implies that we will

not detach this block for the sake of a pair (n, s) for any s ≥ ŝ after stage k̂. Moreover,

as sk < ŝ for only finitely many k by Claim 2.47.1, this block will be detached only

finitely often for (n, s) for s < ŝ.

Moreover, as we are assuming the claim for all blocks of stronger chronological prior-

ity, each of these blocks will be detached wrongly only finitely often as a consequence of

their own actions. Thus Ln will eventually be attached and never detached afterwards.

We note that if f(n, s, k) 6= g(n, s) 6= h(n) = f(n, s, k) for some n, s, and k, then

the approximation errors seem to “cancel” each other. However, at some later stage,

f(n, s, k) will converge to g(n, s), and shortly afterward the wrongly started block will

be permanently attached to its predecessor.
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Claim 2.47.4. For each n, there is a block Ln built for an at the correct location relative

to Lm for m < n that is eventually detached after every time it is attached.

Proof. We establish the claim ignoring the possibly detrimental effects of chronological

priorities. By this we mean that every such block will be eventually detached if Detach-

ment Condition (c) is not required. After doing so, we argue that the claim holds after

considering chronological priorities.

Fixing n, let ŝ be least such that g(n, s) = h(n) for all s ≥ ŝ. Let k̂ be least such

that f(n, ŝ, k) = g(n, ŝ) = h(n) for all k ≥ k̂. Consider any stage ` ≥ k̂ such that the

following criterion are met:

1. For all stages k ≥ `, sk ≥ ŝ.

2. The stage ` is a true stage for n.

We argue that the block Ln existing for an at stage ` is eventually detached after every

time it is attached, ignoring the possibly detrimental effects of chronological priorities.

We therefore assume that this block is later attached on behalf of some pair (n′, s′) with

n′ ≤ n and s′ > ŝ. We note these inequalities on n′ and s′ must be satisfied as a result

of Constraint 4 and the hypotheses on `.

As this block was built at the correct location relative to am for m < n, the attach-

ment must have been a result of f(n′, s′, ·) misapproximating g(n′, s′). We note that

the attachment could not have been a result of g(n′, ·) misapproximating h(n′) as a

consequence of Constraint 3.

At some point after the attachment on behalf of the pair (n′, s′), there will be a

stage k such that the pair (nk, sk) satisfies nk = n and f(n, s, k) = g(n, s) = h(n) for
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all ŝ ≤ s ≤ sk. At this stage k, this block will be detached (ignoring chronological

priorities) as the other conditions required for a block detachment are necessarily met.

We conclude that, ignoring the possibly detrimental effects of chronological priorities,

the claim holds.

We continue by showing, using induction on n, that the claim holds after considering

the possibly detrimental effects of chronological priorities. Assuming the claim for all

m < n, we show it is true for n. We may assume that the block Ln discussed will

eventually have an older block permanently attached to it, else we are done with the

claim. Consequently, we will create a new instantiation of the block Ln as the older

block will prevent a detachment. We may assume that this instantiation exists at a

stage `′ later than ` such that all true blocks Lm for m < n have been created and `′

is a true stage for n. We note that such a stage must exist as there are infinitely many

true stages for n and by the inductive hypothesis.

We argue that the instantiation of the block Ln existing at stage `′ satisfies the

claim. In order to do so, we need only show that it will never have a chronologically

older block attached to it. As all the true blocks Lm have been created for m < n

and `′ is a true stage, the instantiations of the blocks for m < n at stage `′ must be the

true instantiations. It follows that no chronologically older incorrect blocks will ever be

attached to Ln (at a true stage).

By induction, we conclude that the claim holds after considering the possibly detri-

mental effects of chronological priorities.

Claim 2.47.5. For the block Ln at the correct location that is eventually detached after

every time it is attached, the order type is 1 + η + ω if ∀u∃vR(n, u, v) and ω otherwise.
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Proof. Claim 2.47.4 established that there is a block Ln at the correct location that is

detached again after each time it is attached, and so this instantiation is active infinitely

often. Thus there are infinitely many stages at which work is done for the dynamic

segment and the discrete segment. If ∀u∃vR(n, u, v), then for every u a new witness v

will eventually be found. Each time one is, the dynamic segment is densified, from which

it follows that the order type η is built. If instead ∃u∀v¬R(n, u, v), then the dynamic

segment is densified only finitely often, from which it follows that the order type Fin

is built. The existence of infinitely many stages at which work is done for the discrete

segment is enough for the discrete segment to have order type ω in the limit.

Additionally, the actions of Lm for m 6= n do not interfere with the order type of Ln.

If a block Lm is attached to Ln at some point permanently, the finite amount of Lm built

to that stage is successfully incorporated into the discrete segment of Ln. If a block Lm

is attached and detached infinitely often to Ln, it is not part of the block Ln. Moreover,

at least each time it is detached, the discrete segment of Ln is extended. As no block Lm

interferes with the singleton element segment or the dynamic segment of Ln, the Lm for

m 6= n do not interfere with the order type of the block Ln.

The claim follows, observing that 1 + Fin + ω = ω.

Combined, we argue that the claims guarantee that L ∼=
∑

a∈A La. Claim 2.47.3 guar-

antees that any wrongly started block is eventually permanently attached. Claim 2.47.4

guarantees that a block Ln is built for an at the correct location, and Claim 2.47.5

guarantees that this block is of the correct order type.

