
Qualifying Exam
Logic

January 19, 2001

Instructions:

If you signed up for Computability Theory, do two E and two C problems.

If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this to
the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

E1. Show that every countable ordinal has the same order type as a
closed set of reals.

E2. Show that the set {〈n,m, p〉 | n + m = p} is not definable in the
structure (N, ·).

E3. Gödel’s First Incompleteness Theorem tells us that there is a Π
sentence ϕ such that ϕ is true in (N,+, ·, 0, 1), but is not provable in Peano
arithmetic. Is there a Σ sentence with this property? If so, write it down,
and if not, prove that no Σ sentence has this property.

Recall that a Π sentence is one of the form ∀xψ, where ψ is quantifier
free, and a Σ formula is one of the form ∃xψ, where ψ is quantifier free.
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C1. Prove that there exists x such that

∀y(x ∈ Wy ⇔ y ∈ Wx).

C2. Let A be c.e. Prove that there is no total A-computable function f
such that for all e, if We is finite then We ⊆ {0, . . . , f(e)}.

C3. Show that there is a noncomputable c.e. set A such that for any
disjoint c.e. sets U and V with A = U ∪ V , if A is U -computable then V is
computable.

Note: c.e. is the same as r.e., computable is the same as recursive, A is
U -computable is the same as A is Turing reducible to U or A ≤T U , and We

is the eth c.e. set in some standard enumeration.
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S1. Let [R]<ω denote the set of all finite subsets of the reals and [R]ω

denote the set of all countably infinite subsets of the reals. Prove that CH
is equivalent to the following statement:

(P ) There is a function F : [R]<ω → [R]ω such that for every A ∈ [R]<ω,
we have a ∈ F (A \ {a}) for all but at most one a ∈ A.

S2. Prove there exists a family P of perfect subtrees of 2<ω which when
ordered by reverse inclusion is an ω1-Aronszajn tree.

Notation. An ω1-Aronszajn tree is a tree P of height ω1 such that P has
no uncountable branches and such that Pα (the αth level of P) is countable
for each α. A subtree p ⊆ 2<ω is perfect iff every node in p has incompatible
nodes above it.

Hint. You can construct P inductively, with the root equal 2<ω. You have
to make sure that P doesn’t die at limit levels, so maintain the property that
for any α < β, n < ω, and p ∈ Pα there exists q ∈ Pβ with q ⊆ p and
q ∩ 2n = p ∩ 2n.

S3. Prove that the following is consistent with ¬CH: There are cofinal
Aγ ⊂ γ, for γ a countable limit ordinal, such that each Aγ has order type
ω and such that whenever A is an unbounded subset of ω1, there is a closed
unbounded C ⊆ ω1 such that A ∩ Aγ is infinite for all γ in C.

Hint. Use Cohen forcing, and use the γth Cohen real to code Aγ.
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ANSWERS

E1. Using induction on α < ω1 and also that any two open intervals are
order isomorphic. This can also be proved without using the axiom of choice.

E2. Take any permutation σ of the primes. It extends to an automor-
phism of (N, ·) using the fundamental theorem of arithmetic. But < is defin-
able from + and (N, <) has no nontrivial automorphisms.

E3. Any Σ sentence true in N is provable in Peano arithmetic. All one
has to prove is that all quantifier free sentences true in N are provable in PA.
Let n stand for 1 + 1 + 1 + · · ·+ 1 n-times (or 0 if n = 0). By induction one
can prove that

PA ` n+m = n+m

PA ` n ·m = nm

n 6= m implies PA ` n 6= m

This collection of sentences is known as Robinson’s Q. It follows that any
model of PA is a model of Q, hence any quantifier free sentence true in N is
true in all models of PA.

S1. Assume CH. Replace R by ω1, and let F (A) = A∪
⋃
A = A∪

⋃
α∈A α.

Assume (P) and not CH. Take C ⊆ R of size ω1. There exists a ∈ R \⋃
b∈C F ({b}). For each b ∈ C we have b ∈ F ({a}), so F ({a}) is uncountable,

contradicting (P).
S2. A key argument for constructing the limit levels Pλ is the fusion

lemma: If (pn : n < ω) are a descending sequence of perfect trees and
(kn : n < ω) is an increasing sequence such that for all n we have

pn+1 ∩ 2kn = pn ∩ 2kn and
all nodes in pn+1 ∩ 2kn have at least two extensions in pn+1 ∩ 2kn+1 ,

then ∩n<ωpn is a perfect tree. Another property which should be in the
construction is that any distinct p, q at the same level should have no infinite
branches in common (or equivalently p ∩ q is finite). P has no ω1 branch
since there cannot be an ω1 descending chain in the power set of 2<ω.

S3. In the ground model, V , choose a map fγ from ω onto γ for each
countable limit γ. Let V [G] add Cohen reals, {rα : α < κ} ⊂ ωω. To ensure
¬CH, let κ ≥ ω2 (or, assume V |= ¬CH). Use rγ to construct Aγ; for
example, let Aγ = {ξγ

n : n ∈ ω}, where ξγ
0 = 0, and ξγ

n+1 is fγ(rγ(n)) if this is
greater than max(fγ(n), ξγ

n), and max(fγ(n), ξγ
n + 1) otherwise.
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C1. Prove that there exists x such that

∀y(x ∈ Wy ⇔ y ∈ Wx).

Proof: Define a computable function f such that Wf(x) = {y | x ∈ Wy},
and apply the Fixed-Point Theorem to get an index x0 with Wx0 = Wf(x0).

C2. Let A be c.e. Prove that there is no total A-computable function f
such that for all e, if We is finite then We ⊆ {0, . . . , f(e)}.

Proof: “We is finite” is a Σ0
2-complete property, whereas for any A-

computable function f , “We ⊆ {0, . . . , f(e)}” is Π0
2.

C3. Show that there is a noncomputable c.e. set A such that for any
disjoint c.e. sets U and V , if A = U ∪V and one of U or V computes A then
the other is computable.

Proof by priority argument: Try to show V computable at x after U
computes A(x). If later x enters A (and thus may now enter V ), then either
x enters U (and thus not V ), or x enters only V and so we can kill the
reduction from U to A at x (as A(x) is no longer correctly computed by U).

(Comment: This property is called mitotic and is known to be equivalent
to autoredicibility, but this is not relevant here.)
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