This completes the proof of Lemma 2.47.

Noting that the lemma relativizes, we obtain the following corollary.
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Corollary 2.48. Uniformly in

1. an integer k,

2. a ∆0
2k+3 index for the atomic diagram D(A) of a linear order A = (A :≺) =

({a0, a1, . . . } :≺) with distinguished least element a0, and

3. an index for a Σ0
2k+3 predicate ∃n∀u∃vR(n, u, v) where R(n, u, v) is ∆0

2k+1,

there is an index for a ∆0
2k+1 linear order L such that L ∼=

∑
a∈A La, where Lan = 1+η+ω

if ∀u∃vR(n, u, v) and Lan = ω otherwise.

Before continuing, we make several remarks and observations about the preceding

lemma and corollary. Although Thurber’s argument serves as an outline for the above

proof, the argument offered in [23] seems to be unclear: it fails to utilize chronological

priorities, and as such allows ω∗ chains of wrongly started blocks to exist.

By altering the Σ0
3 predicate in Lemma 2.47 (or the Σ0

2k+3 predicate in Corollary 2.48),

we can partially control how many copies of η are built.

Remark 2.49. From an index of a Σ0
3 predicate ∃n∀u∃vR(n, u, v), we can uniformly

obtain an index of a Σ0
3 predicate ∃n∀u∃vR′(n, u, v) such that if there is an n satisfying

∀u∃vR(n, u, v), then cofinitely many n satisfy ∀u∃vR′(n, u, v) (see [22]).

Thus in Corollary 2.48 we may assume that either none or cofinitely many of the Ln

are 1 + η + ω.

Therefore, under the above remark, the effect of moving from a ∆0
2k+3 linear order to

a ∆0
2k+1 linear order as in Corollary 2.48 is that every point is replaced by a copy of ω,

possibly with dense intervals η inserted after all but finitely many of the first points of

the copies of ω.
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We continue by giving the basic construction that, when iterated, will form the crux

of the construction of Bu(S) and Bv(S).

Lemma 2.50. Uniformly in

1. an integer n,

2. Σ0
2k+3 predicates Rk for 0 ≤ k < n specifying membership of k in S, and

3. a Π0
2n+2 predicate Rn specifying membership of n in S,

there is an index for

(a) the algebra Bu(S�(n+1)) if n ∈ S via the Π0
2n+2 predicate Rn, or

(b) the algebra Bu(S�(k+1)) ⊕ B`·ωn for some integers k < n and `, or the algebra B`·ωn

for some integer ` if n 6∈ S via the Π0
2n+2 predicate Rn.

Proof. Fix n and an index e uniformly giving the predicates Rk. We note that mem-

bership of k in S for 0 ≤ k < n can be viewed as a Σ0
3 question relative to ∆0

2k+1 and

membership of n in S can be viewed as a Π0
2 question relative to ∆0

2n+1. In order to

construct an appropriate Boolean algebra, we begin by building a ∆0
2n+1 linear order

using the relativized Π0
2 predicate. Using Corollary 2.48, we will iteratively build ∆0

2n−1,

∆0
2n−3, . . . , ∆0

3, and ∆0
1 linear orders. The interval algebra of the ∆0

1 linear order so

produced will be the desired Boolean algebra.

Construction: Using the Π0
2 predicate Rn relative to ∆0

2n+1, we build a ∆0
2n+1 linear

order that is 1 + η if the predicate Rn holds and Fin otherwise.

Assuming we have a ∆0
2k+3 linear order for some k with 0 ≤ k < n, we describe a

uniform procedure to obtain a ∆0
2k+1 linear order. We view the ∆0

2k+3 linear order as a
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∆0
3 linear order relative to ∆0

2k+1 and view the predicate Rk as a Σ0
3 predicate relative

to ∆0
2k+1. The ∆0

2k+1 linear order is then the linear order produced by Corollary 2.48

relativized to ∆0
2k+1.

This completes our description of the construction.

Verification: We begin by letting bkc denote the greatest integer not greater than k that

is a member of S. We proceed by establishing the following claim by induction on k for

k < n.

Claim 2.50.1. If k ∈ S, then cofinitely many of the points appearing in the ∆0
2k+3

linear order become a copy of a suborder in the ∆0
1 linear order whose interval algebra is

Bu(S�(k+1)) ⊕ Bωk+1. The remaining points appearing in the ∆0
2k+3 linear order become a

copy of a suborder in the ∆0
1 linear order whose interval algebra is Bu(S�(bk′c+1)) ⊕ Bωk+1

for some integer k′ < k.

If k 6∈ S, then all of the points appearing in the ∆0
2k+3 linear order become a copy of

a suborder in the ∆0
1 linear order whose interval algebra is Bu(S�(bkc+1)) ⊕ Bωk+1.

Proof. If k = 0, then the claim follows from Lemma 2.47 and Remark 2.49.

Assuming the claim for all m < k, we show that it holds for k. By Corollary 2.48

and Remark 2.49, the points in the ∆0
2k+3 linear order will become copies of ωk−bkc in

the ∆0
2bkc+3 linear order.

If bkc < k, by induction, cofinitely many of the ∆0
2bkc+3 points will have a suborder

whose interval algebra is Bu(S�(bkc+1))⊕Bωbkc+1 built for them, while the remaining finitely

many will have a suborder whose interval algebra is Bu(S�(bk′c+1))⊕Bωbkc+1 for some integer

k′ < k built for them. Thus each point of the ∆0
2k+3 linear order has a suborder in the

∆0
1 linear order whose interval algebra is Bu(S�(bkc+1)) ⊕ Bωk+1 built for it.
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If bkc = k, by Corollary 2.48, cofinitely many of the points in the ∆0
2k+3 linear order

will become copies of 1 + η + ω in the ∆0
2k+1 linear order, while the remaining finitely

many will become ω in the ∆0
2k+1 linear order. Making use of the inductive hypothesis,

it follows that each point in the ∆0
2k+3 linear order has a suborder in the ∆0

1 linear order

whose interval algebra is Bu(S�(k+1)) ⊕ Bωk+1 built for them.

By Claim 2.50.1, at least cofinitely many of the points in the ∆0
2n+1 linear order has

a suborder in the ∆0
1 linear order whose interval algebra is Bu(S�n) ⊕Bωn built for them.

If n ∈ S, then the ∆0
2n+1 linear order is 1+ η, so the ∆0

1 linear order will have Bu(S�(n+1))

as its interval algebra. If n 6∈ S, then the ∆0
2n+1 linear order is Fin, so the ∆0

1 linear

order will have Bu(S�n) ⊕ B`·ωn as its interval algebra.

By repeating the construction in Lemma 2.50 for increasing n, we are able to build

computable copies of Bu(S) and Bv(S) if S \{ω} is Σ0
n7→2n+3 in the Feiner Σ- hierarchy.

Theorem 2.51. If S ⊆ ω+1 is a set with greatest element such that S \{ω} is Σ0
n7→2n+3

in the Feiner Σ-hierarchy, then Bu(S) (Bv(S), respectively) is computable.

Proof. Let S ⊆ ω + 1 be a set with greatest element such that S \{ω} is Σ0
n7→2n+3 in

the Feiner Σ-hierarchy and let the index e witness this. We build a computable linear

order Lu(S) (Lv(S), respectively) by iterating Lemma 2.50 for increasing n. We note

that we may assume that S is infinite, else Bu(S) (Bv(S), respectively) is computable by

Proposition 2.41.

The linear order Lu(S) (Lv(S), respectively) is constructed by building a linear order of

the form
∑

τ∈2<ω Lτ . The linear order Lτ depends on the value of σu(ω+1)(τ) (σv(ω+1)(τ),

respectively) and the set S.
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Construction: We build a linear order
∑

τ∈2<ω Lτ , where Lτ is as follows.

Value ω: If σu(ω+1)(τ) = ω (σv(ω+1)(τ) = ω, respectively) and |τ | = `, the linear order Lτ

is ω`.

Value 0: If σu(ω+1)(τ) = 0 (σv(ω+1)(τ) = 0, respectively), the linear order Lτ is the empty

linear order.

Value n: If σu(ω+1)(τ) = n (σv(ω+1)(τ) = n, respectively) with 0 < n < ω and |τ | = `, we use

Lemma 2.50 to build Lτ . More specifically, the Π0
2n+2 predicate is the `th column

of the Σ0
2n+3 predicate giving membership of n in S.

This completes our description of the construction.

Verification: We verify that the interval algebra of
∑

τ∈2<ω Lτ is Bu(S) (Bv(S), respec-

tively). As Lτ = ω` if σu(ω+1)(τ) = ω (σv(ω+1)(τ) = ω, respectively) and |τ | = `, the

placement of the rank ω points is correct.

Above each rank ω point in the measure σu(ω+1) (σv(ω+1), respectively) are rank n

points for arbitrarily large n. For n ∈ S, a copy of Bu(S�(n+1)) will appear above cofinitely

many of the rank n points by Lemma 2.50. As S was assumed to be infinite, the

placement of the rank n points is correct.

It remains to verify that the points built for numbers n 6∈ S and for the finitely many

exceptional rank n points for n ∈ S do not disturb the isomorphism type of the interval

algebra. In either case, by Lemma 2.50, such interval algebras will either be superatomic

of small rank or Bu(S�(k+1)) for some integer k. Because of the placement of such points,

in the former case they can be thought of as contributing to the rank ω points; in the

latter case they can be thought of as contributing to the rank k points.



63

We conclude that the interval algebra of
∑

τ∈2<ω Lτ is Bu(S) (Bv(S), respectively).

2.7 Applications to the Lown Conjecture

As a corollary to Theorem 2.42, we obtain partial results on the Lown Conjecture. For

a fixed n, let Lown be the statement that every Boolean algebra with a presentation

computable in a Lown degree is computable.

Conjecture 2.52. For every n, the statement Lown holds.

Jockusch showed Low1 in [5]; Thurber showed Low2 in [24]; and Knight and Stob

showed Low4 in [16]. Although progress is being made towards resolving the Lown

conjecture for n ≥ 5 (see [10], for example), the Lown conjecture remains open for

n ≥ 5.

As a corollary to Theorem 2.42, we resolve the conjecture for depth zero, rank ω

Boolean algebras.

Corollary 2.53. If a depth zero, rank ω Boolean algebra B has a Lowk presentation

for some k, it has a computable presentation.

Proof. Fix a Lowk set A so that B has an A-computable presentation. Relativizing

Theorem 2.45 to A, we have that n ∈ S if and only if a ΣA
2n+3 predicate holds.

For n > k, we have that ΣA
2n+3 = Σ0

2n+3 as A2n+3 = (A(k))(2n−k+3) = (∅(k))(2n−k+3) =

∅(2n+3). Thus from the finite information of S � k, we can build the Boolean algebra B.
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2.8 Future Directions

Although we have characterized the computable depth zero, rank ω Boolean algebras, we

leave open the characterization for higher rank depth zero Boolean algebras. A general-

ization of the Feiner Σ-hierarchy seems necessary, which we state under Convention 2.37

where we fixed an ordinal λ < ωCK
1 and an ordinal notation ` for λ.

Definition 2.54. For an ordinal α < λ (i.e., a <O ` with α = |a|O), define ∅(≤α) to be

the set

∅(≤α) = {〈k,m〉 : m ∈ ∅(|k|O), k ≤O a},

where |k|O denotes the ordinal for which k is a notation.

Definition 2.55. Let S ⊆ λ be a set computable in ∅(λ). Then S is Σ0
α 7→b·α+a in the

Feiner Σ-hierarchy if there exists an index e such that

1. The set S satisfies S = W ∅(λ)

e .

2. The computations ϕ∅(≤b·α+a)

e (n) and ϕ∅(λ)

e (n) are equal where α = |n|O; in particular,

neither queries any number 〈k,m〉 with |k|O > b · α + a.

We conjecture that the straightforward generalization of Theorem 2.42 is true, namely:

Conjecture 2.56. Let S ⊆ λ be a set with greatest element. Then the following are

equivalent:

1. The Boolean algebra Bu(S) is computable.

2. The Boolean algebra Bv(S) is computable.
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3. The set S is Σ0
α 7→2·α+3 in the Feiner Σ-hierarchy.

An analog of Lemma 2.47 for limit ordinals should be all that is necessary to prove

Conjecture 2.56. Unfortunately, the proof of Lemma 2.47 does not generalize to limit

ordinals. Instead it is likely that the method of infinite games, as in [1], will be needed

to prove the analog of Lemma 2.47 for limit ordinals.

In addition to a characteration of the computable depth zero Boolean algebras of

higher rank, we leave open the characterization of the computable Boolean algebras

of higher depth. Although the unrestricted question may still be intractable, certain

subclasses seem both natural and tractable. For example, a characterization of the

computable Boolean algebras of the form π(σ), or even π(σu(S)) and π(σv(S)), would be

desirable.

Examining the boundary conditions around ωCK
1 is also an important question. As

the linear order ωCK
1 · (1 + η) has a computable copy, it follows that the depth zero

Boolean algebra Bu({ωCK
1 }) = Bv({ωCK

1 }) is computable. Are there other computable depth

zero measures with ωCK
1 in the range? Are there computable depth zero measures with

both ωCK
1 and ordinals cofinal in ωCK

1 in the range?
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Chapter 3

Shuffle Sums of Ordinals

3.1 Introduction

A countable linear order is said to be computable if its universe can be identified with ω

in such a way that the order is a computable relation on ω×ω. The class of computable

linear orders has been studied extensively; see [6] for an overview. In this chapter we

discuss the class of linear orders that are the shuffle sums of ordinals.

Definition 3.1. The shuffle sum of a countable set of linear orders S = {Li}i∈ω, denoted

σ(S), is the (unique) linear order obtained by partitioning the rationals Q into dense sets

{Qi}i∈ω and replacing each rational of Qi by the linear order Li.

Equivalently, the shuffle sum of S = {Li}i∈ω is the linear order obtained by inter-

leaving copies of each Li densely and unboundedly amongst each other. Shuffle sums

can also be defined in terms of lexicographic sums as per the following remark.

Remark 3.2. The shuffle sum of a set S = {Li}i∈ω can also be defined as the (unique)

linear order σ(S) =
∑

a∈Q La, where La is the linear order Li if a ∈ Qi.

The class of shuffle sums of ordinals has yielded various results in computable model

theory. In [2], the authors use shuffle sums to produce, for each computable ordinal

α ≥ 2, a linear order Aα such that Aα has αth jump degree but not βth jump degree
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for any β < α. In [12], shuffle sums of ordinals are used to exhibit a linear order with

both a computable model and a prime model, but no computable prime model.

In this chapter, we characterize which shuffle sums of the finite order types and the

order type ω are computable. In order to do so, we need the following notions.

Definition 3.3. A set S ⊆ ω + 1 is a limit infimum set, written LimInf set, if there is

a total computable function g : ω × ω → ω such that the function f : ω → ω given by

f(x) = lim infs g(x, s)

enumerates S under the convention that f(x) = ω if lim infs g(x, s) = ∞. We say that g

is a LimInf witnessing function for S.

Definition 3.4. A set S ⊆ ω + 1 is a limitwise monotonic set relative to a degree a,

written LimMon(a) set, if there is a total a-computable function g̃ : ω×ω → ω satisfying

g̃(x, t) ≤ g̃(x, t + 1) for all x and t such that the function f̃ : ω → ω given by

f̃(x) = limt g̃(x, t)

enumerates S under the convention that f̃(x) = ω if limt g̃(x, t) = ∞. We say that g̃ is

a LimMon(0′) witnessing function for S.

Although the notion of LimInf sets is new, LimMon(0′) sets have been previously

studied. Limitwise monotonic functions were first introduced and relativized in [13] and

further studied in [4], [12] and [15]. Our definition departs slightly from the literature

where limt g̃(x, t) is required to be finite. With the exception of the conclusion, we will

only have need to consider limitwise monotonic sets relative to the degree a = 0′.

Blurring the distinction between an ordinal α and the linear order of order type α

(which we will do throughout the chapter), we note that σ(S) = σ (S ∪ {0}) for any set S
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of linear orders. In order to avoid complications in several of the proofs, we assume the

following conventions.

Convention 3.5. Any set S of ordinals is assumed to not contain 0. Any set S of linear

orders is assumed to not contain the empty linear order.

Any LimInf witnessing function g(x, s) is assumed to satisfy g(x, s) 6= 0 for all x

and s. Any LimMon(0′) witnessing function g̃(x, t) is assumed to satisfy g̃(x, t) 6= 0 for

all x and t.

The following facts justify that all the results in this chapter are correct as stated,

without needing to invoke Convention 3.5.

Fact 3.6. If S is a Σ0
3 set, then S\{0} is a Σ0

3 set. If S is a Σ0
3 set, then S ∪{0} is a Σ0

3

set.

Fact 3.7. If S is a LimInf set, then S\{0} is a LimInf set. If S is a LimMon(0′) set,

then S\{0} is a LimMon(0′) set.

If S is a LimInf set, then S ∪ {0} is a LimInf set. If S is a LimMon(0′) set, then

S ∪ {0} is a LimMon(0′) set.

Fact 3.8. If S is a LimInf set not containing 0, then there is a LimInf witnessing

function g for S satisfying g(x, s) 6= 0 for all x and s.

If S is a LimMon(0′) set not containing 0, then there is a LimMon(0′) witnessing

function g for S satisfying g̃(x, t) 6= 0 for all x and t.

As these facts are all straightforward, the proofs are omitted. Having introduced all

the relevant notions, we are now in a position to state the main results of the chapter.

The first result is in computable model theory. In particular, it provides a necessary
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and sufficient condition for the shuffle sum σ(S) to be computable in terms of the new

computability-theoretic notion of LimInf sets.

Theorem 3.9. For sets S ⊆ ω + 1, the shuffle sum σ(S) is computable if and only if S

is a LimInf set.

The next result is in classical computability theory. It provides an alternate charac-

terization of the LimInf sets, showing their equivalence with the pre-existing notion of

LimMon(0′) sets.

Theorem 3.10. A set S ⊆ ω +1 is a LimInf set if and only if S is a LimMon(0′) set.

In Section 3.2 we prove Theorem 3.9, and in Section 3.3 we prove Theorem 3.10. In

Section 3.4 we discuss the relationship between the LimInf and LimMon(0′) sets and

the Σ0
3 sets, making use of previous work in [4] and [15]. We note that in [4] the authors

show that for sets S ⊆ ω, if the shuffle sum σ(S) is computable, then S is a LimMon(0′)

set.

3.2 Proof of Theorem 3.9

We prove Theorem 3.9 by proving the forwards and backwards directions separately,

making each a proposition.

Proposition 3.11. If S ⊆ ω + 1 is a LimInf set, then the shuffle sum σ(S) is com-

putable.

Proof. Let g(x, s) be a LimInf witnessing function for S. Fix a uniformly computable

partition of the rationals Q into dense sets {Qx}x∈ω with Qx = {qx,y}y∈ω. We build a

computable copy of σ(S) in ω many stages s using g(x, s).
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The basic idea is to build the finite linear order g(x, s + 1) at a rational qx,y at stage

s + 1. If g(x, s + 1) is larger than g(x, s), then the appropriate number of points are

added to the linear order already built for qx,y. If g(x, s+1) is smaller than g(x, s), then

the extra points already built for qx,y are no longer associated with qx,y; instead they

eventually become associated with some other rational at a later stage. In order to track

whether a point is currently associated with some rational qx,y, the states associated and

unassociated will be used.

Construction: At each stage s we build a computable linear order Ls such that Ls ⊆ Ls+1

for all s. With L =
⋃

s Ls, we aim for L ∼= σ(S). At stage 0 we begin with the empty

linear order, i.e., L0 is the empty linear order. At stage s + 1 we work on behalf of all

rationals qx,y with x, y < s. This work is done in s2 substages, with a substage devoted

to each such rational qx,y (in lexicographic order). Fixing a rational qx,y with x, y < s,

we compare the value of g(x, s + 1) and g(x, s); our action is determined by which is

greater and whether or not work has already been done for the rational qx,y.

If g(x, s + 1) > g(x, s) and work has already been done for qx,y, then we insert the

appropriate number of new points (namely g(x, s + 1)− g(x, s)) at the right end of the

linear order built at qx,y and give these inserted points the state associated.

If g(x, s + 1) < g(x, s) and work has already been done for qx,y, then we split off the

appropriate number of points (namely g(x, s) − g(x, s + 1)) from the right end of the

linear order built at qx,y. The points split off have their state switched to unassociated

and receive a priority amongst all points unassociated based first on the stage at which

they became unassociated (lower stage, higher priority) and then their position in the

linear order (further left, higher priority).
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If no work has been done for qx,y, then we insert the linear order g(x, s + 1) at qx,y.

In particular, we note whether or not there are any unassociated points greater than

the greatest associated point to the left of qx,y and less than the least associated point

to the right of qx,y. If there are such unassociated points, we use the one with highest

priority for the first point of the linear order built at qx,y and insert the appropriate

number of new points (namely g(x, s + 1) − 1) immediately to the right of this first

point. If there are no such unassociated points, we insert the appropriate number of

new points (namely g(x, s + 1)) at qx,y. All points inserted at qx,y are given the state

associated, including the previously unassociated point if one was used. This completes

the construction.

Verification: As the construction is computable, it suffices to show that L ∼= σ(S). In

order to demonstrate this equality, we verify the following two claims. The first implies

that no extra points are built, and the second implies that enough points are built.

Claim 3.11.1. Every point is unassociated for at most finitely many stages.

Proof. When a point changes its state to unassociated, there are at most finitely many

unassociated points with higher priority. Moreover, as priority is determined first by

stage, no later point will receive a higher priority.

As a consequence of the density of the rationals and that only those rationals qx,y

with x, y < s have had work done for them by stage s, at some later stage the point will

meet the criterion for becoming the first point built for some rational which is having

work done for it for the first time. When the point does meet this criterion, it will never

again become unassociated as by convention g(x, s) > 0 for all s, and thus it will never

be split off. Thus each point becomes unassociated at most once and eventually becomes
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associated permanently at some later stage.

Claim 3.11.2. In L, the linear order f(x) = lim infs g(x, s) is built at the rational qx,y.

Proof. Since f(x) = lim infs g(x, s), there is a stage ŝ such that g(x, s) ≥ f(x) for all

s ≥ ŝ. As a result, the rational qx,y will have at least f(x) points built at it at every

stage s ≥ ŝ. On the other hand, no other points will remain permanently associated

with qx,y as infinitely often the value of g(x, s) will drop to f(x), causing all other points

to be split off from qx,y.

As the rationals are dense, eventually the points split off will be separated from

the f(x) points permanently associated with qx,y. Thus the linear order f(x) is built at

the rational qx,y in L.

It follows from the first claim that every point of the linear order eventually becomes

associated permanently with some rational qx,y. As each qx,y has the correct linear order

built at it by the second claim, we conclude that L = σ(S).

Before demonstrating the converse, we introduce some vocabulary and notation

which will simplify the language in its proof.

Definition 3.12. A maximal block in a linear order is a collection of points maximal

with respect to the property that for every pair of points a and b in the collection, the

interval [a, b] is finite.

The block size of an element x, denoted BlockSize(x), is the number of points in the

(unique) maximal block containing x.
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Definition 3.13. If A = {ax}x∈ω is an enumeration of a linear order A = (A :≺),

define |(ai, aj)|s to be the number of points strictly between ai and aj amongst the first s

points in the enumeration, i.e., the cardinality of the set {k : ai ≺ ak ≺ aj, k < s}.

Proposition 3.14. If the shuffle sum σ(S) is computable with S ⊆ ω + 1, then S is a

LimInf set.

Proof. Assume σ(S) is computable and let A = (A :≺) be a computable presentation

of σ(S) with universe A = {ax}x∈ω. In order to show that S is a LimInf set, we define

a LimInf witnessing function g : ω × ω → ω for S.

The idea will be to define auxiliary functions `(x, s) and r(x, s) that guess the number

of points to the left and right of x in its maximal block. The difficulty is that all linear

orders of a fixed finite cardinality are isomorphic. This obstacle is resolved by believing

the left and right boundaries of the maximal block are determined by the most recently

enumerated point on the left and on the right. Because of the dense nature of the

maximal blocks, infinitely often `(x, s) and r(x, s) will be correct.

From the functions `(x, s) and r(x, s), we define the function g(x, s). The idea will

be to add `(x, s) and r(x, s) to obtain the value of g(x, s), but we cannot do so directly

as `(x, s) and r(x, s) may never be at their correct values simultaneously.

Construction: Before defining g(x, s), we first define auxiliary functions `(x, s) : ω×ω →

ω and r(x, s) : ω × ω → ω by

`(x, s) = |(ai, ax)|s and r(x, s) = |(ax, aj)|s

where i is the greatest index less than s such that ai ≺ ax and j is the greatest index

less than s such that ax ≺ aj. If no such index i exists, define `(x, s) = |(−∞, ax)|s.

Similarly, if no such index j exists, define r(x, s) = |(ax, +∞)|s.
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Fixing x and s, let v be the most recent time before s such that r(x, ·) took the value

r(x, s). More formally, we define v = vx,s to be the greatest integer u less than s such

that `(x, u) = `(x, s) if one exists; otherwise we define v = vx,s to be s. We then define

g(x, s) by

g(x, s) = `(x, s) + 1 + min
z∈[v,s]

r(x, z).

Verification: Since A is a computable presentation of σ(S), it is clear that `(x, s) and

r(x, s) are computable, from which it follows that g(x, s) is computable. We claim that

the range of f(x) = lim infs g(x, s) is exactly S, which we will show by demonstrating

that lim infs g(x, s) = BlockSize(ax). Fixing x, we consider the cases when BlockSize(ax)

is finite and infinite separately.

Claim 3.14.1. If BlockSize(ax) is finite, then lim infs g(x, s) = BlockSize(ax).

Proof. If BlockSize(ax) = n, then there is an ŝ such that {a0, . . . , aŝ} includes all of the

elements of the maximal block of ax. Moreover, we may assume that at stage ŝ, the

points ai and aj (as in the definition of `(x, s) and r(x, s)) are not part of the maximal

block of ax.

Denote the elements in ax’s maximal block by {ax1 < · · · < ax = axk
< · · · < axn}.

Then {ax1 , . . . , axn} ⊆ {a0, . . . , aŝ}. Note that for any s > ŝ, we have `(x, s) ≥ k − 1

and r(x, s) ≥ n− k.

When a new element is enumerated directly to the left of ax1 , we have `(x, s) =

k − 1; similarly, when a new element is enumerated directly to the right of axn , we

have r(x, s) = n − k. Because of the dense nature of shuffle sums, such points will be
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enumerated infinitely often. Thus lim infs `(x, s) = k − 1 and lim infs r(x, s) = n − k,

from which it follows that lim infs g(x, s) = (k − 1) + 1 + (n− k) = n.

Claim 3.14.2. If BlockSize(ax) is infinite, then lim infs g(x, s) = BlockSize(ax).

Proof. If BlockSize(ax) = ∞, then ax belongs to a maximal block of order type ω. For

every k, there is an ŝ = ŝk such that {a0, . . . , aŝ} includes the k points immediately to

the right of ax in σ(S). Moreover, we may assume that at stage ŝ, the point aj (as in

the definition of r(x, s)) is not part of the maximal block of ax. Then r(x, s) ≥ k for all

s > ŝ. Since there is such a stage ŝ = ŝk for every k, it follows that lims r(x, s) = ∞.

We conclude that lim infs g(x, s) = ∞.

As a consequence of f(x) = lim infs g(x, s) = BlockSize(ax) for all x, we conclude

that g(x, s) is a LimInf witnessing function for S.

3.3 Proof of Theorem 3.10

We prove Theorem 3.10, again by proving the forwards and backwards directions sepa-

rately as separate propositions.

Proposition 3.15. If S ⊆ ω + 1 is a LimInf set, then S is a LimMon(0′) set.

Proof. Let g(x, s) be a LimInf witnessing function for S. Define a function g̃ : ω×ω → ω

by setting g̃(x, t) equal to the largest number n such that g(x, s) ≥ n for all s ≥ t. Note

that g̃(x, t) is total, increasing in t, and computable in 0′. Moreover limt g̃(x, t) =

lim infs g(x, s), so that the range of f̃(x) = limt g̃(x, t) is the same as the range of
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f(x) = lim infs g(x, s). It follows that g̃(x, t) is a LimMon(0′) witnessing function

for S.

Proposition 3.16. If S ⊆ ω + 1 is a LimMon(0′) set, then S is a LimInf set.

Proof. Let g̃(x, t) be a LimMon(0′) witnessing function for S. By the Limit Lemma,

there is a total computable function h̃ : ω×ω×ω → ω such that limk h̃(x, t, k) = g̃(x, t).

Fixing x, for each s we define a natural number ts by recursion. Let t0 = 0 and let ts

for s > 0 be the least t not greater than ts−1 such that h̃(x, t, s) 6= h̃(x, t, s − 1) if such

a t exists, and otherwise let ts be ts−1 + 1.

We define a function g : ω × ω → ω by

g(x, s) = max
{

h̃(x, i, s) : 0 ≤ i ≤ ts

}
.

As g(x, s) is clearly total and computable, it suffices to show that lim infs g(x, s) =

limt g̃(x, t) for all x. We begin with a combinatorial claim about the sequence {ts}s∈ω.

Claim 3.16.1. For every t, there are at most finitely many s with ts = t. In particular,

for every t, there are at most finitely many s with ts ≤ t.

Proof. We prove the claim by induction on t. For t = 0, we have ts = 0 when s = 0 and

when h̃(x, 0, s) 6= h̃(x, 0, s − 1). Since limk h̃(x, 0, k) exists, the latter condition occurs

at most finitely often. Thus ts = 0 for only finitely many s.

For t + 1, we have ts = t + 1 possibly when h̃(x, t + 1, s) 6= h̃(x, t + 1, s − 1) and

possibly when ts−1 = t. Since limk h̃(x, t + 1, k) exists, the former condition happens at

most finitely often. The inductive hypothesis assures that the latter condition happens

at most finitely often. Thus ts = t + 1 for only finitely many s.
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In order to show that lim infs g(x, s) ≥ limt g̃(x, t), we argue that for every t, there

is an ŝ such that g(x, s) ≥ g̃(x, t) for all s ≥ ŝ. Fixing t, let ŝ be such that ts ≥ t for

all s ≥ ŝ, which is possible by the claim. As limk h̃(x, t, k) exists, we may assume that ŝ

satisfies h̃(x, t, s) = g̃(x, t) for all s ≥ ŝ. Then for s ≥ ŝ we have

g(x, s) = max
{

h̃(x, i, s) : 0 ≤ i ≤ ts

}
≥ max

{
h̃(x, i, s) : 0 ≤ i ≤ t

}
≥ h̃(x, t, s) = g̃(x, t).

Thus for every t there is an ŝ such that g(x, s) ≥ g̃(x, t) for all s ≥ ŝ, from which the

inequality lim infs g(x, s) ≥ limt g̃(x, t) follows.

In order to show that lim infs g(x, s) ≤ g̃(x, t), we argue that for every t there is

an s such that g(x, s) = g̃(x, t) (with s 6= s′ if t 6= t′). Fixing t, let ŝ be minimal such

that h̃(x, i, s) = g̃(x, i) for all i ≤ t and s ≥ ŝ. Let s be the least number greater

than or equal to ŝ such that ts = t, which is possible since ŝ was chosen to satisfy

h̃(x, i, ŝ) = g̃(x, i) 6= h̃(x, i, ŝ− 1) for some i ≤ t. Then

g(x, s) = max
{

h̃(x, i, s) : 0 ≤ i ≤ ts

}
= max

{
h̃(x, i, s) : 0 ≤ i ≤ t

}
= max {g̃(x, i) : 0 ≤ i ≤ t}

= g̃(x, t).

Moreover, the value of s will be distinct for distinct values of t as s satisfies ts = t. Thus

for every t there is an s such that g(x, s) = g̃(x, t), with s 6= s′ if t 6= t′. The inequality

lim infs g(x, s) ≤ limt g̃(x, t) then follows.
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We conclude that lim infs g(x, s) = limt g̃(x, t) for all x, so that g(x, s) is a LimInf

witnessing function for S.

3.4 LimInf and LimMon(0′) Sets

With the characterization of the computable shuffle sums of subsets S ⊆ ω + 1 in terms

of LimInf and LimMon(0′) sets completed, it is natural to ask which subsets of ω + 1

are LimInf and LimMon(0′) sets. We note that a LimInf set (and thus a LimMon(0′)

set) can be no more complicated than a Σ0
3 set. For if g(x, s) is a LimInf witnessing

function for S, then

n ∈ S iff ∃x [lim infs g(x, s) = n]

iff ∃x
[
∃ŝ∀s > ŝ [g(x, s) ≥ n] & ∀s∃s′ > s [g(x, s′) = n]

]
.

As the last predicate is Σ0
3, membership in S cannot be more complicated than Σ0

3. We

state this as a proposition.

Proposition 3.17. If S is a LimInf and LimMon(0′) set, then S is a Σ0
3 set.

We next show that for sets S with ω ∈ S, the LimInf sets (and thus LimMon(0′)

sets) coincide exactly with the Σ0
3 sets.

Proposition 3.18. If S ⊆ ω is a Σ0
3 set, then S ∪ {ω} is a LimInf and LimMon(0′)

set.

Proof. Let S be a Σ0
3 set witnessed by the predicate ∃m∃∞s R(n, m, s), where R is a
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computable relation. Define a function g : ω × ω → ω by

g(x, s) = g(〈n, m〉 , s) =


n if R(n,m, s),

s otherwise.

Note that g(x, s) is computable as R is computable.

If n ∈ S, we have ∃m∃∞s R(n, m, s). Letting m0 witness this, we have g(〈n, m0〉 , s) =

n for infinitely many s. As s will be less than n only a finite number of times, it follows

that lim infs g(〈n, m0〉 , s) = n. Thus n is in the range of f(x) = lim infs g(x, s).

If instead n 6∈ S, we have ∀m∃<∞s R(n,m, s). For any x = 〈n, m〉, it follows that

g(x, s) = n for only finitely many s. Thus lim infs g(x, s) = ∞, and so ω is in the range

of f(x) and n is not in the range of f(x).

In the extreme case when S = ω, we can (non-uniformly) arrange to have the range

of f(x) = lim infs g(x, s) be ω ∪ {ω} if ω would otherwise not be in the range.

It follows immediately from Theorem 3.9 and Proposition 3.18 that σ (S ∪ {ω}) is

computable for every Σ0
3 set S, a result shown in [2]. However σ(S) is not computable

for every Σ0
3 set S, a corollary of our results and the following result found in [4] (which

is a relativization of a result in [15]).

Proposition 3.19 ([4]). There is a Σ0
3 set S that is not a LimMon(0′) set. Moreover,

the set S can be made to be a d.c.e. set.

3.5 Conclusion

We conclude our discussion of shuffle sums of ordinals by asking several questions.

Question 3.20. For which subsets S ⊆ ωCK
1 + 1 is σ(S) computable?
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We note that Question 3.20 will probably require significantly more work. For ex-

ample, if S has a computable shuffle sum and is known to satisfy ω2 < α < ω2 + ω for

all α ∈ S, then S must be a LimInf and LimMon(0′) set as a consequence of the proof

of Proposition 3.14. On the other hand, if S has a computable shuffle sum and is known

to satisfy ω2 < α < ω3 for all α ∈ S, there is no reason to believe that S must be a

LimInf and LimMon(0′) set.

In addition, if S ⊆ ω +1 is a LimMon(∅(3)) set, then σ(ω ·S) = σ({ω ·α : α ∈ S}) is

computable as a consequence of the following theorem (see [1] or [23], for example) and

the fact that σ(ω · S) = ω · σ(S).

Theorem 3.21. If L is a ∆0
3 linear order, then there is a computable copy of ω · L.

In addition to exploring shuffle sums of subsets of larger ordinals, it is natural to

further investigate which sets are LimInf and LimMon(0′) sets.

Question 3.22. Which subsets S ⊆ ω+1 are Σ0
3 sets but not LimInf and LimMon(0′)

sets?
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